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Can inverse density dependence at small spatial
scales produce dynamic instability in animal populations?
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Abstract All else being equal, inversely density-dependent
(IDD) mortality destabilizes population dynamics. Howev-
er, stability has not been investigated for cases in which
multiple types of density dependence act simultaneously.
To determine whether IDD mortality can destabilize
populations that are otherwise regulated by directly
density-dependent (DDD) mortality, I used scale transition
approximations to model populations with IDD mortality at
smaller “aggregation” scales and DDD mortality at larger
“landscape” scales, a pattern observed in some reef fish and
insect populations. I evaluated dynamic stability for a range
of demographic parameter values, including the degree of
compensation in DDD mortality and the degree of spatial
aggregation, which together determine the relative impor-
tance of DDD and IDD processes. When aggregation-scale
survival was a monotonically increasing function of density
(a “dilution” effect), dynamics were stable except for
extremely high levels of aggregation combined with either
undercompensatory landscape-scale density dependence or
certain values of adult fecundity. When aggregation-scale
survival was a unimodal function of density (representing
both “dilution” and predator “detection” effects), instability
occurred with lower levels of aggregation and also

depended on the values of fecundity, survivorship, detec-
tion effect, and DDD compensation parameters. These
results suggest that only in extreme circumstances will
IDD mortality destabilize dynamics when DDD mortality is
also present, so IDD processes may not affect the stability
of many populations in which they are observed. Model
results were evaluated in the context of reef fish, but a
similar framework may be appropriate for a diverse range
of species that experience opposing patterns of density
dependence across spatial scales.
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Introduction

Direct density dependence in some vital rate is necessary—
but not sufficient—for stable population dynamics (Murdoch
1994; Turchin 1995). Our understanding of the mechanisms
producing density-dependent population regulation derives
in large part from experiments and observations conducted at
relatively small spatial and temporal scales (Harrison and
Cappuccino 1995) with the expectation that these observa-
tions can scale up to predict larger-scale dynamics (Forrester
et al. 2002; Melbourne and Chesson 2005, 2006; Steele and
Forrester 2005). However, density-dependent processes are
often observable only when the study is carried out at a
particular spatial scale (Ray and Hastings 1996). Moreover,
there is growing evidence that processes observed at different
spatial scales in the same system may have opposing effects
on population dynamics, such as inverse density dependence
at one scale and direct density dependence at another (Mohd
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Norowi et al. 2000; Veldtman and McGeoch 2004; White
and Warner 2007).

Many species exhibit inversely density-dependent
(“IDD”) mortality, in which the per capita mortality rate
decreases with population density, at the spatial scale of
aggregations and social groups (e.g., sessile invertebrates,
Gascoigne et al. 2005; shoaling fish, White and Warner
2007; social mammals, Clutton-Brock et al. 1999; aggre-
gating insects, Mohd Norowi et al. 2000). Other demo-
graphic processes, such as fecundity, may also exhibit
inverse density dependence (Gascoigne et al. 2005;
Courchamp et al. 2008), but for simplicity I focus on
mortality here. IDD mortality would produce unbounded
growth if it were the only density-dependent process
operating in a population (Murdoch 1994; Gascoigne and
Lipcius 2004b), but that is rarely the case. Directly density-
dependent (“DDD”) processes, in which per capita mortal-
ity increases with density (or some other fitness component,
such as fecundity, decreases with density), are also likely to
occur. When mortality is IDD at low densities and DDD at
high densities (i.e., survival is a unimodal function of
density), the population is said to exhibit an Allee effect. In
that well-known scenario, IDD mortality tends to destabi-
lize population dynamics that would otherwise be stably
regulated by DDD mortality (Courchamp et al. 1999,
2008). However, stability has not been explored for the
scenario in which a population experiences both IDD and
DDD processes simultaneously, albeit at different spatial
scales, though such patterns have been observed in nature.
It has been hypothesized that in such cases DDD processes
could offset the destabilizing effects of IDD mortality (Sale
and Tolimieri 2000; Gascoigne and Lipcius 2004b), but the
dynamical consequences of opposing processes operating at
different spatial scales is not well understood.

Invoking terminology from the Allee effect literature
(Stephens et al. 1999; Gascoigne and Lipcius 2004b;
Courchamp et al. 2008), this paper examines the effects of
“component” inverse density dependence in a single vital
rate rather than “demographic” inverse density dependence
in the overall population growth rate. Specifically, the
question at hand is whether component IDD at one spatial
scale is sufficient to produce destabilizing demographic
IDD in the overall population dynamics. That is, what are
the conditions under which IDD mortality at one spatial
scale could destabilize population dynamics that would
otherwise be regulated by DDD mortality occurring at a
different spatial scale?

The relative importance of DDD and IDD mortality is
especially relevant to populations of benthic marine
organisms with pelagic larvae. The bouts of high mortality
experienced by benthic juveniles have provided ample
opportunities to study mechanisms of DDD mortality (e.g.,
Hixon and Webster 2002; Hixon et al. 2002). There is a

growing consensus from this body of work that benthic
population densities may fluctuate in response to variable
larval supply, but that those fluctuations have an upper
bound imposed by DDD mortality soon after settlement
from the plankton (Menge 2000; Armsworth 2002; Sandin
and Pacala 2005a). This paradigm may be difficult to
reconcile with recent evidence for IDD mortality in several
reef fish species. For example, per capita postsettlement
mortality declines with group size in site-attached, socially
aggregating damselfishes (Booth 1995; Sandin and Pacala
2005b) and wrasses (White and Warner 2007) and mobile,
schooling snappers (Wormald 2007). Similarly, sessile
invertebrates such as barnacles and mussels often experi-
ence higher survival in large aggregations due to reduced
vulnerability to overheating (Bertness and Grosholz 1985;
Lively and Raimondi 1987) and possibly wave dislodge-
ment (Gascoigne et al. 2005). It is not surprising to discover
that aggregating species find safety in numbers; indeed,
such benefits likely provide the selective pressure that
drives many fish species to shoal (Pitcher and Parrish 1993;
Parrish and Edelstein-Keshet 1999) and many sessile
invertebrates to settle gregariously (Bertness and Grosholz
1985). However, given the apparent importance of post-
settlement DDD mortality to benthic population regulation,
it is unclear whether IDD mortality in these aggregating
species could lead to unstable population dynamics.

In benthic reef fishes, IDD mortality is generally observed
at the relative small spatial scale of a discrete aggregation of
individuals, such as a shoal of fish (Sandin and Pacala 2005b;
White and Warner 2007). When a predator attacks such a
group, per capita prey mortality decreases with prey density
(Gascoigne and Lipcius 2004a). At the same time, reef fish
predators commonly produce DDD mortality at larger spatial
scales via numeric, functional, developmental, or aggregative
responses (Holling 1959; Murdoch 1969, 1971; Hassell and
May 1974; Hixon and Carr 1997; Anderson 2001; Webster
2003; Overholtzer-McLeod 2006; White 2007). In the only
study to date which has examined reef fish mortality patterns
at multiple spatial scales, White and Warner (2007) found
IDD mortality of the bluehead wrasse (Thalassoma bifascia-
tum, Labridae) at the aggregation scale (tens of square
centimeter) but DDD mortality at the scale of entire reefs
(thousands of square meter). This general pattern is expected
when predators exhibit a characteristic spatial scale at which
they define a “patch” of prey and choose to stay in that patch
or move on (Bernstein et al. 1991; Ritchie 1998). This spatial
scale of predator foraging is likely to exceed the spatial scale
at which prey aggregate. In such cases, variation in prey
density at the scale of individual prey aggregations will not
influence predator behavior, i.e., predators will forage
indiscriminately among prey aggregations within a foraging
patch (e.g., Sandin and Pacala 2005b; Overholtzer-McLeod
2006). Consequently, predation could produce IDD mortality
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at the aggregation scale (due to numerical dilution of
predator attacks among group members) but DDD mortality
at the larger scale of predator foraging (due to predator
aggregative and functional responses; White et al. 2010).
This phenomenon is probably not limited to reef fishes, and
similar transitions between IDD and DDD across spatial
scales have been observed in insect predator–prey interac-
tions (Mohd Norowi et al. 2000; Veldtman and McGeoch
2004). This type of scale-dependent transition between IDD
and DDD mortality may also occur due to nonpredatory
mechanisms, such as the transition from small-scale facilita-
tion to large-scale competition for zooplankton prey in soft-
sediment mussel beds (Gascoigne et al. 2005). Indeed, a
switch between small-scale positive intraspecific interactions
and large-scale competition may be a common feature of
populations of sessile organisms (Bertness and Leonard
1997; van de Koppel et al. 2008).

In this paper, I employed deterministic population
models to determine whether a population exhibiting
stabilizing DDD mortality at a large spatial scale can be
destabilized by IDD mortality occurring at smaller spatial
scales. The models were intended to apply to any relatively
site-attached, aggregating species but generally describe a
coral reef fish population like those recently shown to
experience this type of scale-dependent switch between
IDD and DDD (White and Warner 2007). By varying the
degree of small-scale spatial aggregation and the strength of
DDD mortality, I was able to evaluate a range of possible
scenarios, including a baseline scenario with DDD mortal-
ity only, scenarios with IDD only, as well scenarios with
both DDD and IDD with a range of relative strengths.

Materials and methods

Scale transition theory

The essential problem of describing density-dependent
processes at different scales is accounting for the variance
in density at the smaller scale. Consider a population in
which survivorship, F, is a function of density, X: F=G(X).
Specifically, G is a nonlinear, asymptotically decreasing
function of density at the scale of a single coral head (e.g.,
1 m2). In a population model, it is daunting to keep track of
dynamics within each square meter and far more conve-
nient to use the currency of density at a much larger scale,
such as an entire reef. It is tempting, then, to assume that
F ¼ G X

� �
, where overbars indicate the mean survivorship

and density at the reef scale (this expression is termed the
mean-field approximation). However, any spatial variation
in density at the smaller scale will impair the accuracy of
this approximation. For example, a density of one fish per
square meter measured at a 10-m2 scale could be obtained

from a uniform distribution of one fish in each of ten 1-m2

quadrats or from a single 1-m2 quadrat with ten fish and
nine empty 1-m2 quadrats. The former case (uniform small-
scale density) will have much higher average survival
(because all fish experience low density at the small scale)
than the latter case (highly clumped density), in which all
fish occur at high density at the small scale. In general, if
survivorship is a nonlinear function of density, survivorship
at the mean density is not equal to the mean survivorship
across all densities (Melbourne and Chesson 2005). This is
due to the general mathematical rule known as Jensen’s
inequality, that for a set of values X, the mean value of a
nonlinear function of X, GðX Þ, is not equal to the function
of the mean of X, G X

� �
(Ruel and Ayres 1999).

It is possible to correct for Jensen’s inequality and
approximate density-dependent survivorship at a large
spatial scale by incorporating a scale transition which
accounts for the effects of spatial variation in density at
the small scale (Chesson 1998; Melbourne and Chesson
2005). This is done by taking a second-order Taylor
expansion of G(X) at X :

F � G X
� �þ G0 X

� �
X � X
� þ 0:5G00 X

� �
X � X
� �2

then averaging over all values X, which yields

F � G X
� �þ 0:5G00 X

� �
var Xð Þ

where var(X) is the spatial variance in density at the small
scale (this assumes that G is twice differentiable and that
higher-order terms in the Taylor series are negligible). The
G' term falls out because the expectation of X � X

� �
is

zero. Note that this approximation amounts to the mean-
field approximation G X

� �
plus a correction factor: the scale

transition. Including the scale transition causes the large-
scale estimate of survivorship to decrease with increasing
spatial variance in density (i.e., the degree of aggregation),
thus accounting for the effect of DDD mortality at the
smaller scale (note that this assumes that G(X) is a
decreasing, saturating function, so G00 Xð Þ is negative; the
large-scale estimate of F will increase if G00 Xð Þ is positive).

Population model

The models describe a hypothetical reef fish population that
is demographically closed (all larvae are locally retained
and there is no immigration) and therefore resembles a
population with extremely high self-recruitment such as
that found on an isolated or far upstream island. This is
obviously a simple model that ignores many aspects of real
populations (size structure, metapopulation dynamics, etc.)
but it permits straightforward examination of the dynamic
role of IDD. It also affords a conservative test of the
destabilizing effect of IDD mortality, since including
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connectivity with other populations will tend to stabilize
fluctuations in this type of model (Hastings et al. 1993;
Amarasekare 1998).

It was assumed that, like many reef fishes, this species
spends a relatively fixed period of time in the planktonic
larval stage before settling in discrete pulses. New settlers
utilize different habitat than do adults, so that juveniles do
not interact with adults for a short period of time prior to
recruiting to the adult population, after which they
experience low, density-independent mortality. The general
dynamics are then given by

Ntþ1 ¼ F zNtð Þ þ sNt ð1Þ

where z is a composite parameter equal to the product of
per capita fecundity, z1, and larval survivorship, z2.
Parameter s is adult survivorship, and F describes the
process of most interest here: the form of postsettlement
survivorship (i.e., between settlement and recruitment to the
adult population). The time step used in this model is
intended to correspond to the pelagic larval duration of the
species, which is 1–2 months for most reef fishes (47 days
for bluehead wrasse; Caselle and Warner 1996). This
interval also matches the timescale over which most of
the parameters values were estimated.

In the model, juveniles that have recently settled to the
benthos are affected by processes occurring at two distinct
spatial scales. At the larger, “landscape” scale (approxi-
mately hundreds of square meters for the bluehead wrasse),
settler mortality is DDD, which could be due to some
combination of competition for refuge spaces and/or a
predator functional response. At the smaller, “aggregation”
scale (approximately tens of square centimeters for the
bluehead wrasse), settler mortality takes on one of three
forms: (1) density-independent (i.e., the only density-
dependent process occurs at the landscape scale); (2) a
monotonic decrease with density, representing a dilution of
predation risk with increasing group size (Foster and
Treherne 1981); or (3) mortality decreases with density to
a minimum before rising again, representing a dilution
effect tempered by increased detectability of very large
groups by foraging predators (Krause and Godin 1995).
The first case (“DDD Baseline”) describes a reef fish
population regulated by DDD postsettlement mortality. The
DDD Baseline scenario is known to have stable population
dynamics (Armsworth 2002), so it is used as a point of
comparison for subsequent cases in which the introduction
of IDD mortality may produce instability. The second case
(“IDD Dilution”) approximates the postsettlement dynam-
ics of bluehead wrasse on St. Croix described by White and
Warner (2007), while the third case (“IDD Dilution+
Detection”) includes the large-group detection effect that
was not observed in the relatively small groups described
by White and Warner (2007) but which is likely to occur in

larger groups (Krause and Godin 1995). The two IDD cases
thus describe two types of aggregation-scale IDD mortality
that may be typical of reef fishes and other prey species.

Postsettlement survivorship at the landscape scale is
described using a Beverton–Holt model (Armsworth 2002;
Osenberg et al. 2002). For convenience, settlers, St, are
defined as St=zNt; the subscript t will be dropped hereafter
for simplicity. The Beverton–Holt survivorship is then
given by

G S
� � ¼ a

1þ a
b S

� �d ð2Þ

where a is density-independent survivorship, b is the
asymptotic maximum density, and d describes the
“strength” of density dependence: no density dependence
(d=0), undercompensation (0<d<1), exact compensation
(d=1), or overcompensation (d > 1) (Fig. 1a). The
Beverton–Holt function can describe intraspecific competi-
tion for any resource, including food or refuge space. Here,
it is taken to represent DDD predation mortality. The
overbars on S indicate that the function depends on the
mean density at the landscape scale.

At the smaller spatial scale at which fish aggregate into
social groups, survival is a function H(S) of the size of the
social group. Overall postsettlement survival measured at
this scale is assumed to be the combination of both large-
and small-scale processes: F S; S

� � ¼ G S
� �

HðSÞ, where G
is a function of mean density at the larger scale and H is a
function of density at the smaller scale. Note that G S

� �
is

treated as a survivorship (0 � G S
� � � 1) while the units of

F S; S
� �

and H(S) are actual numbers of fish, to be
consistent with Eq. 1.

In the DDD Baseline scenario, there is no effect of group
size on mortality at all, so H(S)=a2S, where a2 is a density-
independent constant (Fig. 1b). Alternatively, the IDD
Dilution effect might take the form

HðSÞ ¼ 1� exp � f þ gSð Þð Þ½ �S ð3Þ

where the bracketed term ranges from 0 to 1 and is an
increasing function of S (i.e., survivorship increases with
density). The parameter g describes the strength of the
dilution effect (H(S) increases with g), and f is a density-
independent constant (Fig. 1b). In the IDD Dilution+
Detection scenario, there is a dilution effect for small
groups, but larger groups are easier for predators to detect,
so that H is hump-shaped:

HðSÞ ¼ 1� exp � f þ gSð Þð Þ½ � 1� exp �h=Sð Þ½ �S: ð4Þ

This equation retains the dilution effect term from Eq. 3
but contains the second bracketed term that also ranges
from 0 to 1 but is a decreasing function of S. The parameter
h determines the rate of decline with S (smaller values lead
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to faster declines) and thus indirectly determines the value
of S at which H(S) reaches a maximum (Fig. 1b).

Sensibly modeling large-scale population dynamics in
this system requires a scale transition to represent the
processes occurring at both large and small spatial scales. If
postsettlement survivorship F at the aggregation scale is
F S; S
� � ¼ G S

� �
HðSÞ, then as shown by Melbourne and

Chesson (2005), the landscape-scale approximation is

F Sð Þ ¼ G S
� �

H S
� �þ 0:5H 00 S

� �
var Sð Þ� � ð5Þ

To calculate the spatial variance in S, I assumed that
individuals follow a negative binomial distribution (Fig. 1c).:

varðSÞ ¼ S þ S
2
=k ð6Þ

This distribution is widely used to describe aggregation
patterns in natural populations, including grasses (Conlisk et
al. 2007), zooplankton (Young et al. 2009), mosquitoes
(Nedelman 1983; Alexander et al. 2000), herbivorous insects
(Desouhant et al. 1998; Grear and Schmitz 2005), and

rabbits (Fernandez 2005). Additionally, Conlisk et al. (2007)
showed that the negative binomial distribution can arise from
simple behavioral decision rules for joining groups. While
Conlisk et al. (2007) found that more complicated decision
rules and distributions sometimes fit natural aggregation
patterns better than the negative binomial, the latter is more
amenable to analysis in the present context because it affords
a simple relationship between the degree of aggregation and
the spatial variance in S. The parameter 1/k describes the
degree to which individuals aggregate, which can range from
a purely random, Poisson distribution (1/k ≈ 0) to highly
clumped as 1/k approaches infinity (Fig. 2; White and
Bennetts 1996). The intensity of aggregation at the smaller
spatial scale (i.e., the spatial variance in population density)
strongly affects the form of density dependence observed at
the larger spatial scale once the scale transition is accounted
for (Fig. 1d–f).

For extreme values of S or var(S), it is possible for the
bracketed term in Eq. 5 to fall below 0 or exceed S, both of
which are biologically impossible. To constrain the behavior
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IDD Dilution + Detection

IDD Dilution

Low (1/k = 0.1)

High (1/k = 100)

Med (1/k = 10)
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Med (1/k = 10)
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50

Fig. 1 Landscape-scale and
aggregation-scale survivorship
functions used in the model.
a Landscape-scale
Beverton–Holt survivorship
function, shown for three
different values of the strength
parameter d. b The three
different aggregation-scale
survivorship functions. c Spatial
variance in settler density as a
function of settler density for
three levels of aggregation
(indicated by negative binomial
clumping parameter 1/k).
d–f Aggregate survivorship
across both scales, calculated
using the scale transition. In
panels d–f, survivorships are
shown for each aggregation-
scale function for three different
levels of spatial aggregation
(indicated with the same line
style as in c). Note that the low,
medium, and high aggregation
curves are completely
overlapping for the DDD
Baseline case in which there is
no effect of group size on
aggregation-scale survivorship.
The inset windows in panels e–f
show details of the curves near
the origin and for very high
values of S; note the changes in
scale on the axes. All curves
calculated using the best
estimates of each parameter
given in Table 1
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of Eq. 5 and preserve a smoothly differentiable function
(which is necessary for the evaluation of Eq. 7, below), I
added two corrections to Eq. 5. If X ¼ H S

� �þ�
0:5H 00 S� �

var Sð Þ�=S, then

X
_ ¼ X � X

1þ exp 1010X
� �

and

X
_
_

¼ X
_

exp �2X
_� �

þ X
_

By substituting X
_
_

for X in Eq. 5, the value of X is essentially
unchanged for most values but asymptotically approaches
both 0 and 1 without exceeding those bounds. The sensitivity
of FðSÞ to these correction factors is presented in Online
Resource 1.

The second derivative in the formula for FðSÞ yields an
expression that is far too lengthy to write out in full,
precluding an analytical examination of the effect of
aggregation on stability. Instead, a numerical stability
analysis was performed. The overall population dynamics

(Eq. 1) can be represented as a recursive equation, Nt+1=W
(Nt), the stability of which is determined by the Jacobian
eigenvalue

l ¼ dW

dN

����
N¼N»

ð7Þ

which is the derivative dW/dN evaluated at the steady-state
equilibrium N* (Gurney and Nisbet 1998). Population
dynamics are unstable with exponentially increasing diver-
gences for λ>1, stable for 0<λ<1, stable with dampened
oscillations for −1<λ<0, and unstable with increasing
oscillations for λ<−1. The value of N*, and thus λ, varies
with each of the parameters in the model. Rather than
attempt a full exploration of the eight-dimensional param-
eter space, effort was focused on evaluating the effect of
aggregation (1/k) on stability. Therefore, parameter space
was explored by sequentially varying each parameter across
a range of biologically plausible values (estimated for the
reef fish Thalassoma bifasciatum; Table 1), while simulta-
neously varying 1/k between 1×10−3 (approximating a
random Poisson distribution) and 1×103 (highly clumped)
and holding all other parameters constant at their best
estimates. The eigenvector λ was calculated for each
parameter combination. Thus, for each parameter, I deter-
mined the set of λ values possible for different values of
that parameter and 1/k, given constant values of the other
parameters. This process identified parameters that had an
effect on dynamic stability for at least some levels of
aggregation. For parameter combinations that produced
multiple equilibria, I reported λ for the equilibrium
associated with the most stable value of λ, i.e., closest to
the interval [0, 1], giving a conservative test of the potential
for dynamic instability. The parameter combinations that
produced multiple equilibria and the stability properties of
those equilibria are reported in Online Resource 2. Because
the Beverton–Holt parameter b merely scales the maximum
possible recruit density, its value does not affect λ, and it
was not included in this analysis. The numerical stability
analysis was conducted with the Symbolic Math toolbox
using the MuPAD kernel, in Matlab 7.9 (R2009b; The
Mathworks, Inc., Natick, MA).

Results

The exploration of parameter space revealed that variation
(within a biologically plausible range) in the values of the
dilution effect parameters f and g did not have an effect on
dynamic stability, i.e., for a particular value of 1/k, λ was
constant across the full range of either f or g (given that the
other parameters were held constant at their best estimates).
However, depending on the type of density dependence at

(a) 1/k = 0.1

(b) 1/k = 10

(c) 1/k = 100

Fig. 2 Examples of spatial
clustering of individuals in
two-dimensional space with
negative binomial distributions
for a representative range of the
clustering parameter 1/k. Each
panel shows the distribution of
approximately 90 points
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the aggregation scale, certain values of the aggregation
parameter 1/k, the strength of reef-scale density dependence
d, fecundity z, adult survivorship s, density-independent
settler survivorship a, and the detection effect parameter
h did produce changes in dynamic stability. These effects
are displayed in Figs. 3 and 4, in which the shading
indicates the value of the Jacobian eigenvalue λ for each
parameter combination and the contour lines demarcate
regions of differing dynamic stability.

In the DDD Baseline scenario (Fig. 3a, c), which lacked
IDD at the aggregation scale, there was by definition no
effect of the aggregation index on stability. In this scenario,
dynamics were unstable and exponentially increasing when
d≤0.66 (effectively density-independent dynamics with
exponential growth; Fig. 3a), but stable when d > 0.66 for
all combinations of 1/k and all other parameters. The
population did not have a nonzero equilibrium for values of

fecundity, z, less than approximately 1.4 settlers per adult
(Fig. 3c).

When groups experienced a dilution effect (IDD Dilu-
tion scenario; Fig. 3b, d), dynamics were stable for most
combinations of 1/k and other parameter values. However,
variation in the strength of reef-scale density dependence,
d, and fecundity, z, did produce unstable dynamics at very
high levels of settler aggregation (high 1/k). For low and
moderate levels of aggregation (approximately 1/k<20), the
dynamics in this scenario were similar to the DDD Baseline
scenario, with exponential growth or extinction for low
values of d (d<0.66) or z (z<1.4), respectively, and stable
equilibria elsewhere. The case of d=0 and very small 1/k is
equivalent to a standard model of IDD-only dynamics and
had unbounded growth. However, when landscape-scale
density dependence was very weak (d≤0.66) but aggrega-
tion was quite strong (1/k > 20), the survivorship function

Table 1 Symbols and parameter values used in scale transition population model

Symbol Range Best estimate Description (units)

Nt – – Local population density (fish m−2)

St – – Settler density (fish m−2)

k 1×10−3–1×103 0.33 Negative binomial aggregation parametera

z =z1z2 532 Composite fecundity (setters per adult)

z1 2.3×106–3.2×106 2.8×106 Reproductive rate (larvae per adult)b

z2 1.5×10−7–2.5×10−1 1.9×10−4 Larval survivorshipc

s 0.39 – 0.96 0.68 Adult survivorshipd

Beverton–Holt survivorship (reef scale)

a 0.01–0.99 0.45 Density-independent survivorshipe

b 1 1 Asymptotic maximum settler densityf

d 0.00–2.00 1.00 Strength of density dependence

Density-independent survival (aggregation scale)

a2 0.00–0.99 0.45 Density-independent survivorshipe

Dilution effect (aggregation scale)

f 0.556–0.956 0.756 Density-independent coefficientg

g 0.095–0.495 0.295 Dilution coefficient (per settlers)g

Detection effect (aggregation scale)

h 0–10 5 Detection coefficient (settlers)h

In explorations of parameter space, each parameter was varied over its range of values while other parameters were held constant at their best
estimate. Unless otherwise noted, range is 95% confidence interval around the best estimate. Values not given for state variables.
a Estimated from spatial distribution of T. bifasciatum settlers (White and Warner 2007)
b Calculated from values given for T. bifasciatum in Caselle et al. (2003), assuming per capita fecundity is constant
c Larval mortality rates used by Cowen et al. (2000) were converted to monthly survivorships assuming a larval duration of approximately 30 days (the
model time step).
dMonthly survivorships calculated for T. bifasciatum at San Blas, Panama (Warner and Chesson 1985).
e It was assumed that density-independent mortality was partitioned among reef and aggregation scales. Therefore, a=a2, and both parameters were
estimated as the square root of the density-independent component of per capita T. bifasciatum settler mortality (White 2007)
f Scaled to yield maximum settler density similar to that observed in T. bifasciatum on continuous reefs (White 2007)
gMaximum-likelihood estimate for parameters of group-scale dilution effect for T. bifasciatum settler mortality (White and Warner 2007)
h No empirical estimates available; scaled such that detection effects begin to become pronounced in aggregations of four to five fish, the largest T.
bifasciatum aggregation size frequently observed on St. Croix reefs (White and Warner 2007).
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FðSÞ=S became multimodal rather than monotonically
increasing, and a stable equilibrium was sometimes present
(upper right corner of Fig. 3a). This region of parameter
space typically exhibited multiple equilibria, and even
parameter combinations that had a stable equilibrium also
had a second, unstable (λ<−1 or λ> 1) equilibrium (Online
Resource 2). Dynamics also exhibited either stable (−1<λ<
0) or unstable (λ<−1) oscillations for a band of interme-
diate values of fecundity (3–10 settlers per recruit) and high
levels of aggregation (1/k>20; Fig. 3d). These regions of
instability in the IDD Dilution scenario were a product of
the shape of the second derivative, H''(S), of the
aggregation-scale survival function. H''(S) is positive for
most values of S (i.e., an increase in S produces an even
greater increase in the number of surviving recruits, R), but
for certain values of S (approximately 10<S<30), H''(S) is
slightly negative, so that the rate of increase in R slows with
increases in S. Consequently, for particular values of S and
high values of 1/k, the term including var(S) on the right-
hand side of Eq. 5 becomes negative, and aggregation-scale
IDD actually reduces survival. The biological interpretation

of this is that, at those value of S, the marginal increase in
survival experienced by aggregated fish at an effective
density higher than S is less than the marginal decrease in
survival experienced by fish with an effective density lower
than S. When the spatial variance in density is quite high,
the actual mean survival FðSÞ is lower than the mean-field
estimate. This effect is visible as a slight dip in the
combined-scale survivorship function, FðSÞ=S, for moder-
ate levels of aggregation (1/k=10; Fig. 1e); for higher levels
of aggregation (1/k=100), FðSÞ=S drops to zero before
returning to nonzero values (see right inset in Fig. 1e). The
small regions of instability in Fig. 3b, d occurred because
those values of d and z produced equilibrium values of S
that fell near the region of FðSÞ=S ¼ 0. Note that, outside
of these regions, dynamics were stable despite the increas-
ing IDD limb of the survival function (see left inset in
Fig. 1e).

Adding a predator detection effect to the dilution effect
(IDD Dilution+Detection scenario; Fig. 4) produced nota-
bly different results from the other two cases. In this
scenario, the set of best parameter estimates generally
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a monotonic reduction in mortality (IDD Dilution, b, d) The
parameters varied were the strength of large-scale density dependence
(Beverton–Holt parameter d), per capita fecundity (z), and intensity of
spatial aggregation (negative binomial parameter 1/k; larger values
indicate greater clumping). The stars in b, d indicate typical parameter
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produced stable dynamics (0<λ<1) but was unstable (λ≤
−1 or λ>1) for moderately high levels of aggregation
(approximately 10<1/k<50). In some cases, there were also
regions of stable oscillatory dynamics (−1<λ<0) adjacent
to the unstable region. The precise shape of these regions of
unstable dynamics varied with the other demographic
parameters (Fig. 4), which I describe further below. These
instabilities occur when high levels of aggregation (and
thus high values of var(S)) cause the postsettlement
survivorship function, FðSÞ=S (Eq. 5), to drop sharply to
near-zero values at high settler densities (Fig. 1d). This
drop results from large settler aggregations suffering high
mortality due to detection effects in this scenario, rather
than from a subtle change in the concavity of H(S)/S, as in
the IDD Dilution scenario. At extremely high settler
densities, the aggregation-scale survival function H(S)/S
flattens out (Fig. 1b), so H''(S)≈0 and the scale transition is
negligible (as a result, FðSÞ=S returns to nonzero values for
very high S; see right inset in Fig. 1f). For moderate values

of 1/k, settler densities often fell within the region of
FðSÞ=S ¼ 0, producing instability. As 1/k increased above
50, equilibrium settler densities also became greater and
generally fell within nonzero regions ofFðSÞ=S, causing the
return to stable dynamics seen in Fig. 4.

Variation in several of the other parameters shifted the
positions of the regions of instability relative to the value of
1/k. The minimum value of 1/k producing instability declined
with increasing d (Fig. 4a); that is, stronger landscape-scale
density dependence led to instability at lower levels of
aggregation by decreasing the value of S at which FðSÞ=S
dropped to near zero. Note that the case of d=0 (no
landscape-scale density dependence) bears some similarity
to standard Allee effect models, in which survival is a hump-
shaped function of density. However, the survivorship
function FðSÞ=S does not have a positive second derivative
at the origin, so there was not an unstable equilibrium
adjacent to zero, as in typical Allee effect models (e.g.,
Courchamp et al. 1999). Rather, there was a single stable
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equilibrium for most values of 1/k when d=0. Some values
of 1/k produced three equilibria for certain values of d and
the other parameters shown in Fig. 4; in all cases, this
occurred in regions shown in Fig. 4 as having stable (or
oscillatory stable) dynamics. The alternative equilibria
always consisted of stable, unstable, and stable points, in
ascending order of population density. Because the unstable
equilibrium was always bracketed in this way, the overall
results shown in Fig. 4 are robust (see Online Resource 2 for
details on the alternative equilibria).

The fecundity parameter z also affected stability
(Fig. 4b). For values of z lower than approximately 3,000
settlers per adult, dynamics were unstable for all levels of
aggregation above a minimum threshold in the vicinity of
1/k=100. However, the level of aggregation associated with
instability decreased with z above values of approximately
z=100 settlers per adult.

Unlike the DDD Baseline and IDD Dilution scenarios,
several other parameters also affected dynamic stability in
the IDD Dilution+Detection scenario. The minimum value
of 1/k producing oscillatory instability increased slightly
with adult survivorship, s (Fig. 4c). Additionally, for low
values of s and 1/k, dynamics were stable but the return
tendency exhibited dampened oscillations rather than a
monotonic approach to equilibrium (−1<λ<0). In general,
higher adult survivorships led to more stable dynamics. The
same was also generally true for the Beverton–Holt density-
independent survivorship term a, for which low values (a<
0.2) made instability possible for slightly lower levels of
aggregation (1/k<20; Fig. 4d). There was also an unusual
effect of the detection effect parameter h on stability
(Fig. 4e). For 1/k>10, there was a “chattering” pattern of
stable and unstable regions of parameter space across all
values of h. This appears to occur because the shape of
FðSÞ and thus the value of λ are very sensitive to h for high
values of 1/k, and small changes in h can rapidly switch the
sign and magnitude of λ. Given this sensitivity to particular
parameter values, it would be unwise to draw conclusions
about the specific values of h that produce stability or
instability, which may depend on numerical artifacts in
calculating λ. Rather, note that instability is generally much
more likely for those higher values of 1/k. Indeed,
instability generally set in at values of 1/k higher than that
observed in the field for Thalassoma bifasciatum, the
species used to parameterize the model (star symbols in
Figs. 3 and 4).

The general result that instability is likely only for values
of 1/k greater than approximately 10 in the IDD Dilution+
Detection scenario does not appear to be an artifact of the
specific parameterization or shape of the survival function
H(S)/S. The range of values considered for parameters g
and h leads to a wide variety of shapes H(S)/S (Fig. 5a;
compare to the example given for the best estimates of g

and h in Fig. 1b). However, when the scale transition is
applied to any of the curves shown in Fig. 5a to obtain F
(S)/S, the transition between a smooth F(S)/S curve (typical
of low spatial variance scenarios) and a F(S)/S curve that
drops sharply to zero (typical of unstable, high spatial
variance scenarios) always occurs for values of 1/k between
5 and 10 (Fig. 5b,c). That is, spatial variance at the
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aggregation scale begins to produce survivorship curves
typical of instability in the vicinity of 1<1/k<10. This
result is not surprising given the form of the negative
binomial variance function: the S

2
term in Eq. 6 will remain

relatively small for 1/k<1 but will begin to dominate the
variance expression once 1/k becomes greater than 1, and
the variance can become quite large for values of 1/k not
much greater than 1. It was not feasible to confirm this
generalization by performing a full stability analysis for the
wide range of curves shown in Fig. 5a, but analyses
performed using both the upper and lower values of
parameter g given in Table 1 (yielding two relatively
different shapes for H(S)/S), suggested that the unstable
regions of parameter space remained restricted to values of
1/k higher than those observed in the field for T.
bifasciatum (see Online Resource 3).

There was also a range of values of 1/k that produced
multiple equilibria in the IDD Dilution+Detection scenario,
typically in the vicinity of 3<1/k<10. The region of
parameter space with multiple equilibria always had one
stable equilibrium (these values are those shown in Fig. 4)
and two other unstable equilibria. The stability properties of
the other equilibria are reported in Online Resource 2.

Discussion

The goal of this analysis was to determine the conditions
under which inversely density-dependent (IDD) mortality
produced unstable dynamics in a population that would
otherwise be stable and regulated by directly density-
dependent (DDD) mortality. In general, the results of the
model with an IDD Dilution effect (a monotonic increase in
survival with aggregation-scale density) demonstrated that
IDD mortality is compatible with stable population dynamics
for highly aggregated species so long as both fecundity
(including larval survival) and the strength of landscape-scale
DDD mortality take on moderate or high parameter values. In
the IDD Dilution scenario, unstable dynamics were observed
only for very high levels of aggregation and either very weak
DDD mortality or low levels of fecundity.

In contrast, when both dilution and detection effects acted
at the aggregation scale (so that survival is a hump-shaped
function of aggregation size), instability was possible for a
broader range of biologically plausible parameter values.
Compared to the IDD Dilution scenario, instability was
possible for much lower levels of aggregation, although the
precise level of aggregation at which dynamics became
unstable varied subtly with fecundity, the strength of
landscape-scale density dependence, density-independent
survivorship, and the strength of the detection effect.

In a broad sense, this analysis is consistent with well-
known results from the Allee effect literature (e.g.,

Courchamp et al. 1999; Gascoigne and Lipcius 2004b). In
particular, instability was more common with a unimodal
survivorship function, in which mortality is IDD at low
densities but DDD at higher densities (obtained in the IDD
Dilution+Detection scenario), and instability increased
with the strength of IDD (in this case, the degree of
aggregation). However, my analysis moved beyond this
typical result by exploring a range of cases in which IDD
and DDD processes occur simultaneously—and at different
spatial scales—over a range of densities, which may be
common in nature. The importance of considering alterna-
tive spatial scales in this analysis is made clear by the
observation that dynamics were always stable when IDD
and DDD processes occurred at the same spatial scale (i.e.,
if 1/k was close to zero and aggregation was negligible) but
the potential for instability increased with the degree of
aggregation.

To put the model results in biological context, parameter
values estimated for bluehead wrasse, Thalassoma bifascia-
tum, in St. Croix (White 2008, White, J.W., unpublished
data) place that population within the region of dynamic
stability, regardless of the form of aggregation-scale IDD
mortality (star symbols in Figs. 3 and 4). Estimates of 1/k for
other species are not widely reported, but values in the range
of 0.1–10 are typically observed in insects (Nedelman 1983;
Desouhant et al. 1998). Shaw et al. (1998) calculated 1/k for
the aggregation of parasites to hosts for a range of host
species, including fish, birds, and mammals, and found that
values were usually >1 and ranged as high as 26. These
estimates should be used cautiously, however, as Grear and
Schmitz (2005) pointed out that the value of 1/k depends on
the total number of individuals in the sample, so comparing
values across study systems is problematic. Nonetheless, in
the IDD Dilution effect scenario, instability began to become
possible at rather high values of 1/k (in the vicinity of 1/k=
30) and either very weak DDD mortality or certain values of
adult fecundity. For comparison, see Fig. 2c for an example
of this level of aggregation, and note that Osenberg et al.
(2002) estimated that d was typically equal to one for most
reef fish populations. Instability was possible at values of
1/k=10 in the IDD Dilution+Detection scenario, and in
general instability can be expected to set in for values of
1/k between 1 and 10 (Fig. 5). This is a much more modest
degree of aggregation (see Fig. 2b for comparison) that is
more commonly observed in nature, so there is much
greater potential for instability at biologically reasonable
parameter values (note the proximity of the stars in Fig. 4
to the stability boundary). The relative prevalence of these
two types of aggregation-scale IDD mortality (dilution vs.
dilution+detection) is not known. Surveys of the reef fish
literature (Hixon and Webster 2002; White et al. 2010)
reveal several cases of mortality declining monotonically
with density as in the dilution scenario (Booth 1995;
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Sandin and Pacala 2005b; White and Warner 2007), but
only one example of a hump-shaped relationship between
density and survival as in the IDD Dilution+Deletion
scenario (Jones 1988), and that paper did not report a
value of 1/k.

Increasing the strength, d, of landscape-scale DDD
mortality tended to decrease the minimum level of
aggregation (1/k) that would produce unstable dynamics,
at least in the presence of both dilution and detection
effects. This is not surprising, as values of d> 1 imply
overcompensation, in which recruitment actually decreases
with increasing settler densities. Overcompensation is
typically associated with oscillatory dynamic instability,
such as in the well-known Ricker and logistic map models
(Gurney and Nisbet 1998).

The fecundity parameter z (which incorporated both egg
production and larval survival) had a complex effect on
stability. When z took on relatively high values (z>3,000
settlers per adult), stability was possible with relatively high
levels of aggregation, but at lower values of z, instability
occurred with much lower levels of aggregation. This pattern
occurred because spatial variance in settler density, S, is an
increasing function of S, so at very low fecundities there is
little variance and thus a weaker destabilizing effect of
aggregation-scale IDD mortality. At extremely high fecund-
ities, settler density was also high and fell in the asymptotic
region of the aggregation-scale survivorship function, so
there was relatively little effect of spatial variance in setter
density and dynamics were stable. It was only at intermediate
fecundity values that spatial variation greatly affected overall
settler survival and destabilized population dynamics. Other
parameters also had effects on stability in the IDD Dilution+
Detection scenario, including adult survival, density-
independent postsettlement survival, and the detection effect
parameter. While the effect of aggregation on stability varied
somewhat over the range of these parameters, the general
pattern of unstable dynamics for moderate levels of
aggregation (1/k> 10) was consistent.

The unstable dynamics exhibited by these population
models arose in part from the time delay in density
dependence imposed by the discrete-time framework:
settler mortality in time t+1 depended on production in
time t. It is likely that similar models with inverse density
dependence formulated in continuous time would not
exhibit this type of instability, as is generally the case for
continuous analogs of discrete-time models (Turchin 2003).
However, discrete time steps are a natural feature of benthic
marine populations with pelagic larvae and are imposed by
the time lag between larval production and larval settle-
ment, so the discrete-time formulation is more appropriate.
I did not consider the case in which IDD and DDD
processes are separated in time (rather than in space), which
would introduce an additional lag into the dynamics. I am

not aware of empirical evidence for that type of delay, so I
leave that scenario for future consideration.

In many models of marine population dynamics, the
benthic, adult component of the life history is represented
as having directly density-dependent mortality at the time
of settlement, followed by density-independent adult
growth and survival (e.g., Armsworth 2002; James et al.
2002; White 2008). Such models are generally thought to
capture the key regulatory dynamics in these systems (but
see Sandin and Pacala 2005a). The results of this paper
suggest that benthic marine species that also experience
monotonic IDD mortality at the scale of social aggregations
will not exhibit population dynamics with fundamentally
different stability characteristics except at very high levels
of spatial aggregation. However, if IDD survival has a
hump-shaped functional form, then unstable dynamics are
possible for relatively moderate levels of aggregation. In
that type of system, a population model describing only
mean-field processes without accounting for small-scale
variance in density would not adequately represent the
potential for unstable population dynamics.

It is also important to note that the models used here
assumed that the population is closed to immigration and
emigration. Many benthic marine populations actually
exhibit some degree of metapopulation structure (Kritzer
and Sale 2006). In a metapopulation, the exchange of
individuals across populations is likely to decouple local
settlement from local production somewhat, dampening the
feedbacks that lead to instability (Hastings et al. 1993;
Amarasekare 1998) so long as dispersal of juveniles is
obligate or an increasing function of population density
(Vance 1984). Similarly, Hassell (1984) found that purely
IDD predation could produce stable population dynamics in
a coupled predator–prey metapopulation because predator
and prey growth rates were decoupled in space and time.
Consequently, the results presented here likely represent an
extreme condition; in real benthic metapopulations, unstable
dynamics should be even less likely than these model results
suggest.

The examples used in this study were largely drawn
from the reef fish literature, where a large body of work has
been devoted to exploring mechanisms of population
regulation across a range of spatial scales. However, the
models and results developed here may also apply to other
systems. Predators of a broad range of taxa appear to
respond to prey densities at a particular foraging scale
(wading birds: Colwell and Landrum 1993; Cummings et
al. 1997; pelagic seabirds: Burger et al. 2004; pelagic
fishes: Horne and Schneider 1994; coccinellid insects:
Schellhorn and Andow 2005), and in some insect popula-
tions this phenomenon produces a pattern of large-scale
DDD and small-scale IDD mortality (Mohd Norowi et al.
2000, reviewed by Walde and Murdoch 1988) like that
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described for reef fishes by White and Warner (2007).
Gascoigne et al. (2005) reported a similar scale-dependent
switch in the direction of density dependence in soft-
sediment mussels, which exhibited facilitation at small
spatial scales, apparently representing shared resistance to
dislodgement by waves, but competition at large scales,
apparently for zooplankton prey. This pattern is not
universal, as alternative combinations of DDD, IDD, and
density-independent mortality at different spatial scales
have also been reported (Stiling et al. 1991; Schellhorn
and Andow 2005). Nonetheless, the results presented here
suggest that only in extreme circumstances is IDD mortality
sufficient to destabilize population dynamics regulated by
DDD mortality.
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