
10/27/2020 1

The Socket API

10/27/2020 2

Introduction

• The socket API is an Interprocessing
Communication (IPC) programming interface
originally provided as part of the Berkeley UNIX
operating system.

• It has been ported to all modern operating
systems, including Sun Solaris and Windows
systems.

• It is a de facto standard for programming IPC,
and is the basis of more sophisticated IPC
interface such as remote procedure call (RPC)
and remote method invocation (RMI).

10/27/2020 3

The socket API

• A socket API provides a programming

construct termed a socket. A process

wishing to communicate with another

process must create an instance, or

instantiate, such a construct (socket)

• The two processes then issue operations

provided by the API to send and receive

data (e.g., a message)

10/27/2020 4

Datagram Socket vs. Stream Socket

• A socket programming construct can make use of
either the UDP (User Datagram Protocol) or TCP
(Transmission Control Protocol).

• A socket is a generalization of the UNIX file access
mechanism that provides an endpoint for
communication. A datagram consists of a datagram
header, containing the source and destination IP
addresses, and a datagram data area.

• Sockets that use UDP for transport are known as
datagram sockets, while sockets that use TCP are
termed stream sockets.

10/27/2020 5

UDP vs. TCP

• reliable, in-order delivery (TCP)

– congestion control

– flow control

– connection setup

• unreliable, unordered delivery: UDP

– “best-effort” service

– loss tolerant; rate sensitive

– DNS, streaming multimedia apps

10/27/2020 6

Connection-oriented & connectionless

Datagram socket

Process A
socket
API runtime

support

Process B
socket

API runtime

support

transport layer software transport layer software

a datagram

a logical connection created and maintained

by the runtime support of the datagram

socket API

Process A
socket
API runtime

support

Process B
socket

API runtime

support

transport layer software transport layer software

connectionless datagram socket

connection-oriented datagram socket

10/27/2020 7

The Java Datagram Socket API

• There are two Java classes for the datagram
socket API:

- the DatagramSocket class for the sockets.

- the DatagramPacket class for the datagrams.

• A process wishing to send or receive data using
this API must instantiate a

– DatagramSocket object--a socket

– DatagramPacket object--a datagram

• Each socket in a receiver process is said to be
bound to a UDP port of the machine local to the
process.

10/27/2020 8

The Java Datagram Socket API

To send a datagram to another process, a process:

• creates a DatagramSocket (socket) object, and an
object that represents the datagram itself. This
datagram object can be created by instantiating
a DatagramPacket object, which carries a
reference to a byte array and the destination
address--host ID and port number, to which the
receiver’s socket is bound.

• issues a call to the send method in the
DatagramSocket object, specifying a reference to
the DatagramPacket object as an argument.

10/27/2020 9

The Java Datagram Socket API

• DatagramSocket mySocket = new DatagramSocket();

// any available port number

• byte[] byteMsg = message.getBytes();

• DatagramPacket datagram = new DatagramPacket

(byteMsg , byteMsg.length, receiverHost, receiverPort);

• mySocket.send(datagram);

• mySocket.close();

10/27/2020 10

The Java Datagram Socket API

• In the receiving process, a DatagramSocket
(socket) object must also be instantiated and bound
to a local port, the port number must agree with that
specified in the datagram packet of the sender.

• To receive datagrams sent to the socket, the
process creates a datagramPacket object which
references a byte array, and calls a receive method
in its DatagramSocket object, specifying as
argument a reference to the DatagramPacket
object.

10/27/2020 11

The Java Datagram Socket API

DatagramSocket mySocket = new DatagramSocket(port);

byte[] recMsg = new byte[MAX_LEN];

DatagramPacket datagram = new DatagramPacket(recMsg,

MAX_LEN);

mySocket.receive(datagram); // blocking and waiting

mySocket.close();

10/27/2020 12

The Data Structures in the sender and

receiver programs

a byte array

a DatagramPacket object

receiver's

address

a DatagramSocket

 object

sender process

a byte array

a DatagramPacket object

a DatagramSocket

 object

receiver process

send

receive

object reference

data flow

10/27/2020 13

The program flow in the sender and

receiver programs

create a datagram socket and

 bind it to any local port;

place data in a byte array;

create a datagram packet, specifying

 the data array and the receiver's

 address;

invoke the send method of the

 socket with a reference to the

datagram packet;

create a datagram socket and

 bind it to a specific local port;

create a byte array for receiving the data;

create a datagram packet, specifying

 the data array;

invoke the receive method of the

 socket with a reference to the

datagram packet;

sender program
receiver program

•Q: Why the sender socket needs a local port number?

10/27/2020 14

Setting timeout

To avoid indefinite blocking, a timeout can

be set with a socket object:
void setSoTimeout(int timeout)

– Set a timeout for the blocking receive from this socket, in

milliseconds.
– int timeoutPeriod = 30000; // 30 seconds

mySocket.setSoTimeout(timeoutPeriod);

Once set, the timeout will be in effect

for all blocking operations.

http://java.sun.com/j2se/1.3/docs/api/java/net/DatagramSocket.htmlsetSoTimeout(int)

10/27/2020 15

Key Methods and Constructors

Method/Constructor Description

DatagramPacket (byte[] buf,

int length)

Construct a datagram packet for receiving packets of

length length; data received will be stored in the byte

array reference by buf.

DatagramPacket (byte[] buf,

int length, InetAddress address,

int port)

Construct a datagram packet for sending packets of

length length to the socket bound to the specified port

number on the specified host ; data received will be

stored in the byte array reference by buf.

DatagramSocket ()

Construct a datagram socket and binds it to any

available port on the local host machine; this

constructor can be used for a process that sends data

and does not need to receive data.

DatagramSocket (int port) Construct a datagram socket and binds it to the

specified port on the local host machine; the port

number can then be specified in a datagram packet

sent by a sender.

void close() Close this datagramSocket object

void receive(DatagramPacket p)

Receive a datagram packet using this socket.

void send (DatagramPacket p) Send a datagram packet using this socket.

void setSoTimeout (int timeout)

Set a timeout for the blocking receive from this

socket, in milliseconds.

10/27/2020 16

The Stream-Mode Socket API

• The datagram socket API supports
the exchange of discrete units of data.

• the stream socket API provides a
model of data transfer based on the
stream-mode I/O of the Unix operating
systems.

• By definition, a stream-mode socket
supports connection-oriented
communication only.

10/27/2020 17

Stream-Mode Socket API

(connection-oriented socket API)

... ...

a data stream

process

write operation

read operation

P1
P2

a stream-mode data socket

10/27/2020 18

Stream-Mode Socket API

• A stream-mode socket is established for

data exchange between two specific

processes.

• Data stream is written to the socket at one

end, and read from the other end.

• A data stream cannot be used to

communicate with more than one process.

10/27/2020 19

Stream-Mode Socket API

In Java, the stream-mode socket API is

provided with two classes:

– ServerSocket: for accepting connections; we

will call an object of this class a connection

socket.

– Socket: for data exchange; we will call an

object of this class a data socket.

10/27/2020 20

Stream-Mode Socket API

• ServerSocket connectionSocket =
new ServerSocket(portNo);

• Socket dataSocket =
connectionSocket.accept();

// waiting for a connection request

• OutputStream outStream =

dataSocket.getOutputStream();

• PrintWriter socketOutput =

new PrintWriter(new
OutputStreamWriter(outStream));

• socketOutput.println(message);

// send a msg into stream

• socketOutput.flush();

• dataSocket.close();

• connectionSocket.close();

• SocketAddress sockAddr = new
InetSocketAddress(

acceptHost, acceptorPort);

• Socket mySocket = new Socket();

• mySocket.connect (sockAddr,

60000); // 60 sec timeout

• Socket mySocket = new
Socket(acceptorHost,
acceptorPort);

• InputStream inStream =
mySocket.getInputStream();

• BufferedReader socketInput =
new BufferedReader(new
InputStreamReader(
inStream));

• String message =
socketInput.readLine();

• mySocket.close();

10/27/2020 21

Stream-Mode Socket API program flow

connection listener (server)

create a connection socket

and listen for connection

requests;

accept a connection;

creates a data socket for reading from

or writing to the socket stream;

get an input stream for reading

to the socket;

read from the stream;

get an output stream for writing

to the socket;

write to the stream;

close the data socket;

close the connection socket.

connection requester (server)

create a data socket

and request for a connection;

get an output stream for writing

to the socket;

write to the stream;

get an input stream for reading

to the socket;

read from the stream;

close the data socket.

(client)

10/27/2020 22

The server (the connection listener)

server

client 1

connection operation

send/receive operaton

A server uses two sockets: one for accepting connections, another for send/receive

client 2

connection

 socket

data socket

10/27/2020 23

Key methods in the ServerSocket class

Method/constructor Description

ServerSocket(int port) Creates a server socket on a specified port.

Socket accept()

 throws

IOException

Listens for a connection to be made to this socket and

accepts it. The method blocks until a connection is made.

public void close()

 throws IOException

Closes this socket.

void

setSoTimeout(int timeout)

 throws

SocketException

Set a timeout period (in milliseconds) so that a call to

accept() for this socket will block for only this amount of

time. If the timeout expires, a

java.io.InterruptedIOException is raised

Note: accept() is a blocking operation.

accept()

10/27/2020 24

Key methods in the Socket class
Method/constructor Description

Socket(InetAddress address,

int port)

Creates a stream socket and connects it to the

specified port number at the specified IP address

void close()

 throws IOException

Closes this socket.

InputStream getInputStream()

throws IOException

Returns an input stream so that data may be read

from this socket.

OutputStream getOutputStream(

)throws IOException

Returns an output stream so that data may be written

to this socket.

void setSoTimeout(int timeout)

throws SocketException

Set a timeout period for blocking so that a read()

call on the InputStream associated with this Socket

will block for only this amount of time. If the

timeout expires, a java.io.InterruptedIOException

is raised

A read operation on an InputStream is blocking.

A write operation on an OutputStream is nonblocking.

10/27/2020 25

Secure Sockets

• Secure sockets perform encryption on the data
transmitted.

• The JavaTM Secure Socket Extension (JSSE) is a Java
package that enables secure Internet communications.

• It implements a Java version of SSL (Secure Sockets
Layer) and TLS (Transport Layer Security) protocols

• It includes functionalities for data encryption, server
authentication, message integrity, and optional client
authentication.

• Using JSSE, developers can provide for the secure
passage of data between a client and a server running
any application protocol.

http://java.sun.com/products/jsse/

10/27/2020 26

The Java Secure Socket Extension API

• Import javax.net.ssl; // provides classes related to creating

and configuring secure socket factories.

• Class SSLServerSocket is a subclass of ServerSocket,
and inherits all its methods.

• Class SSLSocket is a subclass of Socket, and inherits
all its methods.

• There are also classes for

– Certification

– Handshaking

– KeyManager

– SSLsession

http://java.sun.com/products/jsse/doc/apidoc/index.html

