Animations

https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/go-back-n-protocol/index.html
https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/selective-repeat-protocol/index.html

slon (ACK anl NAK)

TC P: Ove rVieW RFCs: 793,1122,1323, 2018, 258

" point-to-point: " full duplex data:

 one sender, one receiver * bi-directional data flow
= reliable, in-order byte In same connection

steam: . MSS: maximum segment
“ size
* No "message . .
boundaries’ " connhection-oriented:

= pipelined: * handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

= flow controlled:

* sender will not
overwhelm receiver

* TCP congestion and
flow control set window
size

TCP seq. numbers, ACKs

outgoing segment from sender

sequence numbers° source port # dest port #
sequence number
¢ b)’te stream number of acknowledgement number
first byte in segment’s [| rwnd
data checksum urg pointer
window size
acknowledgements: N
expected from other side
sender sequence number space

e cumulative ACK
. . ent sent not- usable not
Q: how receiver handles ACKed yet ACKed butnot usable
out-of-order segments 1(“Iig|;r;1-t”) yet sent
*A: TCP spec doesn’ t say, incoming segment to sender
- up to |mplementor source port # dest port #
sequence number

R acknowledgement number

A rwnd

checksum urg pointer

TCP round trip time, timeout

Q: how to set TCP
timeout value?

" longer than RTT
* but RTT varies
" too short: premature

timeout, unnecessary
retransmissions

" too long: slow reaction
to segment loss

Q: how to estimate RTT?

SampleRTT: measured
time from segment
transmission until ACK
receipt

* ignore retransmissions

SampleRTT will vary, want
estimated RTT “smoother”

* average several recent
measurements, not just
current SampleRTT

TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + o*SampleRTT

= exponential weighted moving average
" influence of past sample decreases exponentially fast
= typical value:a =0.125

350 +

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
,(.-f)\ 300 !
o
-
: \ I
8 1 - N f
.g
I: 200 -
o
¢ sampleRTT
150
EstimatedRTT
100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds)

TCP round trip time, timeout

" timeout interval: EstimatedRTT plus “safety margin”
* large variation in EstimatedRTT -> larger safety margin

= estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-P)*DevRTT +
f* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Connection Management

before exchanging data, sender/receiver “handshake”:

" agree to establish connection (each knowing the other willing
to establish connection)

" agree on connection parameters

application application

O
connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

Vf network network
I~
- |
Socket clientSocket = Socket connectionSocket =
newSocket ("hostname" , "port welcomeSocket.accept() ;

number") ;

Agreeing to establish a connection

2-way handshake:
. Q: will 2-way handshake

AR o

Ca always work in
- N network?
Let’s talk\ .]
T ESTAB variable delays
OK .
ESTAB & " retransmitted messages (e.g.

req_conn(x)) due to
message loss

= H " message reordering

» 111 »” .
choose x " can t see other side

\req_conn(>_<L‘

—9 ESTAB
acc_conn(x)
ESTAB &—

Agreeing to establish a connection

2-way handshake failure scenarios:

N

choose x

retransmit
req_conn(x)

ESTAB

client™

terminates

\req_conn(>_<L‘

R ESTAB

acc_conn(x)

req_conn(x)

\

_ connection
X completes

server
forgets x

ESTAB

half open connection!
(no client!)

g

choose x

retransmit

req_conn(x)

ESTAB

retransmit
data(x+1)

\req_conn(>_<L‘

acc_conn(x)

—d ata(x+ 1L~
N\

connection

1
client
terminates

~ 7 x completes ~

\
req_conn(x)

data(x+1)

X ESTAB

accept
data(x+1)

server
forgets x

ESTAB
accept
data(x+1)

TCP 3-way handshake

client state w‘v Iiﬁ server state
LISTEN T LISTEN
choose init seq num, x
! send TCP SYN msg [~~_
SYNSENT SYNbit=1, Seq=x

choose init seq num, y
d TCP SYNACK
vl SYN RCVD

/ msg, acking SYN
SYNbit=1, Seq=y

ACKbit=1; ACKnum=x+1

v received SYNACK(x) /
\

indicates server is live;
ESTAB send ACK for SYNACK;

this segment may contain | ACKbit=1, ACKnum=y+1

client-to-server data
T~ received ACK(y)
indicates client is live

v

ESTAB

TCP 3-way handshake: FSM

Socket connectionSocket =
welcomeSocket.accept () ;
A .
Socket clientSocket =
SYN(X) | newSocket ("hostname", "port
ulnb 1 ,.
SYNACK(seq=y,ACKnum=x-+1) number™)
create new socket for SYN(seq=x)
communication back to client
| | SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1) ACK(ACKnum=y+1)

A

TCP: closing a connection

= client, server each close their side of connection
* send TCP segment with FIN bit = |

* respond to received FIN with ACK

* on receiving FIN, ACK can be combined with own FIN
= simultaneous FIN exchanges can be handled

TCP: closing a connection

client state /"?
ESTAB -

4

clientSocket.close ()
N

FIN WAIT 1 can no longer
send but can
receive data

FIN 'WAIT p) wait for server
n - close

TIMED_WAIT T

timed wait
for 2*max
segment lifetime

CLOSED l

T FRbit=1
it=1, SGQK
/
ACKbit=1: ACKnum=x+1
—

/
4___f;[].\lbit=1,seq=y
\

ACKbit=1; ACKnum=y+1

\

can still
send data

can no longer
send data

server state

ESTAB

CLOSE_WAIT

LAST ACK

CLOSED

TCP finite state machine

starting point
CLOSED (=
passive open :
X active open
passive OPEN | LISTEN send SYN
rov BTN : send
send YN, ACK . send SYM _ close
syw TEYN *
RCVD |- , SENT ’
rev ACK | rov ST M, ACGK
X [snd AGK active
close OPEN
snd FIN “”’s‘;’; af:mr CONNECTION
-------- ... _CLOSE EST‘E‘BUSHFD poy FIN ememmemm s mem ey
“snd-FIN. dACK
FIN ’4 S - CLOSE
WAIT 1 WAIT .
rov FIN : :
rov ACK “end ACK ; . close | :
X E sndFIN- | fov ACK
f : Do
FIM CLOSING | LAST ACK | ===~
WJ&llT 2 I‘D'u'.lﬂ'.CK : -
rev FIN ¥ PES'S'!.VE CLOSE
snd ACK o TIMEWAIT| .
; ; timeout = 251
e s s s s s s s s s T I R T B R E NS E NS S EESEEESeEESes s -- x
active CLOSE
e » Typical server transactions
STATEY | o8 ol STATE? » Typical client transactions

MEL = Maximum Segment Lifetime (120 sec)

TCP flow control

application ‘
application may roCess
remove data from I
application
TCP socket buffersrv | appicatior
TCP socket 05
receiver buffers
... Slower than TCP N\
receiver is delivering ——
(sender is sending) TCP
code
[l _ |
. IP
ﬂOW control code \

receiver controls sender, so T

’ I ey
sender won' t overflow . Loy ! >
receiver s buffer by transmitting from sender|
too much, too fast _

receiver protocol stack

TCP flow control

. 13 . ””
= receiver advertises free

buffer space by including to application process
rwnd value in TCP header rlj
of receiver-to-sender f
segments RcvBuffer buffered data
* RevBuffer size set via T
socket options (typical default ruwnd free buffer space
is 4096 bytes) g
° many operating systems '
autoadjust RevBuffer TCP segment payloads
" sender Iimits amount of
unacked (in-flight”) data to receiver-side buffering

receiver s rwnd value

" guarantees receive buffer
will not overflow

TCP Congestion control

congestion:

= informally: “too many sources sending too much
data too fast for network to handle

= different from flow control!
" manifestations:
* lost packets (buffer overflow at routers)

* long delays (queueing in router buffers)
" a top-10 problem!

TCP congestion control: additive increase
multiplicative decrease
" approach: sender increases transmission rate (window

size), probing for usable bandwidth, until loss occurs

* additive increase: increase cwnd by | MSS every
RTT until loss detected

* multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
|

time

TCP Congestion Control: details

sender sequence number space

— cwnd —i TCP sending rate:
IIIIIIIII il * roughly: send cwnd
bytes, wait RTT for
ast byte Sent\mt jast byte ACKS, then send
e
yetAcked " more bytes
e d
= sender limits transmission: rate w bytes/sec
LastByteSent- < cwnd
LastByteAcked

* cwnd is dynamic, function
of perceived network
congestion

TCP Slow Start

* when connection begins,

InCcrease rate
exponentially until first

loss event:
* initially cwnd = | MSS
* double cwnd every RTT

* done by incrementing
cwnd for every ACK

received
" summary: initial rate is
slow but ramps up
exponentially fast

Host A
N/
L[——nesegment
|_
x
|

Ur segments

time

TCP: detecting, reacting to loss

" |oss indicated by timeout:
* cwnd set to | MSS;

* window then grows exponentially (as in slow start)
to threshold, then grows linearly

" |loss indicated by 3 duplicate ACKs: TCP RENO

* dup ACKs indicate network capable of delivering
some segments

* cwnd is cut in half window then grows linearly

= TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks)

TCP: switching from slow start to CA

Q: when should the

exponential
increase switch to 147 TCP Reno
linear? 127

o
l

A: when cwnd gets
to |/2 of its value
before timeout.

ssthresh

(in segments)

ssthresh

Congestion window

TCP Tahoe

. . 0
Implementation: U A
n Variable SSthreSh Transmission round

= on loss event, ssthresh
is set to |/2 of cwnd just
before loss event

Su

'

mmary: TCP Congestion Control

duplicate ACK %

dupACKcount++

()

A

cwnd =1 MSS
ssthresh = 64 KB
dupACKcount = 0_>

;9’:\(\“ . </
T timeout

|l

- ssthresh = cwnd/2
cwnd =1 MSS

dupACKcount =0

retransmit missing segment

dupACKcount ==

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

new ACF %

cwnd = cwnd + MSS = (MSS/cwnd)
dupACKcount =0
transmit new segment(s), as allowed

new ACK

cwnd = cwnd+MSS
dupACKcount =0

/>transmit new segment(s), as allowed
cwnd > ssthresh

A |-
= -
(P”)' Q timeout
‘¢ $))ssthresh = cwnd/2 ,
cwnd = 1 MSS duplicate ACK
dupACKcount =0 dupACKcount++
retransmit missing segment 4
timeout'L) %
ssthresh = cwnd/2
cwnd =1 New ACK
dupACKcount = 0 “wnd = ssthresh
retransmit missing segment dﬁ\é)vRCIZc%Sun'[e:SO dupACKcount ==
ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

v

A

duplicate ACK
cwnd = cwnd + MSS

transmit new segment(s), as allowed

TCP throughput

= avg. TCP thruput as function of window size, RTT?
* ignore slow start, assume always data to send

= W: window size (measured in bytes) where loss occurs
* avg. window size (# in-flight bytes) is ¥4 W
* avg. thruput is 3/4WV per RTT

W/2

avg TCP thruput =

2

/

3 W

RTT bytes/sec

/

12%

/

Transport Layer 3-25

77

TCP Futures: TCP over “long, fat pipes

= example: 1500 byte segments, |00ms RTT, want
|0 Gbps throughput

" requires W = 83,333 in-flight segments

* throughput in terms of segment loss probability, L
[Mathis 1997]:

_1.22-MSS
TCP throughput = RTTJf

=?» to achieve 10 Gbps throughput, need a loss rate of L
=210 — a very small loss rate!

* new versions of TCP for high-speed

Transport Layer 3-26

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

ENG—

- bottleneck
Q router

TCP connection 2 capacity R

Transport Layer 3-27

Why is TCP fair?

two competing sessions:
= additive increase gives slope of |, as throughout increases
" multiplicative decrease decreases throughput proportionally

R equal bandwidth share
//
H
5 loss: decrease window by factor of 2
> congestion avoidance: additive increase
_g loss: decrease window by factor of 2
g , ngestion avoidance: additive increase
C //
i) e
S ’
o |,
E | 4
C@mection 1 throughput R

Transport Layer 3-28

Fairness gmorez

Fairness and UDP

" multimedia apps often
do not use TCP

e do not want rate
throttled by congestion
control

= instead use UDP:

* send audio/video at
constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

= application can open
multiple parallel
connections between
two hosts

= web browsers do this

" e.g, link of rate R with 9

existing connections:

* new app asks for | TCP, gets
rate R/10

* new app asks for || TCPs,
gets R/2

Transport Layer 3-29

Explicit Congestion Notification (ECN)

network-assisted congestion control:

= two bits in IP header (ToS field) marked by network router
to indicate congestion

" congestion indication carried to receiving host

" receiver (seeing congestion indication in IP datagram))
sets ECE bit on receiver-to-sender ACK segment to
notify sender of congestion

TCP ACK segment

source P destination
) — \
o0 __X
IP datagram

Transport Layer 3-30

