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Abstract

Tapping into the communication between two hosts on a
LAN has become quite simple thanks to tools that can be
downloaded from the Internet. Such tools use the Address
Resolution Protocol (ARP) poisoning technique, which re-
lies on hosts caching reply messages even though the cor-
responding requests were never sent. Since no message au-
thentication is provided, any host of the LAN can forge a
message containing malicious information.

This paper presents a secure version of ARP that pro-
vides protection against ARP poisoning. Each host has a
public/private key pair certified by a local trusted party on
the LAN, which acts as a Certification Authority. Messages
are digitally signed by the sender, thus preventing the in-
jection of spurious and/or spoofed information. As a proof
of concept, the proposed solution was implemented on a
Linux box. Performance measurements show that PKI based
strong authentication is feasible to secure even low level
protocols, as long as the overhead for key validity verifica-
tion is kept small.

1. Introduction

IP over Ethernet networks are the most popular Local
Area Networks nowadays. They use ARP, the Address Res-
olution Protocol, to resolve IP addresses into hardware, or
MAC (Medium Access Controllers), addresses [12]. All the
hosts in the LAN keep a cache of resolved addresses. ARP
resolution is invoked when a new IP address has to be re-
solved or an entry in the cache expires. The ARP poisoning
attack consists of maliciously modifying the association be-
tween an IP address and its corresponding MAC address.
Various tools available on the Internet [11], [13], [18], al-
low so called “script kiddies” to perform the sophisticated
ARP poisoning attack.
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Although this is the most popular version, ARP poison-
ing is not confined to Ethernet networks. Layer 2 switched
LANs, 802.11b networks, and cryptographically protected
connections are also vulnerable. In [3], various scenarios
are described where a wireless attacker poisons two wired
victims, a wireless victim and a wired one, or two wire-
less victims, either through different access points or a sin-
gle one. As for cryptographically protected networks, the
use of cryptography at network layer, e.g., by means of Se-
cure Shell (SSH) [20] or Secure Sockets Layer (SSL) [4],
does not protect against ARP poisoning, since such an at-
tack is performed at the layer below.

By performing ARP poisoning, an attacker forces a host
to send packets to a MAC address different from the one
of the intended destination, which may allow her to eaves-
drop on the communication, modify its content (e.g., filter-
ing it, injecting commands or malicious code), hijack the
connection. Furthermore, when performed on two differ-
ent hosts at the same time, ARP poisoning enables an ad-
versary to launch a “man in the middle” (MITM) attack.
With MITM attacks traffic between two hosts is redirected
through a third one, which acts as the man in the middle,
without the two knowing it. The MITM may simply relay
the traffic after inspecting it or modify it before resending
it. Note that MITM attacks are possible at various layers of
the OSI stack. ARP poisoning allows to perform such an at-
tack at data link layer. At network layer, the attack exploits
DNS poisoning [5]. The attacker first modifies the DNS ta-
bles so as to associate its own IP address with the symbolic
names of both victim hosts. Thus, when the victims will
query the DNS asking for the each other’s IP address, they
will receive the attacker’s IP address. At this point, all the
traffic between the two hosts will first be received by the at-
tacker that will forward it to the respective destination, after
possibly modifying it.

In this paper we propose a solution to the ARP poison-
ing problem based on an extension of the ARP protocol.
We introduce a set of functionalities that enable an integrity
and authenticity check on the content of ARP replies, us-
ing asymmetric cryptography. We call our secure extension



to ARP “S-ARP”, Secure ARP. As a proof of concept, S-
ARP has been implemented under the Linux operating sys-
tem and the initial experimental results have shown it is a
feasible and effective solution to the ARP poisoning attack,
despite its use of asymmetric cryptography. Experimental
measurements indicate that S-ARP has a negligible impact
on system performance. Note that similar results can be ob-
tained using Secure Link Layer [6]. However, since such a
protocol provides a broader spectrum of security services at
layer 2 such as traffic confidentiality, it is less efficient than
S-ARP. We will discuss SSL in Section 6.

This paper is organized as follows. Section 2 illustrates
the problem considered in this paper and recalls how ARP
works and why it is vulnerable to poisoning. Section 3 and 4
describe S-ARP and its Linux implementation, respectively.
Section 5 presents the results of experimental evaluation on
a real system. Section 6 discusses related work. Section 7
summarizes our contributions and concludes the paper.

2. Problem Definition

2.1. Address Resolution Protocol

When an Ethernet frame is sent from one host to another
on the same LAN, the 48 bit Ethernet address determines
the interface to which the frame is destined. The IP ad-
dress in the packet is ignored. ARP provides the mapping
between the 32 bit IPv4 address and the 48 bit Ethernet ad-
dress [15], [12]. In the rest of this section we briefly recall
how ARP works.

When a host needs to send an IP datagram as an Ether-
net frame to another host whose MAC address it ignores, it
broadcasts a request for the MAC address associated with
the IP address of the destination. Every host on the subnet
receives the request and checks if the IP address in the re-
quest is bound to one of its network interfaces. If this is
the case, the host with the matching IP address sends a uni-
cast reply to the sender of the request with the <IP address,
MAC address> pair. Every host maintains a table of <IP,
MAC> pairs, called ARP cache, based on the replies it re-
ceived, in order to minimize the number of requests sent on
the network. No request is made if the <IP, MAC> pair
of interest is already present in the cache. ARP cache en-
tries have a typical lifetime of 20 minutes, but some oper-
ating systems may reset the expiration time every time they
use an entry, thus possibly delaying forever entry refresh
[15].

ARP is a stateless protocol, i.e., a reply may be processed
even though the corresponding request was never received.
When a host receives a reply, it updates the corresponding
entry in the cache with the <IP, MAC> pair in the reply.
While a cache entry should be updated only if the map-
ping is already present, some operating systems, e.g., Linux

and Windows, cache a reply in any case to optimize per-
formance. Another stateless feature of ARP is the so called
gratuitous ARP. A gratuitous ARP is a message sent by a
host requesting the MAC address for its own IP address. It
is sent either by a host that wishes to determine if there is
another host on the LAN with the same IP address or by a
host announcing that it has changed its MAC address, thus
allowing the other hosts to update their caches.

2.2. ARP Poisoning

By forging an ARP reply, an attacker may easily change
the <IP,MAC> association contained in a host ARP cache.
Since each host presumes its local cache to be trustwor-
thy, the poisoned host will send IP packets encapsulated
into Ethernet frames with a bogus MAC address as destina-
tion. This way the attacker may receive all the frames orig-
inally directed to some other host. If also the cache of the
real destination host is poisoned, both communication flows
are under the attacker’s control. The attacker realizes a two-
way man in the middle, where she can forward the received
packets to the correct destination after inspecting and pos-
sibly modifying them. The two end points of the connec-
tion will not notice the extra hop added by the attacker if
the packet TTL is not decremented.

Some operating systems, e.g., Solaris, will not update an
entry in the cache if such an entry is not already present
when an unsolicited ARP reply is received. Although this
might seem an effective precaution against cache poison-
ing, the attack is still possible. The attacker needs to trick
the victim into adding a new entry in the cache first, so that
a future (unsolicited) ARP reply can update it. By send-
ing a forged ICMP echo request as if it was from one of
the two victims, the attacker has the other victim create a
new entry in the cache. When the first victim receives the
spoofed ICMP echo request, it replies with an ICMP echo
reply, which requires resolving first the IP address of the
original ICMP request into an Ethernet address, thus creat-
ing an entry in the cache. The attacker can now update it
with an unsolicited ARP reply.

ARP poisoning is possible also in switched networks. A
layer 2 switch accepts the traffic that comes into each port
and directs it only to the port to which the destination host
is connected, except for broadcast messages which are sent
to all ports. Therefore sniffing is no longer possible by sim-
ply configuring the network interface in promiscuous mode.
However, it is possible to poison a host cache by sending an
unsolicited ARP reply to the host containing the attacker’s
MAC address. The same can be done against two hosts at
the same time, thus allowing an attacker to intercept all the
traffic between those two hosts, without the switch realiz-
ing it. Once the attacker has hijacked the packets of a com-
munication, she can modify the payload or even inject new



packets in the communication as long as the TCP sequence
numbers are adjusted so as to maintain the communication
synchronized.

3. Secure ARP

Secure ARP extends ARP with an integrity/authentication
scheme for ARP replies, to prevent ARP poisoning at-
tacks. Since S-ARP is built on top of ARP, its specifica-
tion (as for message exchange, timeout, cache) follows the
original one for ARP [12]. In order to maintain compati-
bility with ARP, an additional header is inserted at the end
of the protocol standard messages to carry the authenti-
cation information. This way, S-ARP messages can also
be processed by hosts that do not implement S-ARP, al-
though in a secure ARP LAN all hosts should run S-ARP.
Hosts that run the S-ARP protocol will not accept non au-
thenticated messages unless specified in a list of known
hosts. On the contrary, hosts that run the classic ARP pro-
tocol will be able to accept even authenticated messages. A
mixed LAN is not recommended in a production environ-
ment because the part running traditional ARP is still sub-
ject to ARP poisoning. Furthermore, the list of hosts not
running S-ARP must be given to every secured host that
has to communicate with an unsecured one. The interop-
erability with the insecure ARP protocol is given only for
extraordinary events and should be always avoided. It is in-
tended to be used only during the transition phase to a full
S-ARP enabled LAN.

3.1. Protocol Overview

S-ARP provides message authentication only. No traffic
confidentiality is provided as we believe that such a service
should be provided at higher levels in the OSI stack, e.g.,
by means of IPSec [7] or SSL [4] or specific secure applica-
tion protocols such as SSH [20]. Furthermore, well config-
ured layer 2 switches operating with S-ARP are sufficient
to protect traffic from most of layer 2 attacks1.

S-ARP uses asymmetric cryptography. Any S-ARP en-
abled host is identified by its own IP address and has a pub-
lic/private key pair. A simple certificate provides the bind-
ing between the host identity and its public key. Besides the
host public key, the certificate contains the host IP address
and the MAC address of the Authoritative Key Distributor
(AKD), a trusted host acting as key repository. Each host
sends its signed certificate containing the public key and
the IP address to the AKD, which inserts the public key and
the IP address in a local data base, after the network man-
ager’s validation (see Section 3.2). Because of the restricted

1 Although this is not true for bus networks, such a topology is quickly
becoming obsolete, being replaced by layer 2 switched LANs, so we
focus on the latter.

nature of such a repository, both in terms of number of keys
and their exposure to compromise, no revocation lists are
kept. In order to avoid replay attacks and to have a common
time reference to evaluate expired replies, the AKD also dis-
tributes the clock value with which all the other hosts must
synchronize.

In S-ARP all reply messages are digitally signed by the
sender with the corresponding private key. At the receiv-
ing side, the signature is verified using the host public key.
If the public key of the sender host is not present in the re-
ceiving host key ring or the one in the key ring does not ver-
ify the signature, the public key of the sender is requested
from the AKD. The AKD sends it to the requesting host in
a digitally signed message.

S-ARP adopted the Digital Signature Algorithm (DSA)
as the signature algorithm [9]. Such a choice is not a con-
straint and the signing algorithm could be replaced with any
other public key signature scheme. For the sake of efficiency
(see Section 5), we use keys of 512 bits. Although 512 bit
keys are not considered totally secure, they offer a sufficient
degree of security for the type of information they protect
in our case, especially if combined with a key refresh pol-
icy.

3.2. S-ARP Setup

The first step when setting up a LAN that uses S-ARP is
to identify the AKD and distribute through a secure channel
its public key and MAC address to all the other hosts. Such
an operation may be performed manually when a host is in-
stalled on the LAN for the first time. On the other hand, a
host that wants to connect to the LAN must first generate a
public/private key pair and send its signed certificate to the
AKD. Here the correctness of the information provided is
verified by the network manager and the host public key to-
gether with its IP address is entered in the AKD repository.
This operation has to be performed only the first time a host
enters the LAN. If a host wants to change its key, it commu-
nicates the new key to the AKD by signing the request with
the old one. The AKD will update its key and the associ-
ation is correctly maintained. Section 3.5 explains the pro-
tocol behavior when IP addresses are dynamically assigned
by a DHCP server. Once connected to the LAN, a host syn-
chronizes its local S-ARP clock with the one received from
the AKD.

3.3. Message Format

A S-ARP message is similar to an ARP message, with an
additional portion at the end, to maintain compatibility with
the original protocol. The additional S-ARP portion com-
prises a 12 bytes S-ARP header, and a variable length pay-
load, as shown in Figure 1. ARP replies carry the S-ARP



header while ARP requests do not change. Future versions
of the protocol should consider authenticating ARP requests
too as this would speedup the authentication process.

The S-ARP header contains the sender’s digital signa-
ture, a time-stamp, the type and length of the message. The
field “magic” is used to distinguish whether a message car-
ries the S-ARP header. If so, its value is 0x7599e11e.
Since ARP packets are only 42 bytes long and the minimum
Ethernet frame length is 60, packets are usually padded with
junk2 and the length of the received packet cannot be used
as an indicator of additional parts, such as a S-ARP header.
The field “type” distinguishes among five types of mes-
sages:

• Signed address resolution (reply only)

• Public key management (request/reply)

• Time synchronization (request/reply).

Signed address resolution messages are exchanged between
hosts of the LAN. The other types of messages are ex-
changed only between a host and the AKD.

The fields “siglen” and “datalen” are the length of the
signature and the length of the data in the S-ARP payload,
respectively. The field “timestamp” is the value of the lo-
cal S-ARP clock at the moment of the construction of the
packet. Finally, the field “signature” is a SHA-1 hash of
the ARP and the S-ARP headers. The resulting 160 bits are
signed with DSA3.

magic

data

signature

type siglen datalenheader (12 bytes)

data (variable)

1 328 16 24

timestamp

Figure 1. S-ARP packet extension.

2 In order to avoid information leakage [1], the S-ARP additional por-
tion is first written with zeros.

3 The hash is computed with the field “siglen” equal to zero and af-
ter the signature has been calculated the field assumes the real length
of the signature. This must be remembered during the verification pro-
cess.

3.4. Message Authentication

Every host maintains a ring of the public keys and cor-
responding IP addresses previously requested to the AKD.
When a host receives a S-ARP reply, it searches the sender
IP address and its corresponding public key in its ring. If it
finds such an entry, it uses the content to verify the signa-
ture, otherwise it sends a request to the AKD for the cer-
tificate. A request to the AKD is sent also in case the key
in the local ring does not verify the signature, since it may
no longer be valid4. In this case the packet is enqueued in a
“pending replies list”. The AKD sends a signed reply with
the requested public key and the current time-stamp. Upon
receiving the reply from the AKD, the host resynchronizes
the local clock with the time-stamp, if necessary, stores the
public key in its ring and verifies the signature. In case the
old key were no longer valid, if the new key received from
the AKD is the same as the one in the cache, the reply is
considered invalid and is dropped. If the key has indeed
changed, the host updates its cache and verifies the signa-
ture with the new key.

If the time-stamp in the S-ARP reply is too old, the re-
ply is discarded to avoid replay attacks. Since hosts are
not synchronized exactly, an acceptable difference between
the time-stamp and the local clock is in the range of 30s.
Such a value is arbitrary and can be set by the network ad-
ministrator, provided it is not so large to allow an attacker
to launch a replay attack. Without the use of time-stamps,
an attacker could successfully perform a poisoning attack
even with S-ARP, in the following scenario. An attacker
stores a sniffed S-ARP reply from victim 192.168.0.1 with
MAC address 01:01:01:01:01:01. The attacker waits until
the victim is off-line and cannot reply to ARP requests. At
this point, the attacker changes its own MAC address to
01:01:01:01:01:01 and sends the stored S-ARP reply when
requested.

3.5. Key Management

S-ARP hosts are identified by the IP address as it appears
in the host certificate. Since particular care must be taken
when dealing with dynamically assigned IP addresses, we
consider key management in networks with statically or dy-
namically assigned IP addresses separately.

In the next sections we will use the following notation:

3.5.1. Static Networks In networks with statically as-
signed IP addresses, keys are bound to IP addresses when
they are generated and then inserted in the AKD repos-
itory. Therefore, when a generic host i broadcasts a

4 S-ARP public keys do not have an explicit expiration date. They are
changed either periodically by the system administrator or upon re-
quest in case of compromise.



AKD Authoritative Key Distributor
S-DHCP S-ARP enabled DHCP server
Hi Generic host i

Rq(a) Request for object a
Rp(a) Reply carrying object a
SHA(x) SHA-1 hash of message x
T Local S-ARP Time-stamp
N Nonce
AH Host H’s IP address
MH Host H’s MAC address
PH Host H’s Public Key
SH (x) Message x digitally signed by host H

regular ARP request to find host j’s MAC address, assum-
ing j’s key is not in i’s cache, Hj replies with a signed
message containing its own MAC address and the lo-
cal S-ARP clock. Upon receiving host j’s reply, Hi contacts
the AKD to request j’s key. The nonce N in host i’s key re-
quest prevents replay attacks that could desynchronize its
S-ARP clock. The AKD’s signed reply includes the re-
quested key, the nonce N and the time-stamp T, which
host i will use to update its local S-ARP clock Ti. The se-
quence of messages exchanged is summarized below.

Hi → all : Rq(Mj)
Hj → Hi : SHj

(Rp(Mj) || Tj)
Hi → AKD : Rq(PHj

) || N
AKD → Hi : SAKD(Rp(PHj

) || N || T)

Note that an attacker cannot produce a valid signature
for an IP address other than its own. This is because the
public key used for verifying the host’s signatures has been
released by the AKD, which first has verified the correct-
ness of the information contained in the certificate submit-
ted by the host and then released such an information in dig-
itally signed messages. Thus an attacker can no longer send
spoofed ARP replies to redirect traffic through its adapter.
However, an attacker could still announce a false MAC ad-
dress for its adapter, whether such an address be some other
host’s or a non-existing one. In the former case, the victim
host would receive both its legitimate traffic and additional
traffic originally directed to the attacker, thus possibly suf-
fering a denial of service. In the latter case, all the traffic to-
wards the attacker would be dropped, thus isolating the at-
tacker.

3.5.2. Dynamic Networks In a S-ARP network where a
DHCP server dynamically assigns IP addresses to the hosts,
keys cannot be bound to IP addresses at generation time.
Such a binding is dynamic and is renewed every time a host
is assigned a new IP address. This implies that the DHCP

server has to talk to the S-ARP server, thus requiring a cus-
tomized version of the DHCP server. We implemented it
and called it S-DHCP.

We assume that, if an organization deploys a secure
DHCP server, dynamic IP addresses can be assigned only
to well known machines that have been enrolled in the sys-
tem and authorized in some way. What type of connection,
to which sub-net, and other details regarding what a host
may or may not do are part of the authorization profile asso-
ciated with the host, as defined by the security policy of the
organization. Part of the enrollment procedure is the gen-
eration by the host of the public-private key pair and the
corresponding certificate. At this stage, the IP field of such
a certificate is empty. To complete the enrollment proce-
dure, the AKD manually inserts the certificate with the null
IP address and the corresponding public key in its own key
repository, using a secure channel. Note that this procedure
is performed only once, before the host ever enters the sys-
tem. Later on, if the host wanted to change its key, it could
just send a key exchange packet to the AKD.

When host H joins the network, it requests an IP address
to the S-DHCP server. In order to allow the S-DHCP server
and the AKD to identify it, H appends the signed SHA-1 di-
gest of its public key PH to the IP request to the S-DHCP
server. Before assigning an IP address to H, the S-DHCP
server contacts the AKD to verify whether H is authorized
to be added to the LAN, i.e., if H’s key is in the AKD repos-
itory and it is valid, and to inform the AKD of the IP ad-
dress the host will be assigned. The message is signed by
the S-DHCP server and comprises the original signed digest
from H and the proposed IP address. The AKD searches its
database for the given public key and replies to S-DHCP
with an ACK or a NACK. The message exchange sequence
in case of a positive response from the AKD is summarized
below.

H → S-DHCP : DHCP request || SH (SHA(PH))
S-DHCP → AKD : SS−DHCP (SH (SHA(PH)) || AH )
AKD → S-DHCP : SAKD(ACK)
S-DHCP → H : SS−DHCP (DHCP reply || AH )

If the response from the AKD is positive, the S-DHCP
server proceeds with the assignment of the new IP address
to H, while the AKD updates H’s entry in the repository
binding H’s new IP address to H’s key. If the response from
the AKD is negative, the S-DHCP server will not release a
new IP to the host and the host will not be able to join the
LAN. Every time the S-DHCP releases a new IP address to
a host for an expired lease or a new request, it will contact
the AKD to inform it of the new association. The S-DHCP
will release the renewal to the host and meanwhile will con-
tact the AKD to inform it of the renewal. The procedure is



the same as for a new assignment. From the AKD point of
view there is no difference between manually inserted asso-
ciation or S-DHCP automatic association, so a mixed net-
work with static and dynamically assigned IP addresses is
managed correctly.

4. Implementation

S-ARP has been implemented under the Linux operat-
ing system and is available for download at URL : [10].
The prototype was implemented as a proof of concept and
it is not intended to be a final and fully functional daemon
to be used in large or production environments. It is com-
posed of two parts: a kernel patch and a user-space dae-
mon, as illustrated in Figure 2. The kernel patch removes
the ARP packet from the incoming packet list through the
dev remove pack() function. This way the kernel will
not parse any ARP packets and will drop them. Note that the
patch does not affect the way the kernel tries to resolve Eth-
ernet addresses, since it continues to send ARP request as
usual. It will only not process the replies. Since in the cur-
rent version of S-ARP requests are not signed, it is possi-
ble to use the simple old ARP implementation for the re-
quests and leave reply verification to a userland daemon.
Such a daemon captures S-ARP packets through a link layer
socket, verifies the signature and add the ARP entry in the
system cache via a netlink socket. The daemon can act as
AKD or as a generic host depending upon the command
line parameter passed to the protocol at launch time. It is
also responsible for the communications with the AKD for
key management.

sarpd daemon

Kernel

ARP layer
PF_PACKET

socket

neighbor
system

user land

kernel land

Ethernet

outgoing
requests

outgoing
replies

incoming
replies

Loadable
Kernel
Module

sarp

Figure 2. The structure of S-ARP.

Using a user land daemon was chosen not to burden the
kernel with a time consuming task such as the verification
of a digital signature. In particular, since the kernel (as of
2.4.x) is not preemptible, if the signature verification were
left to it, no other task could execute until the verification
had terminated. With the introduction of crypto API and
kernel preemption in the upcoming 2.6 kernel, the current
implementation could be revisited and compared with a ker-
nel one, for the best performance.

5. Experimental Evaluation

In order to measure the overhead introduced by S-ARP,
a test bed comprising three PC’s connected through a 10
Mbit/sec hub was set up. A 1.0 GHz AMD Athlon 4 com-
puter with 256 MB RAM running Gentoo Linux 1.4, ker-
nel 2.4.20, acted as the AKD. Two 1.6 GHz Intel Pentium
4 computers with 128 MB RAM, running Debian Linux
3.0, kernel 2.4.18, acted as generic network hosts. Note that
there is no difference in the implementations of ARP in the
two distributions and kernel versions of the Linux operat-
ing system running on the test machines. We conducted two
sets of measurements. We first measured the signature op-
eration in isolation and then we indirectly measured the im-
pact of S-ARP on address resolution.

5.1. Signature Performance

From a performance point of view, S-ARP execution
time is dominated by signature verification and signature
generation. Since the time required by signature verification
depends upon the length of the key, which is a critical pa-
rameter of the protection level the key offers against crypto-
analytic attacks, the bit length of the public keys should
strike a balance between these two factors. Signature cre-
ation is time consuming mostly due to the exponential cal-
culation. However, some factors of such a calculation can be
computed separately because they do not depend upon the
message to be signed, thus significantly improving the exe-
cution time [14]. Unfortunately, nothing similar can be done
for signature verification.

We ran 1000 tests to measure the time to generate a sig-
nature with pre-computation of the exponential factors and
1000 tests to measure the time to verify a signature for 512
bit and 1024 bit keys. The results are reported in Table 1.
As the table shows, once the exponential factors have been
computed, the time to generate the signature is independent
of the key length. Furthermore, the time required to verify
a signature is about 20-25% larger than the total time re-
quired by the complete generation of a signature.



key len. operation min max mean st. dev.
exp. fact. 923 1082 982.47 16.91

512 sig. gen. 32 58 33.45 1.53
sig. verif. 1133 1255 1201.46 15.45
exp. fact. 2565 2819 2721.67 38.05

1024 sig. gen. 34 59 35.36 1.50
sig. verif. 3204 3458 3346.24 38.07

Table 1. Execution times in µsec for signa-
ture operations (exponential factor computa-
tion, signature generation, signature verifica-
tion) for different key lengths (in bit). Aver-
ages were obtained on 1000 tests.

5.2. ICMP Performance

We measured the performance of S-ARP indirectly, by
means of ICMP messages. A set of ping commands were
repeated, with no parameters, both with and without S-ARP.
ping provides the roundtrip delay of an ICMP echo re-
quest from a host to another, which can be used as an indi-
rect measure of the cost of address resolution. The first time
an ICMP echo request/reply is sent, if the destination MAC
address is unknown, an instance of ARP is executed.
ping returns the roundtrip delay for each ICMP mes-

sage sent by the pinging computer, which for the first mes-
sage includes the time for address resolution. It is therefore
possible to estimate the impact of (S-)ARP in the execu-
tion time of ICMP. We identified the performance of the the
baseline case when the system ran the original ARP. The av-
erage delay of the first echo reply, i.e., the one that requires
Ethernet address resolution, is 0.705 msec, with and aver-
age standard deviation equal to 0.049. All the experiments
were performed with “cold” caches, i.e., after flushing their
content.

Two sets of experiments were performed. In the first sce-
nario the two host have never communicated before, there-
fore they do not have each other’s public keys and request
them to the AKD. Such a scenario is burdened with the
highest overhead, but it occurs only the first time a new
MAC address is needed, since keys are stored in cache af-
ter the first request. All subsequent requests will find the
keys in cache, thus speeding up the execution. This is the
second scenario considered, and it characterizes the aver-
age operating case of S-ARP. Measurements in this case in-
clude only the time required by signature verifications and
creation.

5.2.1. Cold Key Caches When two hosts exchang-
ing ICMP echo request/reply do not have each other’s key
in their local cache, they have to request them to the AKD.
In this case the authentication process requires 4 signa-

ture verifications and as many signature generations, which
are irrelevant compared to the former if the exponential fac-
tors have been computed separately during an idle period,
as shown in Table 1.

Table 2 summarizes the results for the measured
roundtrip delays of ICMP echo requests for 512 bits and
1024 bits keys for 20 repetitions as yielded by the ping
command5 Although in both case the time is non negli-
gible, we should remember that it occurs only the very
first time, so it does not hurt performance in the aver-
age case. As the table shows, the roundtrip delay increases
more than linearly as the key size increases, thus the im-
portance to choose an appropriate size for the keys. For
the sake of comparison, the table also reports the re-
sults of the same test performed with the classic ARP
protocol. As expected, the cost of security is paid in per-
formance degradation. However, such a cost is acceptable
when the frequency of ARP traffic is taken into considera-
tion.

key len. min max mean st. dev.
512 17.7 18.1 17.86 0.12

1024 48.0 48.8 48.49 0.22
classic ARP 0.6 0.8 0.70 0.05

Table 2. Roundtrip delay in µsec for ICMP
echo request messages with cold key caches
for different key lengths (in bit).

5.2.2. Cached Keys In this case there are two fewer ver-
ification operations, i.e., those on the AKD messages, so
we expect it to be less time consuming. The public key of
the two hosts are already in the respective key caches. This
is the most common scenario. Two hosts have exchanged
their keys in a previous communication, so when they com-
municate again they only need to verify each other’s signa-
tures on the S-ARP replies. The AKD is not contacted in
this case.

Table 3 summarizes the results for the measured
roundtrip delays of ICMP echo requests for 512 bits and
1024 bits keys for 20 repetitions as yielded by the ping
command. As the table shows, the time is almost half the
time measured with cold caches, thus showing an accept-
able overhead.

5 Caches are flushed after each execution of the ping command, in or-
der to make sure they are cold on both machines.



key len. min max mean std. dev.
512 bit 8.8 9.3 8.96 0.13

1024 bit 23.6 24.4 24.00 0.20
classic ARP 0.4 0.5 0.46 0.05

Table 3. Roundtrip delay in µsec for ICMP
echo request messages with cached keys for
different key lengths.

6. Related Work

6.1. Defenses Against ARP Poisoning

A possible defence against ARP poisoning is using static
entries in the ARP cache. Static entries cannot be updated
by ARP replies and can be changed only manually by the
system administrator. Such an approach however is not vi-
able for networks with hundreds of hosts because those en-
tries must be inserted manually on each host. Automating
such a solution via a network script is not recommendable
since it relies on higher levels of the ISO/OSI stack. Rely-
ing on higher levels when the data link layer has not been
secured yet may be dangerous because the protocol used to
exchange the list can be hijacked using ARP poisoning be-
fore the list is distributed. Even worse, some operating sys-
tem (such as Windows) may accept dynamic updates even
if an entry is set as static, thus making static Ethernet rout-
ing useless [19].

“Port security” is another mechanism for tackling the
problem. It is a feature present in many modern switches
that allows the switch to recognize only one MAC address
on a physical port. This is often suggested as an effective
protection against ARP poisoning, but it is not. If the at-
tacker does not spoof its own MAC address, it can poison
the two victims’ cache without letting the switch interfere
with the poisoning process.

Besides static cache entries and port security, the only
other defense that will not modify ARP behaviour is de-
tection. IDS and personal firewalls usually notice the ARP
switch and warn the user that the entry in the cache is
changed. As it often happens in the computer security do-
main, the decision is left to the user and his/her awareness.
Given the particularly sophisticated level of operation in
this case, we doubt the average user will take the proper ac-
tions.

Some kernel patches exist that try to defend against ARP
poisoning. “Anticap” [2] does not update the ARP cache
when an ARP reply carries a different MAC address for a
given IP from then one already in cache and will issue a ker-
nel alert that someone is trying to poison the ARP cache.
Such a solution is against ARP definition itself, since it
drops legal gratuitous ARP. “Antidote” [16] is more sophis-

ticated. When a new ARP replies announcing a change in a
<IP, MAC> pair is received, it tries to discover if the pre-
vious MAC address is still alive. If the previous MAC ad-
dress replies to the request, the update is rejected and the
new MAC address is added to a list of “banned” addresses.
In [17] a solution that implements two distinct queues, for
requested addresses and received replies, is proposed. The
system discards a reply if the corresponding request was
never sent, i.e., is not in the queue, and in the received queue
an IP address associated with a different Ethernet address is
already present.

All these solutions have the same problem. If the ma-
licious ARP reply is sent before the real one is put in the
cache, for a real request, the victim caches the wrong re-
ply and discards the real one. A race condition exists be-
tween the attacker and the victim. When the first ARP re-
quest is broadcast, both the victim and the attacker receive
the message. The first one who replies will take over the
other forever. Furthermore, the attacker could also spoof
an ICMP echo request message and immediately send af-
ter it a false ARP reply. When the victim receives the ICMP
echo request, it performs an ARP request, but the false re-
ply is already in its queue of received packet, so it accepts it
a the valid one. If Antidote is installed, a host can spoof the
sender MAC address and force a host to ban another host.

Solutions such as a centralized ARP cache or a DHCP
server broadcasting ARP information, as they are deployed
in IP over ATM networks [8], have not been considered as
the attacker could spoof the source of the broadcast and poi-
son the whole LAN. A digitally signed or MAC-ed broad-
cast packet would not be vulnerable to spoofing, yet broad-
casting ARP tables could generate large traffic on the LAN.
Since an entry for each host needs to be broadcast, on large
networks this will generate considerable traffic and every
host would have to store the entire ARP table even if it
might not be needed at the moment. The main problem with
centralized ARP cache is that if a host goes down, the cen-
tral server will not notice the event. Thus, when a host that
wishes to communicate with the one currently down asks
for ARP information to the central server, it will receive the
information even if the host is down. At this point an at-
tacker could impersonate the offline host using its MAC ad-
dress and receive all the packets sent to it.

6.2. Secure Link Layer

The only kernel patch which assures mutual authentica-
tion between the requester and the replier even on the first
message is Secure Link Layer [6]. SLL provides authenti-
cated and encrypted communication between any two hosts
on the same LAN. SLL requires a Certification Authority
(CA) to generate SLL certificates for all legitimate hosts on
the network.



SLL handles authentication and session key exchange
before any messages are transferred from one host to an-
other. Elliptic curve cryptography algorithms are used for
both operations. SLL defines three authentication messages
that hosts send each other to perform mutual authentication
and session key exchange. After authentication, the pay-
load data field of all Ethernet frames sent between two hosts
is encrypted with Rijndael using a 128-bit key and 128-bit
long blocks.

Such a mechanism is too complex for our intent. Mu-
tual authentication between two hosts is sufficient for avoid-
ing ARP poisoning. Encrypting ARP replies does not yield
any additional security since the association between IP and
MAC addresses should be public. Furthermore, SLL also
maintains all the cryptographic keys in kernel-space. Note
that the amount of memory required could be considerable
in case of class B networks. Since it is not recommended to
use kernel memory with information that could be as well
managed in user space, such as keys, a “light” version of
SSL with no payload encryption would still have a consid-
erable performance impact. Therefore we decide to design
a new protocol that could be implemented in user-space.

7. Conclusions and Future Work

The paper presents a feasible solution to the problem of
ARP poisoning attacks. The cause of ARP poisoning is the
lack of message authentication, so that any host in the LAN
is able to spoof messages pretending to be someone else.
We propose an authentication scheme for ARP replies us-
ing public key cryptography, which extends ARP to S-ARP.
Adding strong authentication to ARP messages resolves the
problem, thus denying any attempt of ARP poisoning.

Future work includes porting S-ARP to other platforms
so as to allow interoperability. Better kernel integration will
be implemented since the upcoming Linux kernel (2.6.0)
will be fully preemptible. Once the implementation of cryp-
tographic routine will be moved to kernel space, even S-
ARP request will be signed and the receiver will cache the
information on the request, thus speeding up the whole au-
thentication process.

When firewall and gateway appliances will be equipped
with cryptographic co-processors, the implementation of S-
ARP on embedded systems could be considered. Another
issue concerns the elimination of the single point of fail-
ure represented by the AKD.
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