
Animations

• GO-BACK-N
• SELECTIVE REPEAT

https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/selective-repeat-protocol/index.html

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

▪ full duplex data:
• bi-directional data flow

in same connection

• MSS: maximum segment
size

▪ connection-oriented:
• handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

▪ flow controlled:
• sender will not

overwhelm receiver

▪ point-to-point:
• one sender, one receiver

▪ reliable, in-order byte
steam:
• no “message

boundaries”

▪ pipelined:
• TCP congestion and

flow control set window
size

TCP seq. numbers, ACKs

sequence numbers:

• byte stream “number” of
first byte in segment’s
data

acknowledgements:

• seq # of next byte
expected from other side

• cumulative ACK

Q: how receiver handles
out-of-order segments

•A: TCP spec doesn’t say,
- up to implementor source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

TCP round trip time, timeout

Q: how to set TCP
timeout value?

▪ longer than RTT

• but RTT varies

▪ too short: premature
timeout, unnecessary
retransmissions

▪ too long: slow reaction
to segment loss

Q: how to estimate RTT?
▪ SampleRTT: measured

time from segment
transmission until ACK
receipt

• ignore retransmissions

▪ SampleRTT will vary, want
estimated RTT “smoother”
• average several recent

measurements, not just
current SampleRTT

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT

▪ exponential weighted moving average
▪ influence of past sample decreases exponentially fast
▪ typical value: = 0.125

TCP round trip time, timeout

R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds)

▪ timeout interval: EstimatedRTT plus “safety margin”
• large variation in EstimatedRTT -> larger safety margin

▪ estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-)*DevRTT +

*|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically, = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Connection Management

before exchanging data, sender/receiver “handshake”:
▪ agree to establish connection (each knowing the other willing

to establish connection)

▪ agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size

at server,client

application

network

Socket clientSocket =

newSocket("hostname","port

number");

Socket connectionSocket =

welcomeSocket.accept();

Q: will 2-way handshake
always work in
network?

▪ variable delays

▪ retransmitted messages (e.g.
req_conn(x)) due to
message loss

▪ message reordering

▪ can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Agreeing to establish a connection

Agreeing to establish a connection

2-way handshake failure scenarios:

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client
terminates

server
forgets x

connection
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client
terminates

ESTAB

choose x
req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN

TCP 3-way handshake: FSM

closed

L

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =

newSocket("hostname","port

number");

SYN(seq=x)

Socket connectionSocket =

welcomeSocket.accept();

SYN(x)

SYNACK(seq=y,ACKnum=x+1)
create new socket for
communication back to client

SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)
ACK(ACKnum=y+1)

L

TCP: closing a connection

▪ client, server each close their side of connection
• send TCP segment with FIN bit = 1

▪ respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN

▪ simultaneous FIN exchanges can be handled

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1

wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so

sender won’t overflow

receiver’s buffer by transmitting

too much, too fast

flow control

TCP flow control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

▪ receiver “advertises” free
buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments
• RcvBuffer size set via

socket options (typical default
is 4096 bytes)

• many operating systems
autoadjust RcvBuffer

▪ sender limits amount of
unacked (“in-flight”) data to
receiver’s rwnd value

▪ guarantees receive buffer
will not overflow

receiver-side buffering

congestion:
▪ informally: “too many sources sending too much

data too fast for network to handle”
▪ different from flow control!

▪ manifestations:

• lost packets (buffer overflow at routers)

• long delays (queueing in router buffers)

▪ a top-10 problem!

TCP Congestion control

TCP congestion control: additive increase
multiplicative decrease

▪ approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

• additive increase: increase cwnd by 1 MSS every
RTT until loss detected

• multiplicative decrease: cut cwnd in half after loss
c
w
n
d
:

T
C

P
 s

e
n

d
e

r

c
o

n
g

e
s
ti
o

n
 w

in
d

o
w

 s
iz

e

AIMD saw tooth

behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

TCP Congestion Control: details

▪ sender limits transmission:

▪ cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:

▪ roughly: send cwnd
bytes, wait RTT for
ACKS, then send
more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte
sent

cwnd

LastByteSent-

LastByteAcked
< cwnd

sender sequence number space

rate ~~
cwnd

RTT
bytes/sec

TCP Slow Start

▪ when connection begins,
increase rate
exponentially until first
loss event:
• initially cwnd = 1 MSS

• double cwnd every RTT

• done by incrementing
cwnd for every ACK
received

▪ summary: initial rate is
slow but ramps up
exponentially fast

Host A

R
T

T

Host B

time

TCP: detecting, reacting to loss

▪ loss indicated by timeout:
• cwnd set to 1 MSS;

• window then grows exponentially (as in slow start)
to threshold, then grows linearly

▪ loss indicated by 3 duplicate ACKs: TCP RENO

• dup ACKs indicate network capable of delivering
some segments

• cwnd is cut in half window then grows linearly

▪ TCP Tahoe always sets cwnd to 1 (timeout or 3
duplicate acks)

Q: when should the
exponential
increase switch to
linear?

A: when cwnd gets
to 1/2 of its value
before timeout.

Implementation:
▪ variable ssthresh

▪ on loss event, ssthresh
is set to 1/2 of cwnd just
before loss event

TCP: switching from slow start to CA

Summary: TCP Congestion Control

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0

retransmit missing segment

L

cwnd > ssthresh

congestion

avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK
.

dupACKcount++

duplicate ACK

fast

recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0

retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow

start

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++

duplicate ACK

L

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

Transport Layer 3-25

TCP throughput

▪ avg. TCP thruput as function of window size, RTT?
• ignore slow start, assume always data to send

▪ W: window size (measured in bytes) where loss occurs
• avg. window size (# in-flight bytes) is ¾ W

• avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput =
3
4

W
RTT

bytes/sec

Transport Layer 3-26

TCP Futures: TCP over “long, fat pipes”

▪ example: 1500 byte segments, 100ms RTT, want
10 Gbps throughput

▪ requires W = 83,333 in-flight segments

▪ throughput in terms of segment loss probability, L
[Mathis 1997]:

➜ to achieve 10 Gbps throughput, need a loss rate of L
= 2·10-10 – a very small loss rate!

▪ new versions of TCP for high-speed

TCP throughput =
1.22 . MSS

RTT L

Transport Layer 3-27

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck

router

capacity R

TCP Fairness

TCP connection 2

Transport Layer 3-28

Why is TCP fair?

two competing sessions:
▪ additive increase gives slope of 1, as throughout increases

▪ multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Transport Layer 3-29

Fairness (more)

Fairness and UDP

▪ multimedia apps often
do not use TCP
• do not want rate

throttled by congestion
control

▪ instead use UDP:
• send audio/video at

constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

▪ application can open
multiple parallel
connections between
two hosts

▪ web browsers do this

▪ e.g., link of rate R with 9
existing connections:
• new app asks for 1 TCP, gets

rate R/10

• new app asks for 11 TCPs,
gets R/2

Transport Layer 3-30

network-assisted congestion control:
▪ two bits in IP header (ToS field) marked by network router

to indicate congestion

▪ congestion indication carried to receiving host

▪ receiver (seeing congestion indication in IP datagram))
sets ECE bit on receiver-to-sender ACK segment to
notify sender of congestion

Explicit Congestion Notification (ECN)

source

application

transport

network

link

physical

destination

application

transport

network

link

physical

ECN=00 ECN=11

ECE=1

IP datagram

TCP ACK segment

