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To inform the design of MPA networks and ensure that they will meet stated goals, spatially explicit
metapopulation models are often used to simulate the response of fished species to MPA implementation.
Typically, such models are simply spatial extensions of traditional, nonspatial population models used
in fisheries management. A common assumption used in making this transition is that R′(0), the slope
at the origin of the nonspatial, population-wide egg–recruit relationship (often termed the steepness or
compensation ratio), can be used to estimate ˛, the slope at the origin of the small-scale settler–recruit
relationship used in spatially explicit models. This assumption is not always correct. In particular, the

′

opulation persistence
patially explicit metapopulation model
teepness

value of R (0) often implicitly accounts for a variety of processes spanning the egg–recruit transition,
including larval mortality and advection away from suitable habitat. If a spatial model accounts for some
of those loss processes explicitly, such as by using an oceanographically realistic dispersal matrix, it
becomes necessary to adjust the estimate of ˛ upwards to avoid double-counting those losses. Here I
present a simple correction involving the dominant eigenvalue of the dispersal matrix that adjusts the
value of R′(0) to avoid this error. Applying this correction factor ensures that a spatially explicit model

llaps
will predict population co

. Introduction

As marine protected areas (MPAs) become a more common tool
or marine conservation and fisheries management (Lubchenco et
l., 2003; Leslie, 2005; Lester et al., 2009), there is increasing inter-
st in the use of spatially explicit metapopulation models to forecast
he effects of MPAs on fished populations (reviewed by Gerber et
l., 2003; Pelletier and Mahévas, 2005; Botsford et al., 2008, 2009).
uch models can be used in a strategic context, to obtain general
elationships between MPA design and population dynamics (e.g.,
otsford et al., 2001) or in a tactical context, to project the popula-
ion consequences of proposed MPAs in a particular location (e.g.,

eester et al., 2004; Little et al., 2007; Walters et al., 2007; Kaplan
t al., 2009; White et al., in press).

The use of tactical population dynamic models for MPA design
an be especially valuable (Pelletier et al., 2008). While strategic
odeling efforts have produced general guidelines for MPA design
Please cite this article in press as: White, J.W., Adapting the steepness para
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Botsford et al., 2001; Gaines et al., 2003; Neubert, 2003; Kaplan and
otsford, 2005; Kaplan, 2006; McGilliard and Hilborn, 2008), the
uccess of a particular MPA or MPA network will be sensitive to the
etails of habitat distribution, the spatial configuration of MPAs, lar-
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e at the same level of fishing implied by a large-scale estimate of R′(0).
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val connectivity, adult movement, and fishing fleet behavior in that
geographical location (Botsford et al., 2008; Pelletier et al., 2008).
Thus site-specific models will be useful for projecting MPA effects
when one or more key assumptions of more general strategic mod-
els are violated. Furthermore, spatially explicit model predictions
should be invaluable in an adaptive management setting. In that
case, model projections can be compared to subsequent empiri-
cal observations of MPA effects to determine whether MPAs have
had the desired effect on populations of interest (Walters, 1997;
Pelletier et al., 2008).

The models used for this type of analysis are typically spatially
explicit extensions of nonspatial population models developed for
conventional fisheries management (e.g., Kaplan et al., 2006, 2009;
Walters et al., 2007; White et al., in press; reviewed by Pelletier
and Mahévas, 2005; Pelletier et al., 2008). Here I identify and pro-
pose a solution for a crucial oversight that is often made when
making the transition from nonspatial population models to spatial
metapopulation models.

2. Theory
meter from stock–recruit curves for use in spatially explicit models.

For many marine species, population dynamics can be effec-
tively summarized by the relationship between egg production and
subsequent recruitment (Fig. 1; Sissenwine and Shepherd, 1987;
Botsford, 2005; Botsford and Hastings, 2006). The saturating nature
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Fig. 1. Typical form of the egg–recruit relationship in marine populations. The rela-
tionship between egg production and subsequent recruitment is saturating because
of post-settlement density-dependent mortality. The equilibrium density of recruits
can be found at the intersection of the egg–recruit curve and a line with slope 1/FLEP;
several representative examples are shown. The dashed line shows the slope at
the origin of the egg–recruit curve, R′(0); if 1/FLEP > R′(0), the equilibrium recruit
density is zero and the population collapses. Here, R′(0) = 1/0.35, so the population
is not persistent for the FLEP = 0.2 case. This curve describes the large-scale rela-
t
c
r

o
t
a
1
2
r
f
(
i
u
u
e
I
t
l
L
r
a
n
c
W
m
m
f
s
r
s
d
p
a
e
s
fi

n
t

tion data extend sufficiently close to zero). Therefore it is possible
ionship represented by nonspatial fishery models. For a spatial model, a similar
urve would describe the relationship between larval settler density and subsequent
ecruit density.

f the curve in Fig. 1 reflects density-dependent resource competi-
ion among juveniles. The equilibrium density of recruits is found
t the intersection of the egg–recruit curve with a line of slope
/(lifetime egg production) drawn through the origin (Botsford,
005). The value of lifetime egg production (LEP) reflects all post-
ecruitment processes, including growth, mortality, harvest, and
ecundity, integrated over the average lifespan of a new recruit
LEP is essentially equivalent to eggs per recruit, EPR, or spawn-
ng stock biomass per recruit, SSB/R, both of which are commonly
sed in the fisheries literature). Fishing reduces LEP from its nat-
ral, unfished maximum, thus increasing 1/LEP and shifting the
quilibrium recruit density to the left along the egg–recruit curve.
f 1/LEP exceeds the slope at the origin of the egg–recruit curve,
ermed R′(0), the equilibrium density is zero and the stock col-
apses due to overfishing. That is, the population is persistent if
EP > 1/R′(0). This relationship is the basis for the use of biological
eference points derived from LEP in conventional fisheries man-
gement (Goodyear, 1993; Mace and Sissenwine, 1993), and most
onspatial models used in stock assessments and other fisheries
ontexts incorporate some version of this framework (Hilborn and

alters, 1992; Martell et al., 2008). When estimating R′(0) it is com-
on practice to scale both LEP and recruitment by their respective
aximum values, so that the horizontal axis becomes FLEP, the

raction of unfished LEP (O’Farrell and Botsford, 2005), and the per-
istence threshold is FLEP = 1/R′(0). This formulation of R′(0) is also
eferred to as the compensation ratio because it is the ratio of recruit
urvival in the unfished state to survival at near-zero population
ensities (Goodyear, 1980). For convenience the slope can also be
arameterized in terms of steepness, h; R′(0) = 4 h/(1 − h) (Hilborn
nd Walters, 1992). Regardless of the terminology, the slope of the
gg–recruit curve is a fundamental population parameter, and con-
iderable effort has been devoted to estimating its value for various
Please cite this article in press as: White, J.W., Adapting the steepness para
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shed populations (e.g., Myers et al., 1999; Dorn, 2002).
In order to represent MPA effects in any tactical situation, it is

ecessary to move to a model that is explicitly spatial. In making the
ransition from nonspatial to spatial models, one must make two
 PRESS
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major adjustments to the basic model framework outlined above.
First, connectivity among locations must be represented in a spa-
tially explicit way, such as using a dispersal matrix (Botsford et al.,
2008, 2009). By contrast, nonspatial models implicitly assume that
all portions of a population are equally well connected via some sort
of a larval pool. Second, it is necessary to assume that the density
dependent process represented by the saturating egg–recruit curve
(Fig. 1) is spatially distributed, so that a similar curve describes
the density-dependent survival of settlers within each model cell.
Given these two adjustments, a simple example of a spatially
explicit model would be:

Si,t =
n∑

j=1

DjiNj,t�

Ri,t = fi(Si,t) = ˛i

1 + ˇiSi,t
Si,t

Ni,t+1 = Ri,t + Ni,te
−(M+Fi)

(1)

where Si,t is the density of settlers in cell i (out of n cells) at time
t, Ri,t is recruit density, and Ni,t is adult density. Dji is an element
of the dispersal kernel and gives the probability of dispersal from
cell j to i. � is per-capita fecundity; M is natural mortality, Fi is the
fishing mortality rate in cell i, and function fi(S) is a Beverton–Holt
function with initial slope ˛i and asymptotic maximum ˛i/ˇi. The
density-dependent Beverton–Holt parameter ˇi may vary over
space, reflecting variation in habitat availability or predator density
(e.g., Osenberg et al., 2002; White, 2008). The Beverton–Holt slope
˛i may also vary over space, though there has been little empirical
attention to this possibility, and it is typically assumed that it takes
on a constant value ˛, as in the nonspatial version. I will make the
same assumption here, unless otherwise noted.

More complex, age-structured versions of Eq. (1) are commonly
used (e.g., Walters et al., 2007), and Kaplan et al. (2006) showed that
the steady-state equilibrium for such models can be found rapidly
by iterating this system of equations:

Si =
n∑

j=1

DjiRjFLEPj

Ri = fi(Si) = ˛

1 + ˇiSi
Si

(2)

where the effects of fishing, natural post-settlement mortality, and
age-dependent fecundity are now encapsulated by the value of
FLEPi in each cell i. The formulation given in Eq. (2) makes the paral-
lel between the nonspatial and spatial models quite clear, because
population persistence in Eq. (2) depends on the value of FLEPi
(and its spatial distribution) relative to ˛, just as persistence in the
nonspatial case depends on the value of FLEP relative to R′(0). Con-
sequently, it is standard practice to parameterize ˛, the slope of the
Beverton–Holt settler–recruit relationship in Eq. (2), using an esti-
mate of R′(0) derived from the large-scale, nonspatial stock–recruit
or egg–recruit relationship (Kaplan et al., 2006, 2009; Little et al.,
2007; Walters et al., 2007; McGilliard and Hilborn, 2008). However,
this approximation may be biased in some cases.

Consider the rationale for describing population dynamics in
terms of the egg–recruit relationship. It is exceedingly difficult to
observe and measure larval movement, survival, and settlement,
and there are virtually no data on these processes for most species.
By contrast, it is more straightforward to measure egg production
and recruitment over multiple years and estimate the slope at the
origin of the egg–recruit relationship (assuming the egg produc-
meter from stock–recruit curves for use in spatially explicit models.

to obtain an empirical estimate for R′(0) and thus for the value of
FLEP that leads to population collapse. However, it is important to
be mindful of the suite of processes that are subsumed within the
egg–recruit relationship: given X eggs, R(X) will survival the larval

dx.doi.org/10.1016/j.fishres.2009.12.008
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eriod, avoid advection into open water, return to suitable habi-
at, and successfully recruit to the adult population. Thus one could
ecompose R′(0) into its component processes:

′(0) = r1 r2 r3 . . . rn (3)

here the n values of ri each represent the probability of surviving
ne of the series of processes (larval mortality, advection, finding
uitable habitat, settlement, etc.) spanning the egg–recruit transi-
ion.

Within a spatial metapopulation model, it is possible to explic-
tly represent some of the processes implicitly contained within
′(0) in Eq. (3). For example, consider a rocky reef fish population
long a coastline containing both rocky- and soft-bottom habitat.
t is reasonable to expect that some of that species’ larvae disperse
o non-habitat (i.e., soft-bottom) locations, where they do not sur-
ive. In a nonspatial model, that larval loss is one of the processes
i represented by R′(0) in Eq. (3). In a spatial model, that loss could
e represented explicitly by the larval dispersal matrix (the n × n
atrix D of dispersal probabilities Dji, as in Eqs. (1)–(2)), which
ill specify the fraction of larvae that are lost to non-habitat loca-

ions. Thus it would be improper to use R′(0) as an estimate of ˛,
ecause that would effectively double-count process ri. Instead, one
ould ideally use ˛ = R′(0)/ri. Depending on the complexity of the
ethod used to estimate D, the spatial model could include explic-

tly a range of the processes implied by Eq. (3), including offshore
dvection and larval mortality, and the value of ˛ would need to be
orrected to account for each of these.

As a practical matter, we lack independent estimates of the prob-
bilities ri, so it is difficult to apply the desired correction to R′(0).
ather the only value that has empirical support is R′(0) itself, which
as been derived from observations of the egg–recruit relation-
hip of an actual population. However, it is reasonable to expect
hat as estimates of the dispersal kernel become more realistic
e.g., moving from an idealized, one-dimensional dispersal kernel
o a dispersal matrix estimated from the output of a numerical
irculation model) and account for more of the processes implic-
tly described by R′(0), the value of ˛ should be reduced so as not
o double-count those processes in the spatial population model.
now propose a method to accomplish this and demonstrate its
alidity.

. Methods

The key empirical result that should be preserved in the spatial
opulation model is that the population collapses if FLEP < 1/R′(0).

f one considers population dynamics at low density (i.e., near the
oint of collapse), it is reasonable to ignore density-dependent pro-
esses and use a linear approximation to the nonspatial model, so
hat Rt + 1 = R′(0) × Rt × FLEP (e.g., Hastings and Botsford, 2006). Sim-
larly, a linearized version of the spatial model can be written using

atrix notation as

t+1 = A · [D × (Rt · L)] (4)

here A is an n × 1 vector of the slope ˛i at each location, R is
n n × 1 vector of the recruit density at each location, D is an
× n matrix of dispersal probabilities Dji, and L is an n × 1 vector
f FLEPi at each location; × represents matrix multiplication and
represents elementwise (Hadamard) multiplication. Making the
ssumption that ˛ and FLEP are constant across space (i.e., scalars),
epresenting the scenario implied by the nonspatial model, Eq. (4)
Please cite this article in press as: White, J.W., Adapting the steepness para
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ecomes

t+1 = ˛D × RtFLEP (5)

efining matrix C = ˛ × D × FLEP, then the dynamics are
t+1 = C × Rt. Because C has only non-negative entries, the
 PRESS
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Perron–Frobenius theorem applies and the population will
persist (i.e., Rt will increase over time rather than decreasing
towards zero) if �C, the dominant eigenvalue of C, is greater than
1 (Caswell, 2001; Hastings and Botsford, 2006). Equivalently, �D,
the dominant eigenvalue of D, must be greater than 1/(˛FLEP),
and the population does not persist if FLEP < 1/(˛�D). Therefore,
in order to preserve the result that the population is not per-
sistent if FLEP < 1/R′(0), one must parameterize the slope of the
settler–recruit function to be

˛ = R′(0)
�D

. (6)

This correction ensures that any larval loss explicitly accounted for
in D (such as larval mortality, advection offshore, or dispersal to
non-habitat, or any other process implied by Eq. (3)) is not implic-
itly accounted for by ˛. For this correction to account for dispersal
to non-habitat, D must represent the failure to settle in non-habitat
as a dispersal probability of zero. The magnitude of the correction in
Eq. (6) will depend on how many of the suite of possible processes
ri are explicitly accounted for in D. If no larval loss processes are
represented by D (e.g., if D consists of a dispersal kernel that inte-
grates to one along an infinite coastline with homogenous habitat;
Botsford et al., 2001), then �D = 1 and ˛ = R′(0). Note that it should
be possible to adjust this correction factor for the case in which ˛ is
known to vary spatially (as implied by vector A in Eq. (4)), but the
connection to a large-scale aggregate estimate of R′(0) is less clear
and I do not pursue that special case here.

To demonstrate the use of the correction in Eq. (6), I simulated
the dynamics of population occupying a one-dimensional coastline
with heterogeneous habitat, using the model given in Eq. (2). The
coastline consisted of spatial units that were classified as either
suitable habitat or non-habitat. Larval dispersal among cells was
modeled using a Gaussian dispersal kernel, so that the probability
of dispersal from cell j to cell i, Dji, was a function of the distance
between i and j and given by a normal distribution with a mean
of zero and a standard deviation, d, that defined the mean disper-
sal distance in one direction (Largier, 2003). Larvae were assumed
to die if they dispersed to non-habitat cells, a process that was
represented by setting Dji = 0 for all non-habitat cells i. The dis-
persal matrix D thus accounted for some larval loss that would be
implicitly included in R′(0) in a nonspatial model. This is a rela-
tively simple example intended for illustrative purposes (although
it similar to the representation of D used in several recent tacti-
cal MPA models; Kaplan et al., 2006, 2009; White et al., in press).
In a more sophisticated setting, D might be estimated using out-
put from a numerical circulation model (e.g., Paris et al., 2007), and
more larval loss processes (the ri in Eq. (3)) would be represented
explicitly.

Coastlines with a range of habitat heterogeneities were repre-
sented using a spatial domain with a total of 20 linear units of
which a fraction p were a contiguous string of habitat cells and
the remainder were non-habitat cells (i.e., 12 habitat cells followed
by 8 non-habitat cells would be a p = 60% coastline). Values of p
ranged from 60 to 100%, which is similar to the range of rocky reef
habitat coverage used in a one-dimensional model of the California
coast (Kaplan et al., 2009). To avoid edge effects the coastline was
made circular. Modeled species had dispersal distances of d = 0.5,
1, 5, and 10 spatial units. All species were assumed to have a per-
sistence threshold of 1/R′(0) = 0.35. This corresponds to a Goodyear
compensation ratio of � = 1/0.35 = 2.86, and a steepness of h = 0.42,
similar to estimates of steepness for several eastern Pacific rock-
meter from stock–recruit curves for use in spatially explicit models.

fishes (Dorn, 2002). In other words, this is an estimate of R′(0) that
one might obtain from typical fisheries data.

For each combination of dispersal distance d and level of habi-
tat coverage, p, I determined the minimum value of FLEP for which
the population was persistent. This was done using the dispersal-

dx.doi.org/10.1016/j.fishres.2009.12.008
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Fig. 2. Coast-wide value of FLEP (fraction of unfished lifetime egg production) at
which a spatially explicit population model predicts population collapse (defined
as nonzero density of recruits in at least one model cell at equilibrium). Models
were run for species with a range of dispersal distances on coastlines with a range
of habitat heterogeneity. Habitat density describes the proportion of the coastline
that was suitable settlement habitat. Model species all had a nonspatial, coast-wide
persistence threshold of 1/R′(0) = 0.35. Actual persistence thresholds in the spatial
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odel were calculated without the proposed correction to ˛, the slope at the origin
f the settler–recruit curve. When the proposed correction was applied to ˛, all
odel runs matched the targeted threshold of 0.35, regardless of dispersal distance

not shown).

er-recruit method of Kaplan et al. (2006) to find the equilibrium
ensity of recruits in each cell, R. Persistence was defined as at least
ne nonzero element of R at equilibrium. I determined the per-
istence threshold using both the commonly used approximation
= R′(0) and the corrected version from Eq. (5).

. Results and discussion

When R′(0) = 1/0.35 (the nonspatial persistence threshold) was
sed as a direct estimate of ˛, the simulation model indicated
erroneously) that the FLEP required for population persistence
as greater than 0.35 whenever the coastline had less than 100%
abitat coverage (Fig. 2). Furthermore, the increase in the mini-
um FLEP threshold estimated by the simulation model was much

reater for longer dispersal distances. This phenomenon is a con-
equence of a nonzero fraction of spawned larvae effectively dying
hen they dispersed to non-habitat cells. For short dispersal dis-

ances, most larvae settled in the cells where they were spawned,
nd there was little effect of the non-habitat cells. As disper-
al distances increased, larger proportions of larvae spawned in
ach cell were lost to non-habitat cells, and the model indicated
hat greater larval production (FLEP) was required for persistence.
y contrast, when the corrected estimate of ˛ from Eq. (5) was
sed, the persistence threshold was always the correct value:
LEP = 0.35.

These model results reveal that if 1/R′(0) had been estimated
nonspatially) as 0.35 for a population with spatially heteroge-
eous habitat (i.e., less than 100% of the coastline is covered with
uitable habitat), a corresponding spatial model would predict
hat the population would collapse even for values of FLEP > 0.35.
hus, without the proposed correction, the spatial analogue of a
onspatial model would produce strikingly different predictions
Please cite this article in press as: White, J.W., Adapting the steepness para
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egarding population persistence. Specifically, species with longer
ispersal distances would be erroneously predicted to be more
ulnerable to fishing than shorter distance dispersers, especially
long coastlines with patchy habitat distributions. Following from
his one could also expect biased predictions regarding the level
 PRESS
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of FLEP corresponding to maximum sustainable yield or other
quantities.

It is worthwhile to consider the possible effects of error in esti-
mating �D. Even sophisticated representations of D, such as from
numerical ocean circulation models, may introduce unexpected
errors into estimates of dispersal, and thus population persis-
tence. For example, one might generally expect �D derived from
circulation models to overestimate the loss of larvae due to phys-
ical advection because such models often poorly resolve extreme
nearshore areas where larvae may be retained (Largier, 2003) and
may not perfectly represent larval behaviors that can be crucial
to retention and onshore transport (Paris et al., 2007). The predic-
tions of such models are also sensitive to poorly known quantities
such as larval mortality rates, although it is unclear whether typi-
cal estimates of larval mortality are biased in a particular direction.
However, if larval losses were overestimated, the value of �D would
be erroneously high, producing lower estimates of the minimum
value of FLEP needed for population persistence in simulation mod-
els. Large downward errors in �D could cause population models
to predict that a population could support erroneously high levels
of fishing (low FLEP), so the correction factor should be used with
that caution in mind.

It is important to note that the correction proposed here is
appropriate only when R′(0) has been empirically estimated in
a large-scale, nonspatial context by analyzing a population-wide
egg–recruit or stock–recruit relationship (e.g., Myers et al., 1999;
Dorn, 2002). Alternatively, if ˛ were estimated directly from a
settler–recruit relationship measured at a small spatial scale com-
parable to the individual cells in spatial model, no correction
would be necessary because the estimate of the slope parameter
would not implicitly include larval loss processes. While direct
estimation of ˛ is possible when data are available, such as for
some coral reef species (e.g., White, 2008), the assumption that
˛ = R′(0) has been the norm in most fishery applications (Little
et al., 2007; Walters et al., 2007; Kaplan et al., 2009). As such,
future fisheries studies should employ the correction factor applied
here (e.g., White et al., in press), especially as more sophisticated
representations of larval connectivity, larval mortality, and other
processes become increasingly available and can provide explicit
representations of the various processes in Eq. (3) (Botsford et al.,
2009).

In light of the results presented here, re-examination of some
prior model results may be called for. In particular, spatially explicit
models of coastlines with heterogeneous habitat that directly
parameterized ˛ from nonspatial estimates of R′(0) may have
somewhat underestimated recruit survival and overestimated the
persistence threshold, especially for widely dispersing species (e.g.,
Walters et al., 2007; Kaplan et al., 2009). That said, the general
result presented by Kaplan et al. (2009) remains entirely correct:
given a constant value of ˛ and heterogeneous settlement habi-
tat, longer distance dispersers require greater FLEP for persistence.
The caveat is that such results should be interpreted as represent-
ing the case in which similar values of ˛ have been estimated at
small scales for both long- and short-distance dispersers. If, on
the other hand, similar values of R′(0) were estimated for long-
and short-distance dispersers, then the correction factor should be
applied to ˛ to ensure that a spatial model recaptures the same
persistence threshold [i.e., 1/R′(0)] evident in the natural popu-
lation. Unfortunately, as Kaplan et al. (2009) noted, both large-
and small-scale estimates of this crucial demographic parame-
ter are sorely lacking. Given the importance of ˛ to population
meter from stock–recruit curves for use in spatially explicit models.

persistence and conservation planning, additional research effort
to estimate its value for key species would be welcome. In the
meantime, the procedure proposed here should ensure that large-
scale estimates are not misused in their application to small-scale
problems.

dx.doi.org/10.1016/j.fishres.2009.12.008
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