MAT 162–	Dr. Z. Ye	FINAL	Summer 2019
Name :		ZID :	
	Show	all work! Don't simplify your	results!
1. (15 p	ots) Fill in the follow	ving blank spaces:	
	$\int_{a}^{d} f(x) dx$ when	cept of a definite integral $\int_a^b f(x) dx$	
	either: the integral	limits c, d are	
	or: the integrand f	(x) is	·
(b)	An improper integ	ral is convergent if the improper int	egral
(c)	An improper integr	al does not exist, then the improper	integral is
(d)		artesian coordinates (x, y) and polar θ and $y = r$	
(e)	A sequence is an o	rdered/array of	
(f)	An infinite series is	s the of real	numbers.
(g)	If $\lim_{n\to\infty} a_n \neq 0$,	then the series $\sum_{n=1}^{\infty} a_n$ is	
(h)	The sequence of th	e partial sums of the series $\sum_{n=1}^{\infty} a_n$ i	s $\{S_k\}_{k=1}^{\infty}$, where $S_k = \sum_{k=1}^{\infty} a_n$.
(i)	A series $\sum_{n=1}^{\infty} a_n$ is called	alled absolutely convergent if	is convergent.
(j)	A series $\sum_{n=1}^{\infty} a_n$ is ca	lled conditionally convergent if	is convergent,
	<i>n</i> _1	is	
(k)	The Maclaurin serie	es of a function e^x is $e^x = \sum_{n=0}^{\infty} $	x^n , for $-\infty < x < \infty$.
(1)	The Maclaurin serie	s of a function $\frac{1}{1-x}$ is $\frac{1}{1-x} = \sum_{n=0}^{\infty} -$	x^n , for $-1 < x < 1$.
(m)	The Taylor series o	f a function f at a is $\sum_{n=0}^{\infty}$	$\underline{\qquad} (x-a)^n.$

2. (30 pts) Evaluate the following integrals:

(a)
$$\int_{1}^{e} (3+x) \ln x \, dx$$

(b)
$$\int \sin t \cos^{2019} t \, dt$$

(c)
$$\int \frac{dx}{(x+1)(3x-2)}$$

(d)
$$\int \frac{x^2 dx}{\sqrt{1-x^2}}$$

(e)
$$\int_1^\infty \frac{dx}{(3x+1)^{3/2}}$$

3. (10 pts) Let L be the length of the arc of the parabola $y^2 = x + 1$ from (-1, 0) to $(1, \sqrt{2})$. Fill in the following blank spaces:

4. (10 pts) Let S be the area of the surface generated by rotating the curve $y = x^2$ $0 \le x \le 1$, about x- axis. Fill in the following blank spaces:

$$S = \int_{---}^{----} dx.$$

5. (10 pts) Find the area of the surface generated by rotating the curve $4y = x^2$ from (0,0) to (1, 1/4), about y- axis.

6. (15 pts) Let $f(x) = \begin{cases} 1/3 & \text{if } 1 \le x \le 4, \\ 0 & \text{Otherwise} \end{cases}$ be the density function of a random variable X.

- (a) Sketch of the function f(x).
- (b) Verify that f is a probability density function.
- (c) Find $P(0 \le X \le 2019)$.
- (b) Find the mean of the probability density function f.

7. (20 pts) Solve the following differential equations or initial value problems

(a)
$$\frac{du}{dt} = u + t.$$

(b) $xy' + y - x \ln x = 0$ satisfying y(1) = 0.

8. (10 pts) Let $x = \sin t$ and $y = t + e^t$. (a) Find $\frac{dy}{dx} =$

(b) Find
$$\frac{d^2y}{dx^2} =$$

(c) Find an equation of the tangent line to the curve at the point (0, 1).

- 9. (10 pts) (a) Let x = t + 2 and $y = t^2 3 \sin t$ be a curve. Eliminate the parameter t to find a Cartesian expression of the curve.
 - (b) Convert the point $(2, \pi/3)$ from polar to Cartesian coordinates.
- 10. (15 pts) True/False Questions.

(a) If the series
$$\sum_{n=1}^{\infty} a_n = 5$$
, then the series $\sum_{n=1}^{\infty} a_n$ is convergent. **T** or **F**

(b) If the series
$$\sum_{n=1}^{\infty} a_n = \infty$$
, then the series $\sum_{n=1}^{\infty} a_n$ is divergent. **T** or **F**

(c) Since
$$\lim_{n \to \infty} \frac{1}{n} = 0$$
, so the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is convergent. **T** or **F**

- (d) If $0 \le a_n \le b_n$ and $\sum b_n$ is convergent, then $\sum a_n$ converges. **T** or **F**
- (e) $\sum_{n=0}^{\infty} (-\frac{1}{3})^n$ is convergent. **T** or **F**

(f)
$$\sum_{n=1}^{\infty} \frac{n}{n^2 + 3}$$
 is convergetn. **T** or **F**

(g) If $\lim_{n\to\infty} a_n = 0$, then the series $\sum_{n=1}^{\infty} a_n$ is convergent. **T** or **F**

11. (10 pts) Prove that the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$ is conditional convergent.

12. (15 pts) Determine whether the following series is convergent or divergent. Justify your answers.

a)
$$\sum \frac{\ln n}{n}$$
.

(b)
$$\sum \frac{2^n}{n^n}$$

(c)
$$\sum \frac{3^n}{n!}$$

13. (10 pts) Find the sum of the series $5 + \frac{10}{5} + \frac{20}{5^2} + \frac{40}{5^3} \cdots$.

14. (10 pts) Find the radius of convergence and interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^n (x-2)^n}{n^3}$

15. (10 pts) Find the Taylor series of $f(x) = \frac{1}{3-x}$ at 2 and its interval of convergence.