
ECL 290 
Statistical Models in Ecology using R 
 
Problem set for Week 6 
Monte Carlo simulation, power analysis, bootstrapping 
 
1.  Monte Carlo simulations - Central Limit Theorem example 
 
To start getting a handle on Monte Carlo simulations, we will test the accuracy of the Central 
Limit Theorem.  Let's hope it works, otherwise we all have to stop using ANOVAs. 
 
The logic behind Monte Carlo is very appealing to frequentists.  Most frequentist stats are based 
on the idea that we are estimating the probability that a certain thing would happen if we 
repeated the same experiment very many times.  Usually we never actually repeat the experiment 
because the grant has run out and we have to publish the manuscript.  However, we can use 
Monte Carlo techniques to simulate repeating the experiment (assuming the data are described 
by a particular statistical distribution) and thus obtain a frequentist estimate of a particular event 
happening. 
 
To see how this works, we will perform Monte Carlo simulations and compare the results to a 
theoretical expectation, the Central Limit Theorem (CLT).  The CLT says that when one takes 
random samples from any distribution with true mean µ and standard deviation σ, the 
distribution of the sample means will follow a normal distribution with mean µ and standard 
deviation σ/n0.5

 
 (the standard devation of the disribution of means is usually called the standard 

error).  The CLT is the reason that we calculate the standard error of our sample data and use the 
SE to construct 95% confidence intervals around our mean.  If the 95% CIs don't overlap zero, 
then the mean is significantly different from zero. 
 
Anyway, the CLT is asymptotically true - it is guaranteed to be correct for large sample sizes n, 
but not so much for smaller n.  It is always a good idea to calibrate our intuition about how large 
n must be before we start assuming that the CLT holds.  This is where Monte Carlo comes in. 
 
First we will establish a simple procedure for generating large numbers of random samples from 
a particular distribution.  Let's say we need to simulate taking 10,000 samples of size n = 5 from 
a distribution with mean = 1, sd = 2.  We could write a for-loop that would loop 10,000 times 
and simulate rnorm(n=5,mean=1,sd=2) each time, but that is long and inefficient.  Instead, we 
will take a shortcut: 
 
X = rnorm(5e4,mean=1,sd=2) # we need a total of 5 x 10,000 = 5e4 samples  
X = matrix(data=X,nrow=1e4,ncol=5)  
 
This rearranges X into a matrix with 10,000 rows (one for each sample) and 5 columns (the 
number of observations in each sample).  Now let's find the distribution of sample means: 
 
Mean.dist = apply(X, MARGIN = 1, FUN = "mean") 
 



apply performs an operation on each row (MARGIN = 1) or column (MARGIN = 2) of a matrix.  
In this case we take the mean of each 'sample' (each row).  Now look at the mean and standard 
deviation of this distribution.  Do they match the CLT prediction? 
 
mean(Mean.dist) 
sd(Mean.dist) 
 
Now, what about our estimate of the standard error from a single sample?  In other words, when 
we take the sample standard deviation from each sample and use that to estimate the standard 
error of the mean, how well does the result match up to the CLT prediction?  We have to use 
apply again, this time to take the standard deviation, not the mean, of each sample.  Then we 
divide by the square root of 5 to estimate the SE. 
 
Mean.sd = apply(X, MARGIN = 1, FUN = "sd") 
Mean.se = Mean.sd/sqrt(5) 
 
Now calculate the mean of the distribution of standard errors (Mean.se).  This is the estimate of 
the SE you will get on average with n = 5.  How well does it compare to the CLT prediction?  
Pay attention to how this last step (taking the mean of the sample standard deviations for 10,000 
samples of size n = 5) is different from what we did at first (take the standard deviation of the 
distribution of sample means from 10,000 samples of size n = 5).  The latter tells us how accurate 
the CLT is (how well does the actual distribution of sample means match the theoretical 
prediction) and the former tells us how well our sample estimate of the SE matches up to the 
theoretical value (how much bias is there in the estimate of SE for that n?). 
 
Now we should calibrate our intuition.  How does the comparison between predicted and actual 
SEs vary with sample size?  We will need to use a for loop.  To make things somewhat faster, we 
will generate one large 10,000 x 50 matrix, and then just take an increasing number of columns 
out of that matrix to simulate sample size of n = 2, 3, 4...50.  The loop will just repeat the steps 
we did above. 
 
X2=rnorm(50e4,mean=1,sd=2) # up to n = 50 
X2 = matrix(data=X2,nrow=1e4,ncol=50) 
 
# pre-allocate some variables for the for loop 
Means = rep(NA,ncol(X2)) 
SDs = Means 
SEs = Means 
n = 0 
 
# now loop over each possible sample size 
for(n in 2:ncol(X2)){ 
 Mean.dist = apply(X2[,1:n],MARGIN=1,FUN="mean") 
 Means[n]=mean(Mean.dist) 
 SDs[n]=sd(Mean.dist) # this is the actual SD of the distribution of means 
 SE.dist = apply(X2[,1:n],MARGIN=1,FUN='sd') 
 SEs[n]=mean(SE.dist)/sqrt(n) # average estimate of the SE for each n 



 } 
 
Now calculate the expected values from the CLT: 
 
n = seq(1,ncol(X2)) 
Mean.pred = rep(1,ncol(X2)) 
SD.pred = rep(2,ncol(X2))/sqrt(n) 
 
Plot the results: expected mean (from CLT) and actual mean (from Monte Carlo) vs n, expected 
SE and actual standard deviation of distribution of means vs n, and expected SE & SE calculated 
from the sample standard deviation vs. n.  How large must n be before the actual values start to 
meet the CLT prediction? 
 
Hopefully you found that the CLT was pretty accurate.  But - people always want to know if it 
still works when the underlying distribution of the data is non-normal.  So try that again, but this 
time assume the data come from a very non-normal gamma distribution.  Do all the same steps, 
but start with  
 
X2=rgamma(50e4,shape=1,scale=1) 
 
How well does the CLT work now? 
 
2.  Power analysis - Normal distribution 
 
Now that we have the basics of Monte Carlo down, we will start applying it to different 
problems.  The most common use is in power analysis.  Here we are asking about the probability 
of making a type II error: failing to reject a false null hypothesis.  Often this problem is posed as 
follows: we are sampling some quantity that follows a normal distribution (a sample mean, for 
example). The null hypothesis is that the mean = 0.  If the null hypothesis is false (mean ≠ 0), 
how often will we actually fail to reject the null hypothesis?  Let's assume the way we are 
performing our statistical test is to examine the 95% CI of the mean to discover whether the CI 
overlaps zero.  This is using an alpha (probability of type I error) of 0.05. 
 
Power analysis can be used to find out how many samples you need, or how small the variance 
must be, or how large the effect size must be, to reject the null hypothesis with a certain 
probability.  For this example, let's say that logistics constrain sample size to n = 5, and that from 
prior sampling efforts we know that the standard deviation of the underlying distribution = 1.  
Now our question is "how does the probability of rejecting the null hypothesis vary with the 
actual effect size?"  In other words, as the true mean gets further and further from zero (larger 
"effect size"), how frequently do we fail to reject the (false) null hypothesis that mean = 0? 
 
First, create a vector of possible true means, and pre-allocate a variable we will need for our for 
loop: 
 
MU = seq(0,5,0.01) 
Test = rep(NA,length(MU)) 
 



Now execute our loop.  At each step we will create a large vector of 'samples' drawn from a 
distribution with that true mean and the standard deviation we already knew.  Then for each 
sample we will calculate the sample mean and sample standard error.  Then we can determine 
what fraction of the samples would have led to rejecting the null hypothesis. 
 
for(n in 1:length(MU)){ 
# Create 'samples' drawn from distribution with that value of MU 
Data = matrix(rnorm(5e4,MU[n],1),nrow=1e4,ncol=5) 
# Calculate mean, SE 
Means = apply(Data,MARGIN=1,FUN="mean") 
SEs = apply(Data,MARGIN=1,FUN="sd")/sqrt(5) 
 
# Now do the test.  We will assume that we are testing at alpha=0.05 
# So if the lower CI does not overlap zero, we reject the null hypothesis 
Lower.CIs = Means-1.96*SEs 
#How many times is null hypothesis rejected? 
Test[n] = mean(Lower.CIs > 0) 
# The proportion of cases in which we reject the (false) null hypo. = Power. 
} 
 
The vector Test holds the results: the power of our test for a range of effect sizes.  Plot Test vs. 
MU and see how power increases with effect size. 
 
Often we want to know a slightly different question: how large must the sample size be in order 
to detect a a particular effect size with a particular power?  Re-write the code we just created to 
calculate power for a range of n but assuming an effect size (mu) of 1.  How large does n have to 
be to detect that difference in means with power = 0.8? 
 
3.  Power analysis - Binomial distribution 
 
Power analysis for normal distribution problems like the last is pretty straightforward.  
Sometimes we need to answer a slightly more difficult question.  Consider this example: you are 
sampling fish from a location that may be exposed to endocrine disrupting compounds (EDCs).  
The symptom of endocrine disruption is male fish with malformed testes.  You take a sample of 
male fish, and none of them show malformation.  How confident can you be that there is no 
endocrine disruption at the site? 
 
To rephrase that question in a more statistical way, let's assume that if EDCs are present, they 
produce some probability T of malformed testes.  If EDCs are not present, T = 0.  The actual 
number of fish with malformed testes in a sample of size n will follow a binomial distribution 
with probability T.  For any sample size, there will be some nonzero values of T that will produce 
observations of all zeros some fraction of the time. The idea is to figure out what is the smallest 
value of T that is likely to give that result - you can rule out higher values of T as unlikely. Given 
a particular value of n, what is the minimum value of T that would produce a sample of all zeros 
< 5% of the time (assuming you want to be 95% confident)? 
 



First, setup a vector of sample sizes and values of T, and pre-allocate some variables for a for 
loop. 
 
Ns = seq(1,100,1) 
Ts = seq(0,1,0.01) 
Frac = Ts*NA 
MinFrac = Ns*NA 
 
Now run the loop.  For each value of n, find the minimum value of T that would produce a 
sample of entirely zeros less than 5% of the time. 
 
for(N in 1:length(Ns)){ # loop over Ns 
for(T in 1:length(Ts)){ # loop over Ts for each value of N 
Data = rbinom(n=1e4,size=Ns[N],prob=Ts[T]) # simulate the data 
Frac[T] = mean(Data==0) # fraction of observations with no malformations 
} # end the loop over Ts 
is5pct = Frac<0.05 # the values of T for which <5% samples are all zero 
whichT = which(is5pct) # indices of T corresponding to TRUE values in is5pct 
MinFrac[N]=Ts[whichT[1]] # the lowest value of T that can be rejected at 95% 
} # end the loop over Ns 
 
Now plot the results (MinFrac vs. Ns).  How large must n be to determine whether T = 0? 
 
4.  Bootstrapping 
 
Monte Carlo techniques are useful when we know what the underlying distribution is and want 
to simulate a large number of repeated samples to estimate p-values in the frequentist paradigm.  
Bootstrapping is useful in a similar way, especially when the underlying data distribution is not 
known. 
 
To get the hang of bootstrapping, we will work an example where we should know the correct 
answer.  In the first exercise we found that when we take many Monte Carlo samples from the 
same distribution, the SD of the distribution of the sample means is equal to the true standard 
deviation divided by the square root of the sample size.  Now let's see whether bootstrapping the 
data is equivalent to taking those Monte Carlo samples. 
 
First, pre-allocate a variable 
M = rep(NA,1e4) 
 
Now, obtain one sample from a normal distribution 
N = 100 
Data = rnorm(N,mean=0,sd=1) 
 
Then resample the data (with replacement!).  This is bootstrapping. 
for(b in 1:1e4){ 
 Bsamp = resample(x = Data,size = N,replace=TRUE)  
 M[b] = mean(Bsamp) # find the mean of the resampled dataset 



 } 
 
There may be a way to do this without a for loop.  In Matlab there definitely is, but I haven't 
figured out how in R.  In any case, this works fine if a bit slowly. 
 
Now compare the SD of the distribution of bootstrapped means (M) to the predicted SE of the 
mean (1/sqrt(N)).  Try a range of values of N (say 10, 100, 1000) and a range of number of 
bootstraps (say 10, 100, 1000, 10,000) and see how the accuracy of the result is affected. 
 
5. Bootstrapping - second example 
 
We would almost never bootstrap in an example like #4, because it is so easy to use the CLT to 
find our answer.  So here is a different example in which bootstrapping could be more useful.  
Consider a case like the bluehead wrasse data: a sample that could be drawn from a negative 
binomial or a Poisson distribution, but we are not sure which it is.  One easy test for determining 
whether data are 'clumped' (as they would be in the negative binomial case) is to compare the 
mean and variance.  In a Poisson distribution, mean = variance, but variance > mean for a 
negative binomial distribution.  So, given a single sample we could compare the variance to the 
mean, and if sample variance > sample mean, then that is evidence for the negative binomial 
instead of the Poisson.  Of course, even if the data are Poisson, the sample mean will almost 
never be exactly equal to the sample variance.  So it would be nice to be able to compare the 
distribution of the difference between the sample mean and sample variance so that we can have 
more information about the weight of evidence for the negative binomial distribution.  We can't 
use a Monte Carlo techniques to simulate the negative binomial distribution, because we don't 
know the parameters (if we did, we'd have our answer already!).  So we can bootstrap instead. 
 
First, obtain some data from a distribution with known parameters. 
Data = rnbinom(10,size=1,mu=0.5) 
 
Now pretend that we don't know what those parameters are and want to examine the evidence for 
the hypothesis that variance = mean. 
 
First, pre-allocate a variable, and load in a package we will need. 
Btest = rep(NA,1e4) 
library(gdata) 
 
Now bootstrap.  This time our "test statistic" is not the sample mean (as in the last example) but 
is the difference between the variance and mean.   
for(b in 1:1e4){ 
 Bsamp = resample(Data,length(Data),replace=TRUE) # resample Data  
 Btest[b] = var(Bsamp)-mean(Bsamp) # calculate the 'test statistic' 
 } 
 
Now examine the distribution of the test statistic.  If the distribution overlaps zero, that is 
evidence that the true mean = true variance and the underlying distribution of the data is Poisson. 
 



For example, look at the lower 5% quantile of the test statistic distribution.  If this value is less 
than zero, then 5% of the distribution is less than zero. This is roughly equivalent to seeing 
whether the 95% CI of the difference between the mean and variance overlaps zero.  In other 
words, we are testing the hypothesis that the difference equals zero with alpha = 0.05. 
 
quantile(Btest,0.05) 
 
Try this again with a larger sample size in the original dataset and see if the results improve. 
 
At the beginning of this question, I suggested that we couldn't use Monte Carlo techniques in this 
case. That's not quite right - we could have simulated a Poisson distribution with lambda = 
sample mean of the data, and the used those Monte Carlo samples to find the distribution of the 
difference between sample mean and sample variance.  Then we could compare our observed 
difference to that distribution to see how extreme our observation was under the null hypothesis 
that the data are Poisson.  As I've said before, there are usually several ways to do anything. 


