MATH 311– Dr. Z. Ye	Final Exam	SPRING 2017
Name :	ID :	

1. (15 pts) (a) State the $\epsilon - N$ definition of a convergent sequence $\{x_n\}$, say, $\lim_{n \to \infty} x_n = A$.

(b) Prove $\lim_{n \to \infty} \frac{3n^2}{n^2 + 1} = 3$ by using the $\epsilon - N$ definition.

2. (20 pts)

- (a) State the definition of a continuous function f at c.
- (b) State the definition of a differentiable function f at c.

(c) Let
$$f(x) = x \sin \frac{1}{x}$$
 for $x \neq 0$ and $f(0) = 0$. Prove f is continuous at 0.

(d) Prove that f is NOT differentiable at 0.

3. (10 pts) Let $\{x_n\}$ be a sequence of real numbers. Suppose that $\{x_n\}$ converges to L. Prove that $\{|x_n|\}$ converges to |L| by using the $\epsilon - N$ language.

4. (20 pts)

(a) State the Mean Value Theorem.

(b) Let $n \ge 1$ be an integer and let $b \ge a \ge 0$ be any positive real numbers. Prove that $na^{n-1}(b-a) \le b^n - a^n \le nb^{n-1}(b-a).$

5. (20 pts)

(a) State the definition of a uniformly continuous function f on an interval I.

(b) Prove that f(x) = 1/x is NOT uniformly continuous on the interval (0, 1].

(c) Prove that f(x) = 1/x is uniformly continuous on the interval $(\frac{1}{100}, 1]$.

6. (10 pts) Find the limit $\lim_{x \to 0} \frac{e^{\sin x + e^x}(2x - 3\sin x)}{(3x + \sin x)\cos(x + e^x\sin x)} =$

- 7. (25 pts)
 - a) State the definition of an absolutely convergent series.
 - b) State the definition of a conditionally convergent series.

c) Prove that
$$\sum_{n=4}^{\infty} \frac{(-1)^n}{n \log^2 n}$$
 (Hint: the integral test) absolutely converges.

d) Prove that
$$\sum_{n=4}^{\infty} \frac{(-1)^n}{n \log n}$$
 conditionally converges.

8. (10 pts) Find all points in \mathbb{R} where the series $\sum_{n=0}^{\infty} \frac{x^n}{n}$ converges.

9. (10 pts) Let $f(x) = x^2$ and tP a tagged partition of [0, 1] is $\{0, [0, 1/3]; 1/2, [1/3, 2/3]; 1, [2/3, 1]\}$. Find the Riemann sum $S(f, {}^tP)$ over the interval [0, 1] with the tagged partition tP . ID :____

10. (10 pts) Prove Theorem 5.12, i.e. prove that if f is decreasing on an interval [a, b], then f is Riemann integrable on [a, b] by using the $\epsilon - \delta$ language.

11. (20 pts) Let

$$f_n(x) = \begin{cases} 1, & \text{if } x \le 0, \\ n, & \text{if } 0 < x < \frac{1}{n}, \\ 1/2, & \text{if } x \ge \frac{1}{n}. \end{cases}$$

a) State the definition of a convergent sequence of functions $\{f_n(x)\}_{n=1}^{\infty}$ on \mathbb{R} .

b) Sketch the graphs of $f_1(x), f_2(x), f_3(x)$ on \mathbb{R} .

c) Find the limit of the function sequence $\{f_n(x)\}$ on the interval $(-\infty, \infty)$.

- 12. (30 pts) True-False. If the assertion is true, quote a relevant theorem, axiom or reason, or give a proof; if false, give a counterexample or other justification.
 - (a) The series $\sum_{k=1}^{\infty} a_k$ converges if and only if the sequence $\{a_k\}$ converges.

(b)
$$\sum_{n=2}^{\infty} \frac{1}{n(n+1)} = 2.$$

(c) If
$$\sum_{n=1}^{\infty} a_n$$
 diverges, then $\sum_{n=1}^{\infty} |a_n|$ diverges.

(d) If
$$\lim_{n \to \infty} a_n = 0$$
 and $a_n > 0$ for all n , then $\sum_{n=1}^{\infty} a_n$ converges.

(e)
$$\lim_{n \to \infty} x^n = 0$$
 for all $x \in [0, 1]$.

(f)
$$\sum_{n=1}^{\infty} x^n = \frac{x}{1-x}$$
 for $x \in [0,1)$.

(g) If f is a continuous function on an interval I, then f is differentiable on I.