
Transport services and protocols
 provide logical communication

between app processes
running on different hosts

 transport protocols run in
end systems

• send side: breaks app
messages into segments,
passes to network layer

• rcv side: reassembles
segments into messages,
passes to app layer

 more than one transport
protocol available to apps

• Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

UDP: User Datagram Protocol [RFC 768]

 “no frills,” “bare bones”
Internet transport
protocol

 “best effort” service, UDP
segments may be:

• lost
• delivered out-of-order

to app
 connectionless:

• no handshaking
between UDP sender,
receiver

• each UDP segment
handled independently
of others

 UDP use:
 streaming multimedia

apps (loss tolerant, rate
sensitive)
 DNS
 SNMP

 reliable transfer over
UDP:
 add reliability at

application layer
 application-specific error

recovery!

UDP: segment header

source port # dest port #

32 bits

application
data

(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

 no connection
establishment (which can
add delay)

 simple: no connection
state at sender, receiver

 small header size
 no congestion control:

UDP can blast away as fast
as desired

why is there a UDP?

Question #10.2

 Why is the UDP checksum separate from the
IP Checksum?

 Would you object to a protocol that used a
single checksum for the complete IP datagram
including the UDP message?

Question #10.5

 What is the chief advantage of using
preassigned UDP port numbers?

 The chief disadvantage?

Question #10.6

 What is the chief advantage of using protocol
ports instead of process identifies to specify the
destination within a machine?

	Transport services and protocols
	UDP: User Datagram Protocol [RFC 768]
	UDP: segment header
	Slide Number 4
	Slide Number 5
	Question #10.2
	Question #10.5
	Question #10.6

