
1

Homework Assignment: Programming with Sockets

In this assignment you will be asked to implement an HTTP client and server running a pared

down version of HTTP/1.0.

This project can be completed in Python, Java, or another language you prefer.

To understand and use the HTTP protocol, in addition to your textbook (Chapter 25), you will

find the following resource useful: http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol the

Wikipedia entry on HTTP. Note that there are many links at the bottom to various resources,

such as http://tools.ietf.org/html/rfc2616 (the RFC for HTTP).

The HTTP Client
Your client should take command line arguments specifying a server name or IP address, the port

on which to contact the server, the method you use, and the path of the requested object on the

server. You are going to implement two methods of HTTP: GET and PUT.

▪ GET
The format of the command line is: myclient host port_number GET filename

The basic client action should proceed as follows:

1. Connect to the server via a connection-oriented socket.

2. Submit a valid HTTP/1.0 GET request for the supplied URL.

GET /index.html HTTP/1.0

(end with extra CR/LF)

3. Read (from the socket) the server's response and display it as program output.

Once you have this part of the client working, you should demonstrate it with the

following two test cases:

4. Use it to get a file of your choosing from a "real" web server on the internet.

For example, myclient www.cnn.com 80 GET index.html

5. Use it to get a file from your own server program. For example, your server is

running on 152.20.244.158, port number 5678 you would use:

myclient 152.20.244.158 5678 GET index.html

This command would result in an HTTP GET request to 152.20.244.158 for

index.html on port 5678, and get the file index.html back to the client.

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://tools.ietf.org/html/rfc2616

2

▪ PUT
The format of the command line is: myclient host port_number PUT filename

The basic client action should proceed as follows:

1. Connect to the server via a connection-oriented socket.

2. Submit a PUT request for the supplied file:

PUT filename

extra CR/LF.

(Once your server program receives such a request, it should expect to receive the

file and save it to disk.)

3. Send the file to the server.

4. Wait for server's reply.

Once you have this part of the client working, you should test it with your own server:

send out a file to your server, the server should save the file and sends back a response.

The HTTP Server
Your server should take command line arguments specifying a port number. For example,

myserver 5678

The basic server action should proceed as follows

1. Initialize the server.

2. Wait for a client connection on the port number specified by command line argument.

3. When a client connection is accepted, read the HTTP request.

4. Construct a valid HTTP response including status line, any headers you feel are

appropriate, and, of course, the requested file in the response body.

For GET, if the server receives the "GET index.html HTTP/1.0" request, it sends out

"200 OK" to the client, followed by the file index.html. If the requested file doesn't exist,

the server should send a "404 Not Found" response to the client.

For PUT, if the server receives the "PUT test.txt" request, it will save the file as test.txt.

If the received file from client is successfully created, the server sends back a "200 OK

File Created" response to the client.

3

5. Close the client connection and loop back to wait for the next client connection to

arrive.

Notice that your server will be structured around an infinite loop. That means that you must

interrupt your server with a termination signal to stop it. Make sure your server code shuts down

gracefully when terminated. That means closing any open sockets, freeing allocated memory,

etc.

Once you get your server working, demonstrate it with the following two test cases:

First, use an ordinary browser such as Google Chrome or Internet Explorer to get an html file

from your server. For example, your server is running at host 152.20.244.158 on port number

5678, and there is a file index.html in the current directory. In the URL box of the web browser,

type in 152.20.244.158:5678/index.html, the browser should fetch the file and display it.

Second, use your own client to get a file.

Third, use your own client to put a file.

Programming Notes
Here are a few tips/thoughts to help you with the assignment.

▪ There is a lot of information in the form of tutorials, sample code, and discussion forums

on socket programming on the web. As this is a networking course, you should be able to

search for such information using search engines.

▪ You must choose a server port number greater than 1023 (to be safe, choose a server port

number larger than 5000).

▪ I would strongly suggest that everyone begin by writing a client and getting its test cases

to work first.

▪ In writing your code, make sure to check for an error return from your system calls or

method invocations, and display an appropriate message. In Java, this means using

IOException(). See the documentation noted above.

▪ Most of you will be running both the client and server on the same machine (e.g., by

starting up the server and running it in the background, and then starting the client).

▪ Make sure you close every socket that you use in your program. If you abort your

program, the socket may still hang around and the next time you try and bind a new

socket to the port ID you previously used (but never closed), you may get an error.

4

What to Turn In
After you demonstrate your assignment to the instructor, you should be prepared hand in:

▪ A source listing(s) containing in-line documentation. Uncommented code will be

penalized.

▪ A separate (typed) document of a page or so describing the overall program design, a

verbal description of “how it works”, and design tradeoffs considered and made.

▪ A separate description of the test cases you ran on your program to convince yourself

(and me) that it is indeed correct, and execution traces showing these test being run. Also

describe any cases for which your program is known not to work correctly.

