
Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-
end-transport protocol

Application Layer 2-1

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Socket programming

Two socket types for two transport services:

• UDP: unreliable datagram

• TCP: reliable, byte stream-oriented

Application Layer 2-2

Application Example:

1. client reads a line of characters (data) from its
keyboard and sends data to server

2. server receives the data and converts characters
to uppercase

3. server sends modified data to client

4. client receives modified data and displays line on
its screen

Socket programming with UDP

UDP: no “connection” between client & server
▪ no handshaking before sending data

▪ sender explicitly attaches IP destination address and
port # to each packet

▪ receiver extracts sender IP address and port# from
received packet

UDP: transmitted data may be lost or received
out-of-order

Application viewpoint:
▪ UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

Application Layer 2-3

Client/server socket interaction: UDP

close

clientSocket

read datagram from

clientSocket

create socket:

clientSocket =

socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and

port=x; send datagram via

clientSocket

create socket, port= x:

serverSocket =

socket(AF_INET,SOCK_DGRAM)

read datagram from

serverSocket

write reply to

serverSocket

specifying

client address,

port number

Application 2-4

server (running on serverIP) client

Application Layer 2-5

Example app: UDP client

from socket import *

serverName = ‘hostname’

serverPort = 12000

clientSocket = socket(AF_INET,

SOCK_DGRAM)

message = input(’Input lowercase sentence:’)

clientSocket.sendto(message.encode(),

(serverName, serverPort))

modifiedMessage, serverAddress =

clientSocket.recvfrom(2048)

print modifiedMessage.decode()

clientSocket.close()

Python UDPClient
include Python’s socket

library

create UDP socket for

server

get user keyboard

input

Attach server name, port to

message; send into socket

print out received string

and close socket

read reply characters from

socket into string

Application Layer 2-6

Example app: UDP server

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)

serverSocket.bind(('', serverPort))

print (“The server is ready to receive”)

while True:

message, clientAddress = serverSocket.recvfrom(2048)

modifiedMessage = message.decode().upper()

serverSocket.sendto(modifiedMessage.encode(),

clientAddress)

Python UDPServer

create UDP socket

bind socket to local port

number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string

back to this client

Socket programming with TCP

client must contact server

▪ server process must first be
running

▪ server must have created
socket (door) that
welcomes client’s contact

client contacts server by:

▪ Creating TCP socket,
specifying IP address, port
number of server process

▪ when client creates socket:
client TCP establishes
connection to server TCP

▪ when contacted by client,
server TCP creates new socket
for server process to
communicate with that
particular client

• allows server to talk with
multiple clients

• source port numbers used
to distinguish clients
(more in Chap 3)

Application Layer 2-7

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

Client/server socket interaction: TCP

Application Layer 2-8

wait for incoming

connection request
connectionSocket =

serverSocket.accept()

create socket,
port=x, for incoming

request:
serverSocket = socket()

create socket,
connect to hostid, port=x

clientSocket = socket()

server (running on hostid) client

send request using

clientSocketread request from

connectionSocket

write reply to

connectionSocket

TCP
connection setup

close

connectionSocket

read reply from

clientSocket

close

clientSocket

Application Layer 2-9

Example app: TCP client

from socket import *

serverName = ’servername’

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_STREAM)

clientSocket.connect((serverName,serverPort))

sentence = input(‘Input lowercase sentence:’)

clientSocket.send(sentence.encode())

modifiedSentence = clientSocket.recv(1024)

print (‘From Server:’, modifiedSentence.decode())

clientSocket.close()

Python TCPClient

create TCP socket for

server, remote port 12000

No need to attach server

name, port

Application Layer 2-10

Example app: TCP server

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

print ‘The server is ready to receive’

while True:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024).decode()

capitalizedSentence = sentence.upper()

connectionSocket.send(capitalizedSentence.

encode())

connectionSocket.close()

Python TCPServer

create TCP welcoming

socket

server begins listening for

incoming TCP requests

loop forever

server waits on accept()

for incoming requests, new
socket created on return

read bytes from socket (but

not address as in UDP)

close connection to this

client (but not welcoming

socket)

