
Creating a Simple, Multithreaded Chat

System with Java

by George Crawford III

Introduction

In this edition of Objective Viewpoint, you will learn how to develop a simple chat system. The

program will demonstrate some key Java programming techniques including I/O, networking,

and multithreading.

Chat System Design

The chat system presented here consists of two classes: ChatServer and ChatHandler. The

ChatServer class is responsible for accepting connections from clients and providing each client

with a dedicated thread for messaging. The ChatHandler is an extension of class Thread. This
class is responsible for receiving client messages and broadcasting those messages to other

clients.

ChatServer Code

Listing 1 shows the code for the ChatServer class. The class has only one method, main(). The

first three lines declare three variables: port, serverSocket, and socket. The port variable
stores the port on which the server will listen for new connections. The default value for the port

in this example is 9800. In the first try/catch block, we determine if the user passed any
parameters. If so, we attempt to parse the first command line parameter (the only one we care

about in this case) using the Integer.parseInt method. If the string does not represent an

integer, then a NumberFormatException will be thrown. The catch block simply specifies
proper program usage and exits.

In the second try/catch block, the chat server attempts to create a new server socket and begin

to accept connections. First, a new ServerSocket object is created with a specific port. The code
then enters an endless loop, continuously accepting connections and creating new chat client

handlers. The ServerSocket.accept() method waits forever until a new connection is

established. When a new connection is detected, a Socket object is created inherently and

returned. A new ChatHandler object is then constructed with the newly created socket. Since the

ChatHandler is a Thread, we must call the start method to make the chat client code run.

If anything goes awry with either the server socket or client socket, an IOException will be

thrown. In this example, we simply print the stack trace. In the finally block, we attempt to
close the server socket connection since the loop has been exited.

import java.io.IOException;

ftp://163.25.117.117/crossroads/crew/george_crawford.html

import java.net.ServerSocket;

import java.net.Socket;

public class ChatServer {

 public static final int DEFAULT_PORT = 9800;

 public static void main(String[] args) {

 int port = DEFAULT_PORT;

 ServerSocket serverSocket = null;

 Socket socket = null;

 try {

 if(args.length > 0)

 port = Integer.parseInt(args[0]);

 } catch(NumberFormatException nfe) {

 System.err.println("Usage: java ChatServer [port]");

 System.err.println("Where options include:");

 System.err.println("\tport the port on which to listen.");

 System.exit(0);

 }

 try {

 serverSocket = new ServerSocket(port);

 while(true) {

 socket = serverSocket.accept();

 ChatHandler handler = new ChatHandler(socket);

 handler.start();

 }

 } catch(IOException ioe) {

 ioe.printStackTrace();

 } finally {

 try {

 serverSocket.close();

 } catch(IOException ioe) {

 ioe.printStackTrace();

 }

 }

 }

}

Listing 1: ChatServer Code

ChatHandler Code

The ChatHandler code is shown in Listing 2. In the constructor, we assign the socket the

handler we will use and construct the socket input and output streams. The BufferedReader and

PrintWriter classes are used for handling user I/O. The Reader classes enable proper handling

of bytes and characters. For example, the BufferedReader class method readLine() will
properly convert 8-bit bytes to 16-bit UNICODE characters.

The following line constructs a new BufferedReader object:

in = new BufferedReader(new InputStreamReader(socket.getInputStream()));

Since the BufferedReader constructor requires an object of class Reader, we must construct

another reader. Since the Socket.getInputStream() method returns an object of class

InputStream, we must create a new InputStreamReader to capture the socket input stream.

Another advantage of the BufferedReader class besides proper character encoding is character
buffering. Without buffering, the characters would be read one byte at a time, thus crippling

performance.

The construction of the PrintWriter is similar in context to the BufferedReader.

The run method simply captures client input and broadcasts the message to all the other clients.
This process continues until the user sends a "quit" message.

The first few lines synchronize on the static Vector object handlers that contains all the
actively connected clients and adds the current object to the list. It is important to synchronize on

the list, otherwise other threads that are accessing the list concurrently may miss any newly

added clients during a broadcast.

In the try block, we enter a continuous loop which is terminated when either the user sends a
"/quit" message or an exception is thrown. When a message is received, we propogate the

message by iterating through the ChatHandler list and sending the message through the
appropriate handler socket output stream.

If an exception is thrown or the user sends a "/quit" message, we attempt to close the I/O streams

and the socket, and finally remove the current handler from the list.

Listing 2:

// ChatHandler.java

//

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.io.IOException;

import java.io.OutputStreamWriter;

import java.io.PrintWriter;

import java.net.Socket;

import java.util.Vector;

public class ChatHandler extends Thread {

 static Vector handlers = new Vector(10);

 private Socket socket;

 private BufferedReader in;

 private PrintWriter out;

 public ChatHandler(Socket socket) throws IOException {

 this.socket = socket;

 in = new BufferedReader(

 new InputStreamReader(socket.getInputStream()));

 out = new PrintWriter(

 new OutputStreamWriter(socket.getOutputStream()));

 }

 public void run() {

 String line;

 synchronized(handlers) {

 handlers.addElement(this);

 // add() not found in Vector class

 }

 try {

 while(!(line = in.readLine()).equalsIgnoreCase("/quit")) {

 for(int i = 0; i < handlers.size(); i++) {

 synchronized(handlers) {

 ChatHandler handler =

 (ChatHandler)handlers.elementAt(i);

 handler.out.println(line + "\r");

 handler.out.flush();

 }

 }

 }

 } catch(IOException ioe) {

 ioe.printStackTrace();

 } finally {

 try {

 in.close();

 out.close();

 socket.close();

 } catch(IOException ioe) {

 } finally {

 synchronized(handlers) {

 handlers.removeElement(this);

 }

 }

 }

 }

}

Editor's Note: Many thanks to Dick Seabrook for finding and correcting some errors in the

above code listing 2.

Running The Program

To run the server, simply enter the following line at a command prompt:

java ChatServer

The above will open a socket on the default port. Alternatively, you can specify a port like so:

java ChatServer 7900

Also, if you are on a UNIX machine, append an "&" to the above command line so that the

server runs in a background process.

Use telnet to connect to the server. For example:

telnet machine.somewhere.net 9800

Summary

In this article, you learned how to use the standard Java networking and I/O classes, and also

how to handle concurrent I/O safely using threads. As an exercise, try creating a chat GUI, and

also expand the current programs to include identifiable users and user groups.

