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T he Internet was designed for the minimal
processing and best-effort forwarding of
any packet, malicious or not. For cyberat-

tackers — motivated by revenge, prestige, politics,
or money — this architecture provides an unreg-
ulated network path to victims. Denial-of-service
(DoS) attacks exploit this to target mission-criti-
cal services. A quantitative estimate of worldwide
DoS attack frequency found 12,000 attacks over a
three-week period in 2001.1 The 2004 CSI/FBI
Computer Crime and Security Survey2 listed DoS
attacks among the most financially expensive
security incidents. The magnitude of the inci-
dence rate and potential recovery expense has
garnered the interest of security managers and
researchers alike.

DoS attacks, which come in many forms, are
explicit attempts to block legitimate users’ system
access by reducing system availability. We could,
for example, consider the intentional removal of a
system’s electrical power as a physical DoS attack.
An attacker could also render a computing re-
source unavailable by modifying the system con-
figuration (such as its static routing tables or
password files). Such physical or host-based intru-
sions are generally addressed through hardened
security policies and authentication mechanisms.

Although software patching defends against some
attacks, it fails to safeguard against DoS flooding
attacks, which exploit the unregulated forwarding
of Internet packets. A secondary defense that
includes both attack detection and countermea-
sures is required. 

Here, we survey various approaches for
detecting DoS flooding attacks — a network-
based attack in which agents intentionally satu-
rate system resources with increased network
traffic. In a distributed DoS (DDoS) attack, the
assault is coordinated across many hijacked sys-
tems (zombies) by a single attacker (master).
Techniques that detect DoS also apply to DDoS.
(We don’t discuss defense or countermeasures;
these are surveyed elsewhere,3 and typically
include using packet filters to stem the attack’s
packet flow.) The malicious workload in net-
work-based DoS attacks comprises network data-
grams or packets that consume network buffers,
CPU processing cycles, and link bandwidth.
When any of these resources form a bottleneck,
system performance degrades or stops, impeding
legitimate system use. Overloading a Web serv-
er with spurious requests, for example, slows its
response to legitimate users. This specific DoS
attack type doesn’t breach the end (victim) sys-
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tem, either physically or administratively, and
requires no other pre-existing conditions except
an Internet connection. 

Network-Based DoS Attacks
Although many high-profile DoS attacks have
occurred, few have been empirically captured and
analyzed. Given the potential for bad publicity,
victims hesitate to share information regarding
security incidents. As a result, it’s difficult for
researchers to directly observe attacks and find
their ubiquitous characteristics. In cases in which
attack forensics are available, researchers can
introduce classification systems, but attackers typ-
ically modify their techniques soon after discov-
ery. As a result, the DoS attack-definition space is
ever changing. 

General Attack Types
To keep our discussion manageable, we’ve gen-
eralized it based on the exploited weakness,
dividing the network-based DoS attack space into
vulnerability attacks and flooding attacks. A
more detailed classification of DoS attacks is
available elsewhere.4

In a vulnerability attack, malformed packets
interact with some network protocol or application
weakness present at the victim. This type of vul-
nerability typically originates in inadequate soft-
ware assurance testing or negligent patching. The
malformed attack packets interact with installed
software, causing excessive memory consumption,
extra CPU processing, system reboot, or general
system slowing. Popular examples are the land
attack, Neptune or Transmission Control Protocol
synchronization (TCP SYN) flag, the ping o’ death,
and the targa3 attacks. 

Flooding attacks — our focus here — send the
victim a large, occasionally continuous, amount
of network traffic workload. As a result, legitimate
workloads can become congested and lost at bot-
tleneck locations near or removed from the victim.
Such an attack requires no software vulnerability
or other specific conditions. To saturate network
links, queues, and processors with workload any-
where in the network, the attack can use a range
of protocols, including Internet Control Message
Protocol (ICMP), User Datagram Protocol (UDP),
and TCP, through tools such as stream2, synhose,
synk7, synsend, and hping2. Under continued
attack-related congestion, flow-controlled appli-
cations will continue to increase their back-off
time between retransmissions. From the users’ per-

spective, their workload isn’t being processed; a
DoS situation has occurred. 

Attack Detection
Vulnerability-attack workloads use common at-
tributes to exploit software weaknesses. A TCP
SYN attack, for example, requires repetitive use of
specific TCP flag fields. Once the exploit is identi-
fied, adequate vendor support ensures the vul-
nerability is short-lived and unlikely to return.
Vendors can address TCP SYN attacks using syn
cache, syn cookies, and synkill mechanisms,
for example.

Although vendors can address vulnerability
attacks by correcting protocol or application weak-
nesses, these types of attacks can remain prob-
lematic. If their volume is sufficient enough to
cause resource depletion and subsequent perfor-
mance degradation, they can be reclassified as
flooding attacks. For this reason, flooding attacks
are especially difficult because even the best-
maintained system can become congested, thus
denying service to legitimate users. 

Survey of Detection Approaches
A detector’s main goal is to detect and distinguish
malicious packet traffic from legitimate packet
traffic. If, for example, many clients all want Web
service and a DoS attack maliciously floods many
Web session requests as well, how can the Web
server discriminate between the requests? Clearly,
legitimate user activity can be easily confused with
a flooding attack, and vice versa. 

When large amounts of expected or unex-
pected traffic from legitimate clients suddenly
arrive at a system, it’s called a flash event. One
way to predict such events and thus distinguish
them from DoS attacks is for service providers to
be aware, a priori, that adding new content might
trigger large request volume.5 Unpredictable and
legitimate Web activity is also possible, however
(as with the Slashdot effect, in which a newly
posted link on a popular news or information site
results in numerous Web requests). Because there
is no innate Internet mechanism for performing
malicious traffic discrimination, our best alter-
native is to install attack detectors to monitor
real-time traffic, rather than rely on static traffic
load predictions.

DoS attack-detection approaches can be in-
stalled locally, thus protecting a possible victim,
or remotely, to detect propagating attacks.
Although detecting propagating attacks is desir-
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able, IT departments generally focus on protect-
ing their own networks and therefore choose local
detection approaches. In this case, they place
detectors at the potential victim resource or at a
router or firewall within the victim’s subnetwork.
Under this assumption, we have limited our scope
to that of the victim, which excludes several other
potential detection methods, such as the source-

based DWARD6, traceback, path identification,
and others.

All detection methods define an attack as an
abnormal and noticeable deviation of some statis-
tic of the monitored network traffic workload.
Clearly, the choice of statistic is critically impor-
tant. Each of the following groupings of attack
detection techniques includes an evaluation of a
different statistic of network traffic. 

Activity Profiling
Monitoring a network packet’s header information
offers an activity profile. Loosely defined, this
activity profile is the average packet rate for a net-
work flow, which consists of consecutive packets
with similar packet fields (such as address, port,
and protocol). The elapsed time between consecu-
tive matching packets determines the flow’s aver-
age packet rate or activity level. We can measure
total network activity as the sum over the average
packet rates of all inbound and outbound flows.

To analyze individual flows for all possible
UDP services, we would have to monitor on the
order of 264 flows, and including other protocols,
such as TCP, ICMP, and Simple Network
Management Protocol (SNMP) greatly com-
pounds the number of possible flows. To avoid
high-dimensionality issues, we can cluster indi-
vidual flows with similar characteristics. Each
cluster’s activity level is the summation of con-
stituent flows. For this abstraction, an attack is
indicated by

• increasing activity levels among clusters, which

can indicate a few attacking agents increasing
their attack-generation rate; or

• an increase in the overall number of distinct
clusters, which can represent many distributed
attacking agents (as in a DDoS). 

In the backscatter analysis project,1 researchers
monitored a wide IP address space for incoming
unsolicited “backscatter” packets. Such packets are
a non-collocated victim’s response to several spoofed
vulnerability and flooding attacks. The backscatter
packets’ source address is that of the victim, but the
packet’s destination address is randomly spoofed.
An attack that uses uniformly distributed address-
spoofing leads to a finite probability that any mon-
itored address space will receive backscatter packets.
At the monitoring point, captured backscatter pack-
ets are clustered based on the unique victim source
address. To detect attacks, the researchers analyze a
cluster’s destination address distribution uniformity
using an Anderson-Darling test statistic, in addition
to thresholding the cluster’s activity level (the attack
rate) and lifetime. 

Laura Feinstein and her colleagues focus their
detection efforts on activity level and source
address distribution.7 They cluster flows according
to the addresses of the destination machines locat-
ed behind the monitoring point. The first cluster
contains the single most frequently seen source
address, the second cluster contains the next four
most frequent, the third cluster the next 16, the
fourth the next 256, and the fifth the next 4,096;
the sixth cluster encompasses all remaining traf-
fic. The researchers compare each cluster’s activi-
ty level to the expected amount using a chi-square
statistic, thus providing a “goodness of fit” result.
A deviation from the expected traffic profile sug-
gests anomalous activity, and is detectable by
thresholding the chi-square statistic’s magnitude. 

Many other address-distribution statistics are
possible, including entropy, which is considered a
measure of randomness. Attacks that use uniform
address distributions will maximize the entropy
statistic, whereas one large voluminous flow will
minimize the entropy. Thresholding an entropy
deviation from the expected traffic’s source address
profile can suggest anomalous activity.7

Sequential Change-Point Detection
Change-point detection algorithms isolate a traf-
fic statistic’s change caused by attacks. These
approaches initially filter the target traffic data by
address, port, or protocol and store the resultant
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flow as a time series. The time series can be con-
sidered a time-domain representation of a cluster’s
activity. If a DoS flooding attack begins at time �,
the time series will show a statistical change either
around or at a time greater than �. 

One class of change-point detection algorithms
operates on continuously sampled data and
requires only low amounts of memory and compu-
tational resources. An example here is cumulative
sum (Cusum) algorithms. To identify and localize a
DoS attack, the Cusum identifies deviations in the
actual versus expected local average in the traffic
time series.8–10 If the difference exceeds some upper
bound, the Cusum’s recursive statistic increases for
each time-series sample. During time intervals con-
taining only normal traffic, the difference is below
this bound, and the Cusum statistic decreases until
reaching zero. Using an appropriate threshold
against the Cusum statistic, the algorithm identi-
fies an increasing trend in the time-series data,
which might indicate a DoS attack’s onset. Through
the settings of the threshold and upper bound, the
Cusum algorithm can trade off detection delay and
false-alarm rates. Other researchers have extended
this detection method to identify the typical scan-
ning activities of network worms.11

Wavelet Analysis 
Wavelet analysis describes an input signal in
terms of spectral components. Although Fourier
analysis is more common, it provides a global fre-
quency description and no time localization.
Wavelets provide for concurrent time and fre-
quency description, and can thus determine the
time at which certain frequency components are
present. For detection applications, wavelets sep-
arate out time-localized anomalous signals from
background noise; the input signal contains both.
Ideally, the signal and noise components will
dominate in separate spectral windows. Analyz-
ing each spectral window’s energy determines the
presence of anomalies.

Paul Barford and his colleagues12 define anom-
alies as network failures or misconfigurations,
attacks (DoS or other), flash events, and other
“measurement” events. They decomposed traffic
data into distinct time series of average IP/HTTP
packet sizes per second, flows per second, and
bytes per second. They then applied wavelet analy-
sis to each time series, resulting in time-localized
high- and mid-band spectral energies. They con-
sidered low-frequency content to be daily or week-
ly activity, and thus not an onset of an abrupt

attack. To identify anomalies, they weighted a
combination of high- and middle-spectral ener-
gies, and then thresholded its variability. 

Wavelet energies in the high-band spectral
window can also identify change points within an
input signal. To enhance a Cusum change-point
detection approach’s performance, Richard Brooks
and his colleagues used discrete wavelet analysis
to postprocess the Cusum statistic’s response.10 The
signed magnitude of the high-band wavelet ener-
gy is proportional to the abruptness of an increas-
ing Cusum statistic. Thresholding the high-band
spectral energies quantifies the Cusum’s abrupt-
ness, which is a potential indicator of an abrupt
flooding attack. 

Detection Method Results
Surveying each detection method’s validation
reveals disparate uses of test data, different attack
types, and a wide range of reported results. In most
cases, researchers provided quantitative true detec-
tion results, but didn’t provide false positives,
missed detections, and detection delay results.
Table 1 summarizes the testing conditions and
noteworthy detection test results.

Backscatter Analysis
Researchers1 analyzed the backscatter within three
weeks’ worth of empirical data from an ingress
link supporting 224 IP addresses. Conservative
results indicated that more than 12,000 DoS
attacks were attempted, involving 5,000 distinct
victims’ IP addresses. The researchers suggested
that 50 percent of those attacks were either TCP
SYN floods or closed port probes, and 15 percent
were ICMP responses from TCP floods. Overall, 90
percent of the attacks used TCP ranging across
various services, including Internet Relay Chat
(IRC), HTTP, Telnet , and Authd. Almost half the
attacks (46 percent) had an estimated rate of 500+
packets per second. 

Chi-Square/Entropy Detector
Researchers tested the chi-square and entropy
detector7 against a small set of six publicly avail-
able data sets with anonymized IP addresses. The
networking environments included a peering Inter-
net service provider (NZIX), a 450-person research
organization (Bell Labs), a small university (Ohio
University), and a small company. The total amount
of data appeared to be between 100 and 150 hours,
with data rates ranging from 1 to 16 Mbits per sec-
ond. Because the data traces included no known
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DoS attacks, the researchers added overlaid attack
traffic provided by the Stacheldraht DDoS attack
tool. Stacheldraht — which means “barbed wire” in
German — performs ICMP, SYN, and UDP floods
that can run for a specified duration. 

The study’s first test experiment overlaid the
public data set with 25 percent attack packets. A
second experiment removed 25 percent of the traf-
fic and replaced it with attack packets. In both
cases, the attack packets’ source addresses were
drawn from a uniform distribution. The entropy
and chi-square detector provided positive attack
indication for both test cases.

Cusum and Wavelet Approaches
To test the Cusum sequential change-point detec-
tion against UDP, TCP, and ICMP traffic floods,
researchers used the ns-2 simulator to construct a

network of 100 nodes.8 Of those nodes, four were
core transit nodes and the remaining 96 nodes
were distributed into 12 edge domains. Back-
ground traffic was a mixture of ICMP, UDP, and
TCP protocols, with TCP accounting for more than
75 percent of the traffic. 

The researchers performed three attack simu-
lations: TCP SYN, UDP, and ICMP floods. Each
attack reached 20 percent of the total aggregate
traffic through either linear or abrupt increases.
Cusum detected most of the attacks. In addition,
the researchers confirmed the theoretical and
experimental relationships between detection
delay and false-alarm rate. False-alarm rates
ranged from less than 1 to 6 alarms per 100 pack-
ets monitored. Researchers observed detection
delays ranging from 1 to 36 seconds, depending
on desired false-alarm rate.
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Table 1.Testing Summary

Detection Reference Test data Attack description False- Detection Detection Memory Complexity
method positive delay results (1 = (1 =

rate lowest) lowest)
Activity 1 Three weeks’ worth “Backscatter” response — — 12,000 DoS 6 6
profiling of private network packets from TCP SYN, attacks on 5,000 

data TCP flood, and closed distinct victims
port probes

7 Six publicly Stacheldraht ICMP, TCP — — 2 out of 2  3 3
available data sets SYN, and UDP flood attacks detected

attack overlay of 25
percent intensity; victims’
addresses randomly
chosen from a uniform
distribution

Change-point 8 ns-2 simulation of TCP, UDP, and ICMP floods 1–6 alarms 1–36 UDP abrupt/ 1 1
detection 100 nodes by abrupt and linear per 100 seconds linear flood

increase time-series ICMP abrupt/
samples linear flood

9 Three private TCP SYN constant rate — 20 seconds 100% detection 1 1
network data sets flood attack to 8 with rate of >35

minutes SYNs per second;
70% detection at
33 SYNS per second

Wavelet 12 Three weeks’ worth 119 DoS abrupt flood attacks 21% false Average: 25 47% detection 4 4
analysis of university data of 4x, 7x, and 10x intensities detection seconds rate over 119

overlaid on empirical data rate over time series
238 time
series

10 Three weeks’ worth 39 recorded anomalies, — 5 minutes 38 out 39 5 5
of university data including some DoS floods to 1.5 hours anomalies
with 109 anomalies



Another study used a Cusum algorithm
against TCP SYN attacks.9 The three test data set
sources included a large company’s wide-area
Internet access point (10 Mbits per second) and
two university’s Internet access points (10 and
622 Mbits per second). From the test data, the
researchers extracted TCP traffic containing SYN,
ACK (acknowledge), and RST (reset) flags into a
time series, and then overlaid it with TCP SYN
floods of constant intensity. They used rates of
33 to 100 TCP SYNs per second. For attacks
above 33 and 35 SYNs per second, Cusum’s
detection probability was 70 and 100 percent,
respectively. Detection delays ranged from 20
seconds to 8 minutes. 

Using wavelet analysis, researchers evaluated
six months’ worth of router SNMP and IP flow
records, sampled at 5-minute intervals.12 The mon-
itoring point was a university-based wide-area
access point. Network engineering analysis of the
log data identified more than 100 anomalous
events, including network malfunctions, attacks,
and flash events. The researchers used a subset of
39 high-confidence anomalies for detection eval-
uation, although it’s unclear how many of the
anomalies were specifically DoS attacks. The
wavelet analysis missed only one of the anomalies.
Detection time had an ambiguity of 1.5 hours. 

In another study,10 researchers used both
Cusum and a wavelet detector to analyze three
weeks’ worth of empirical data collected from a
university gateway. The researchers separately
superimposed 119 DoS flooding attacks on this
data at intensities of four, seven, and 10 times that
of the background rate. Using a Cusum detection
algorithm against the 4x DoS attack, they mea-
sured 15 percent true detection and 18 percent
false positives for a detection rate of 0.83. Adding
wavelet processing raised these metrics to 40 per-
cent true detections and 30 percent false positives
for a detection rate of 1.3. Wavelet processing pro-
vided a 56 percent increase in detection efficien-
cy over the Cusum alone. Using parameter tuning
can slightly improve the wavelet’s true detection
rates to above 47 percent, with a decline in the
false-positive rate to 21 percent. 

Outstanding Concerns
DoS detectors aim to differentiate legitimate from
malicious traffic under a wide range of operating
conditions. Although the surveyed detectors do
indeed detect some examples of DoS attacks, core
problems are apparent. 

Varying Test Conditions
Most detectors we surveyed were woefully under-
tested against varying network and attack condi-
tions. Comprehensive testing is obviously a highly
complex, time-consuming process, calling for
more efficient and comprehensive approaches.
Existing studies employed little variation in net-
work environment, attack-rate dynamics, or
address spoofing to emulate a realistic deployment
setting. Researchers must include flash events and
other legitimate activities that closely mimic attack
activity in all test traffic. Of the surveyed detec-
tors, only one explicitly acknowledged the pres-
ence of flash events. 

This undertesting problem is partly due to the
unavailability of comprehensive test data, testing
environments, and standards. We hope that such
issues will be addressed by upcoming cybersecu-
rity initiatives, including the Cyber Defense Tech-
nology Experimental Research Project (Deter;
www.isi.edu/deter/docs/testbed.overview.htm) and
the Protected Repository for the Defense of Infra-
structure against Cyber Threats (Predict; www.
hsarpacyber.com/ongoing.html#datasets). 

Measuring Network Activity 
Attack-detection statistics are only relative to
“normal” network activity. Attack models with
sharp volume increases or uniform address distri-
butions reflect a small, aging subset of the attack
problem space. These are properties of earlier gen-
erational DoS attack tools, and as is well known,
attackers change their tools soon after discovery.

In all detector schemes, researchers have yet
to develop nominal-traffic measures that encom-
pass the range of possible networks conditions.
To quantify normal activity, we must know the
expected activity level of services running on the
network’s various machines. We can estimate net-
work service activity using information provid-
ed by network administrators, port probing, or
direct traffic monitoring. Yet, normal activity is
a varying process: network services have differ-
ent lifetimes, activity levels, and availability, in
keeping with users’ variable time-of-day interac-
tions. At this point, it’s unclear whether suitable
training algorithms or rule-of-thumb guidelines
exist that can adequately model nominal traffic’s
irregular behavior. 

Traffic-flow clustering offers insight into net-
work activity, and trained network analysts can
easily visualize it with some of today’s tools.
Quantitative measures, such as wavelet energies,
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lack this desirable property. Nonetheless, a strong
dependency naturally exists between clustering
and detection. Defining a cluster is inherently
complex for a given network and can be difficult
to validate. We’ve yet to see real-time, truly scal-
able algorithms that can create, destroy, and mod-
ify the clusters with no a priori application or
protocol knowledge. 

Subverting Detection
Most researchers concede that attackers can defeat
their detection methods by developing attacks
through trial and error. When studying activity
profiling or evaluating entropy of an address dis-
tribution, researchers assume that the regular traf-
fic is distributed among a few clusters or flows. It
seems reasonable that attackers can sniff local traf-
fic, understand the address distribution, and then
spoof the addresses based on this calculation. For
change-point detectors that monitor changes in
packet volume over time, an initially low, slowly
ramping attack rate dynamic might be obscured by
the background traffic’s high variability.

Setting Parameters
Each detector has multiple operating parameters,
including clustering configuration, sampling win-
dow size, thresholds, and wavelet filtering level. In
most cases, researchers offer no guidance on para-
meter variations or their effect on performance.
Indeed, researchers often optimize parameters to
their own experimental test cases. When it comes
to deployment, users have few clues as to how they
might adjust the detection performance for their
own environments; ad hoc training in parameter
settings is typically required. 

Implementation Issues
None of the studies we reviewed addressed real-
world implementation concerns. In Table 1, we offer
our relative rankings of the detection methods’ com-
putational complexity and memory use. Because the
Cusum algorithms8,9 are based on single-stage,

recursive, exponentially weighted estimators, they’re
the least complex and have the lowest memory use.
The chi-square/entropy detector7 is next because it
uses only six bins to analyze its address distribu-
tions. More detailed clustering, however, will
increase its complexity and memory requirements. 

The combined Cusum and wavelet-based meth-
od10 incurs an extra O(2n) complexity over the
Cusum methods, where 5 < n < 11 is the spectral-
resolution level. Compared to this method, Barford’s
wavelet method12 is at least two times as complex
because it uses two redundant wavelet filter stages.
David Moore and his colleagues1 analyze the largest
address distribution — a /8 network (224 individual
addresses) — and their method consequently requires
the most computation and memory use.

F or network administrators, security is a funda-
mental concern, and they must have efficient,

reliable tools to help them quickly recognize and
investigate anomalous activities. Although intru-
sion detection is immature and doesn’t always
detect malicious activity, it can provide adminis-
trators with a useful diagnostic resource. 

At this point, we’ve yet to find a single tech-
nique to adequately detect DoS flooding attacks;
combining approaches might offer the best perfor-
mance.13,14 Because false positives are likely in any
case, however, experienced network administrators
are crucial in the attack-identification effort.
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