Animations

- <u>GO-BACK-N</u>
- SELECTIVE REPEAT

Review: Building Reliable Data Transfer Protocols * Protocols based on retransmission (ACK and NAK) are Known as ARQ (Automatic Repeat Request) protocols, * Receivers must be able to determine when bit errors have occurred (error detection). How? Checksums (add'I data) must be added to each packet. * Protocols in which the sender will not send new data until it is sure that the receiver has correctly received the current packet are known as stop-and-wait protocols, * Sequence numbers are used to deal with displicate packets that may be introduced into the sender-to-receiver channel. * Timers are used to ensure deadlocks do not occur (eig.) sender waiting indefinetly for something that has been lost). At least for RTT + processing + delay time. * To improve the performance of stop-and-wait protocols, pipelining if often used. That is, We allow the sender to send multiple packets without waiting for acknowledgements, => need to increase the range of sequence numbers and ensure sufficient buffer space is available.

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

- point-to-point:
 - one sender, one receiver
- reliable, in-order byte steam:
 - no "message boundaries"
- pipelined:
 - TCP congestion and flow control set window size

- full duplex data:
 - bi-directional data flow in same connection
 - MSS: maximum segment size
- connection-oriented:
 - handshaking (exchange of control msgs) inits sender, receiver state before data exchange
- flow controlled:
 - sender will not overwhelm receiver

TCP seq. numbers, ACKs

sequence numbers:

• byte stream "number" of first byte in segment's data

acknowledgements:

- seq # of next byte expected from other side
- cumulative ACK
- Q: how receiver handles out-of-order segments
 - A: TCP spec doesn't say,
 - up to implementor

outgoing segment from sender

TCP round trip time, timeout

- Q: how to set TCP timeout value?
- Ionger than RTT
 - but RTT varies
- too short: premature timeout, unnecessary retransmissions
- too long: slow reaction to segment loss

- Q: how to estimate RTT?
- SampleRTT: measured time from segment transmission until ACK receipt
 - ignore retransmissions
- SampleRTT will vary, want estimated RTT "smoother"
 - average several *recent* measurements, not just current **SampleRTT**

TCP round trip time, timeout

EstimatedRTT = $(1 - \alpha)$ *EstimatedRTT + α *SampleRTT

- exponential weighted moving average
- influence of past sample decreases exponentially fast
- typical value: $\alpha = 0.125$

TCP round trip time, timeout

- timeout interval: EstimatedRTT plus "safety margin"
 - large variation in EstimatedRTT -> larger safety margin
- estimate SampleRTT deviation from EstimatedRTT:

```
DevRTT = (1-\beta) *DevRTT +
\beta*|SampleRTT-EstimatedRTT|
(typically, \beta = 0.25)
```

```
TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT "safety margin"
```

Connection Management

before exchanging data, sender/receiver "handshake":

- agree to establish connection (each knowing the other willing to establish connection)
- agree on connection parameters

Socket connectionSocket =
 welcomeSocket.accept();

Agreeing to establish a connection

2-way handshake:

Q: will 2-way handshake always work in network?

- variable delays
- retransmitted messages (e.g. req_conn(x)) due to message loss
- message reordering
- can't "see" other side

Agreeing to establish a connection

2-way handshake failure scenarios:

TCP 3-way handshake

TCP 3-way handshake: FSM

TCP: closing a connection

- client, server each close their side of connection
 - send TCP segment with FIN bit = I
- respond to received FIN with ACK
 - on receiving FIN, ACK can be combined with own FIN
- simultaneous FIN exchanges can be handled

TCP: closing a connection

TCP finite state machine

TCP flow control

TCP flow control

- receiver "advertises" free buffer space by including rwnd value in TCP header of receiver-to-sender segments
 - RcvBuffer size set via socket options (typical default is 4096 bytes)
 - many operating systems autoadjust RcvBuffer
- sender limits amount of unacked ("in-flight") data to receiver's rwnd value
- guarantees receive buffer will not overflow

TCP Congestion control

congestion:

- Informally: "too many sources sending too much data too fast for *network* to handle"
- different from flow control!
- manifestations:
 - lost packets (buffer overflow at routers)
 - long delays (queueing in router buffers)
- a top-10 problem!

TCP congestion control: additive increase multiplicative decrease

- approach: sender increases transmission rate (window size), probing for usable bandwidth, until loss occurs
 - additive increase: increase cwnd by I MSS every RTT until loss detected
 - *multiplicative decrease*: cut **cwnd** in half after loss

TCP Congestion Control: details

LastByteSent-LastByteAcked

 cwnd is dynamic, function of perceived network congestion TCP sending rate:

 roughly: send cwnd bytes, wait RTT for ACKS, then send more bytes

TCP Slow Start

- when connection begins, increase rate exponentially until first loss event:
 - initially cwnd = I MSS
 - double cwnd every RTT
 - done by incrementing cwnd for every ACK received
- <u>summary</u>: initial rate is slow but ramps up exponentially fast

TCP: detecting, reacting to loss

Ioss indicated by timeout:

- cwnd set to 1 MSS;
- window then grows exponentially (as in slow start) to threshold, then grows linearly

Ioss indicated by 3 duplicate ACKs: TCP RENO

- dup ACKs indicate network capable of delivering some segments
- cwnd is cut in half window then grows linearly
- TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate acks)

TCP: switching from slow start to CA

- Q: when should the exponential increase switch to linear?
- A: when **cwnd** gets to 1/2 of its value before timeout.

Implementation:

- variable ssthresh
- on loss event, ssthresh is set to 1/2 of cwnd just before loss event

Transmission round

Summary: TCP Congestion Control

TCP throughput

avg. TCP thruput as function of window size, RTT?

- ignore slow start, assume always data to send
- W: window size (measured in bytes) where loss occurs
 - avg. window size (# in-flight bytes) is 3/4 W
 - avg. thruput is 3/4W per RTT

avg TCP thruput =
$$\frac{3}{4} \frac{W}{RTT}$$
 bytes/sec

TCP Futures: TCP over "long, fat pipes"

- example: 1500 byte segments, 100ms RTT, want 10 Gbps throughput
- requires W = 83,333 in-flight segments
- throughput in terms of segment loss probability, L [Mathis 1997]:

$$\mathsf{FCP throughput} = \frac{1.22 \cdot \mathsf{MSS}}{\mathsf{RTT} \sqrt{\mathsf{L}}}$$

- → to achieve 10 Gbps throughput, need a loss rate of L
 = 2.10-10 a very small loss rate!
- new versions of TCP for high-speed

fairness goal: if K TCP sessions share same bottleneck link of bandwidth R, each should have average rate of R/K

Why is TCP fair?

two competing sessions:

- additive increase gives slope of I, as throughout increases
- multiplicative decrease decreases throughput proportionally

Fairness (more)

Fairness and UDP

- multimedia apps often do not use TCP
 - do not want rate throttled by congestion control
- instead use UDP:
 - send audio/video at constant rate, tolerate packet loss

Fairness, parallel TCP connections

- application can open multiple parallel connections between two hosts
- web browsers do this
- e.g., link of rate R with 9 existing connections:
 - new app asks for I TCP, gets rate R/10
 - new app asks for 11 TCPs, gets R/2

Explicit Congestion Notification (ECN)

network-assisted congestion control:

- two bits in IP header (ToS field) marked by network router to indicate congestion
- congestion indication carried to receiving host
- receiver (seeing congestion indication in IP datagram)) sets ECE bit on receiver-to-sender ACK segment to notify sender of congestion

