
Chapter 6 Objects and Their Use

In imperative programming, functions are the primary building blocks of program design.

In object-oriented programming, objects are the fundamental building blocks in which

functions (methods) are a component. We first look at the use of individual software

objects in this chapter, and in Chapter 10 look at the use of objects in object-oriented

design.

1Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons

The idea of incorporating “objects” into a programming language came out of
work in computer simulation. Given the prevalence of objects in the world, it
was natural to provide the notion of an object within simulation programs that
simulate some aspect of the world.

In the early 1970s, Alan Kay at Xerox PARC (Palo Alto Research Center) fully
evolved the notion of object-oriented programming with the development of a
programming language called Smalltalk. The language became the inspiration for
the development of graphical user interfaces (GUIs) — the primary means of
interacting with computer systems today. Before that, all interaction was
through typed text. In fact, it was a visit to Xerox PARC by Steve Jobs of Apple
Computers that led to the development of the first commercially successful GUI-
based computer, the Apple Macintosh in 1984. In this chapter, we look at the
creation and use of objects in Python.

2Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons

Motivation

3Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons

Some Commonly-Used Programming Languages

Objects are the fundamental component of object-oriented
programming. Although we have not yet stated it, all values
in Python are represented as objects. This includes, for
example, lists, as well as numerical values.

4Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

Software Objects

What is an Object?

An object contains a set of attributes, stored in a set of
instance variables, and a set of functions called methods
that provide its behavior.

5Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

When sorting a list in procedural programming, there are
two distinct entities — a sort function and the list to pass it
to.

6Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

In object-oriented programming, the sort routine would be
part of the object containing the list.

7

All list objects contain the same set of methods. Thus,
names_list is sorted by simply calling that object’s sort
method,

names_list.sort()

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

8

names_list.sort()

The period is referred to as the dot operator, used to select a
member of an object. In this case, a method is selected
(method sort).

Note that no arguments are passed to the method. This is
because methods operate on the data of the object that they
are part of. Thus, the sort method does not need to be told
which list to sort. Calling the method is more of a message
saying “sort yourself.”

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

9

Suppose there was another list object called part_numbers,
containing a list of automobile part numbers.

Since all list objects behave the same, part_numbers would
contain the identical set of methods as names_list. Only the
data that they operate on would be different.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

Object References

We look at how objects (values) are represented and the
effect it has on the operations of assignment and
comparison, as well as parameter passing of objects.

10Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

11

References in Python

In Python, objects are represented as a reference to an object
in memory.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

12

A reference is a value that references, or “points to,” the
location of another entity.

When a new object in Python is created, two values are stored
— the object, and a variable holding a reference to the object.
All access to the object is through the reference value.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

13

The value that a reference points to is called the dereferenced
value. This is the value that the variable represents.

We can get the reference value of a variable (the location in
which the dereferenced value is stored) by use of built-in
function id.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

14

>>> id(n) >>> id(k) >>> id(s)
505498136 505498136 505498296

We see that the dereferenced values of n and k, 10, is stored in
the same memory location (505498136), whereas the
dereferenced value of s (505498296), 20, is stored in a different
location.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

15

Even though n and k are separately assigned literal value 10,
they reference the same instance of 10 in memory (505498136).
We would expect that two instances of the value 10 be stored.

Python is being clever here. Since integer values are immutable,
it assigned both n and k to the same instance. This saves
memory and reduces the number of reference locations that
Python must maintain. From the programmer’s perspective
however, they can be treated as if each holds its own instance.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

Let’s Try It

16

From the Python Shell, enter the following and observe the results.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

17

The Assignment of References

Consider what happens when one variable, n, is assigned to
another, k, depicted below.

When variable n is assigned to k, it is the reference value of k
that is assigned, not the dereferenced value 20.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

18

To verify that two variables refer to the same object instance,
we can compare their id values using the comparison operator.

We an also verify this by use of the is operator, which performs
id(k) == id(n).

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

19

When variables n and k were separately assigned the value 10,
each ended up referring to the same instance of 10 in memory
because integer values are immutable, and Python decided to
have both variables share the same instance.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

20

When variable n was directly assigned to k, both variables
ended up referring to the same instance of 20 in memory
because assignment in Python assigns reference values, and not
the dereference values.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

21

If one of the two variables is assigned a new value, then they
would no longer reference the same memory location.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

22

Memory Deallocation and Garbage Collection

Consider what happens when a variable (n) is assigned a new
value, (40) and no other variable references the original value
(20).

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

23

After n is assigned to 40, the memory location storing integer
value 20 is no longer referenced — thus, it can be deallocated.

To deallocate a memory location means to change its status
from “currently in use” to “available for reuse.”

In Python, memory deallocation is automatically performed by a
process called garbage collection.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

24

Garbage collection is a method of automatically determining
which locations in memory are no longer in use, and
deallocating them.

The garbage collection process is ongoing during the execution
of a Python program.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

25

List Assignment and Copying

Now that we understand the use of references in Python, we
can revisit the discussion on copying lists from Chapter 4.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

26

When a variable is assigned to another variable referencing a
list, each variable ends up referring to the same instance of
the list in memory.

Thus, any change to the elements of list1 will result in changes
to list2.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

27

We also learned that a copy of a list can be made as follows.

list() is referred to as a list constructor. The result of the
copying is depicted below.

Since a copy of the list structure has been made, changes to
the elements of one list will not result in changes to the other.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

28

The situation is different if the list contains sublists, however.

Below is the resulting list structure after this assignment.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

29

Although copies were made of the top-level list structures, the
elements within each list were not copied. This is referred to as
a shallow copy.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

30

If a top-level element of one list is reassigned, for example
list1[0] = [70, 80], the other list would remain unchanged.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

31

If, however, a change to one of the sublists is made, for
example, list1[0][0] = 70, the corresponding change would be
made to the other list as well. Thus, list2[0][0] would also be
equal to 70.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

32

A deep copy operation of a list (structure) makes a copy of the
complete structure, including sublists. (Since immutable types
cannot be altered, immutable parts of the structure may not be
copied.)

Such an operation can be performed with the deepcopy
method of the copy module,

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

33

The result of this form of copy is shown below.

As a result, the reassignment of any part (top level or sublist) of
one list will not result in a change in the other

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

Let’s Try It

34

From the Python Shell, enter the following and observe the results.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

35Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

36Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

37Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

38Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

39Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

40Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

41Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

42Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.1 Software Objects

Turtle graphics refers to a means of controlling a graphical
entity (a “turtle”) in a graphics window with x,y coordinates.
A turtle can draw lines as it travels, thus creating various
graphical designs. Turtle graphics was part of a language
named Logo developed in the 1960s for teaching children
how to program.

Python provides the capability of turtle graphics in the
turtle Python standard library module.

43

Turtle Graphics

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

There may be more than one turtle on the screen at once.
Each turtle is represented by a distinct object. Thus, each
can be individually controlled by the methods available for
turtle objects.

We introduce turtle graphics here for two reasons — first, to
provide a means of better understanding objects in
programming, and second, to have some fun!

44

Turtle Graphics (cont.)

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

Creating a Turtle Graphics Window

The first step in the use of turtle graphics is the creation of a
turtle graphics window (a turtle screen).

45Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

46

Assuming that the import moduleName form of import
is used, each of the turtle graphics methods must be called
in the form turtle.methodname.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

47

The first method called, setup, creates a graphics window
of the specified size (in pixels). In this case, a window of size
800 pixels wide by 600 pixels high is created.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

48Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

49

A call to turtle.Screen() returns the reference to the
screen created.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

50

A call to method title on window sets the top title line
for the window object created.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

51Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

52

The “Default” Turtle

A “default” turtle is created when the setup method is called.
The reference to this turtle object can be obtained by,

A call to getturtle causes the default turtle to appear in the
window. The initial position of all turtles is the center of the
screen at coordinate (0, 0)

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

53

The default turtle shape is an arrowhead. (The size of the
turtle shape was enlarged from its default size for clarity.)

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

54

Fundamental Turtle Attributes and Behavior

Turtle objects have three fundamental attributes:

• position attributes
• heading (orientation) atributes
• pen attributes

A call to getturtle causes the default turtle to appear in the
window. The initial position of all turtles is the center of the
screen at coordinate (0, 0)

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

55

Absolute Positioning

Method position returns a turtle’s current position. Thus, for
a newly-created turtle t.position() returns the tuple
(0, 0).

A turtle’s position can be changed using absolute positioning
by moving the turtle to a specific x,y coordinate by use of
method setposition.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

56

Creating a Square from Four Line Segments Using Absolute Positioning

The turtle starts at location (0,0), with pen down. It is then positioned at
(100, 0), thus drawing a line from (0, 0) to (100, 0) (the bottom line of the
square). The turtle is then positioned at (100, 100), then (0, 100), and then
back to (0, 0), drawing all four lines of the square.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

57

Turtle Heading and Relative Positioning

A turtle’s position can also be changed through relative
positioning. In this case, the location that a turtle moves to is
determined by its second fundamental attribute, its heading.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

58

Turtles have an initial heading of 0 degrees (facing right).
Thus, the turtle is moved forward 100 pixels, drawing the bottom
line of the square. By the following pairs of instructions left(90),
forward(100), the turtle turns left and move forward 90 degrees,
doing this a total of three times, thus completing the square.

Creating a Square from Four Line Segments Using Relative Positioning

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

59

Pen Attributes: Pen up and Down

The pen attribute of a turtle object is related to its drawing
capabilities. The most fundamental of these attributes is
whether the pen is currently “up” or “down,” controlled by
methods penup() and pendown(). When the pen attribute
value is “up,” the turtle can be moved to another location
without lines being drawn. This is needed when creating
drawings with disconnected parts.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

60

The penup and pendown methods are used to allow the turtle to be
repositioned.

Drawing Disconnected Lines

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

61

Pen Attributes: Width of Lines

The pen size of a turtle determines the width of the lines
drawn when the pen attribute is “down.” The pensize
method is used to control this, the_turtle.pensize(5).
The line width is given in pixels, and is limited only by the size of
the turtle screen.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

62

Setting Line Width

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

63

Pen Attributes: Pen Color
The pen color can be selected by use of the pencolor
method, the_turtle.pencolor('blue'). The name of any common
color can be used, for example 'white', 'red', 'blue', 'green',
'yellow', 'gray', and 'black'.

Colors can also be specified in RGB (red/green/blue)
component values. These values can be specified in the range
0–255 if the color mode attribute of the turtle window is set as
given below,

turtle.colormode(255)
the_turtle.pencolor(238, 130, 238) # violet

This allows for a full spectrum of colors to be displayed.
Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

64

Additional Turtle Attributes

In addition to the fundamental turtle attributes already
discussed, there are other attributes of a turtle that may be
controlled. This includes the size, shape, and fill color of the
turtle, the turtle’s speed, and the tilt of the turtle.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

65

Turtle Size

The size of a turtle shape can be controlled with methods
resizemode and turtlesize.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

66

First, set the resize attribute of the turtle to 'user'. This allows
the user (programmer) to change the size of the turtle by use of
method turtlesize. Otherwise, a call to the method will
have no effect.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

67

Method turtlesize is passed two parameters: the width of the
shape and its length. Each provides a factor by which the size
should be changed. the_turtle.turtlesize(3, 3) stretches each by
a factor of 3. (An optional third parameter determines the
thickness of the shape’s outline.)

Method resizemode may also be set to 'auto' which causes the
size of the turtle to change with changes to the the pen size,
and 'noresize' , which causes the turtle to remain the same size.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

68

Turtle Shape

There are a number of ways that a turtle’s shape (and fill color)
may be defined to something other than the default shape (the
arrowhead) and fill color (black).

A turtle may be assigned one of the following provided
shapes: 'arrow', 'turtle', 'circle', 'square',
'triangle', and 'classic' (the default arrowhead
shape)

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

69

The shape and fill colors are set by use of the shape and
fillcolor methods.

New shapes may be created and registered with (added to) the
turtle screen’s shape dictionary. One way of creating a new
shape is by providing a set of coordinates denoting a polygon.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

70

Method register_shape is used to register the new turtle shape with the
name mypolygon. The new shape is provided by the tuple of coordinates in
the second argument, defining the polygon shown in the figure. Once the new
shape is defined, a turtle can be set to that shape by calling the shape method
with the desired shape’s name.

Creating a New Polygon Turtle Shape

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

71

The fillcolor method is then called to make the fill color of the polygon
white (with the edges remaining black). It is also possible to create turtle
shapes composed of various individual polygons, called compound shapes.

Creating a New Polygon Turtle Shape

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

72

Stamping a Turtle on the Screen

A turtle is able to stamp its shape on the screen by use of the
stamp method, which remains there even after the turtle is
repositioned (or relocated). That means that we can create all
sorts interesting graphic patterns by appropriately repositioning
the turtle.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

73

Only a few lines of code are needed to generate this design. The for loop
iterates variable angle from 0 to 360 degrees (by increments of 10 degrees).
Within the loop the stamp() method is called to stamp the polygon shape at
the turtle’s current position. By varying the shape of the polygon and the angles
that the turtle is set to, a wide range of such designs may be produced.

Stamping a Turtle Shape on the Screen

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

74

Creating a Turtle Shape from an Image

Another way that a turtle shape can be created is by use of an
existing image. The image file used must be a “gif file” (with file
extension .gif). The name of the file is then registered and the
shape of the turtle set to the registered name,

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

75

Controlling the Turtle Speed

A turtle’s speed can be set to a value from 0 to 10, with a
“normal” speed being around 6. The speed method is used for
this, the_turtle.speed(6). The following speed values
can be set using a descriptive, rather than a numerical value.

Thus, a normal speed can be set by the_turtle.speed('normal').
When using the turtle for line drawing only, the turtle will move
more quickly if it is made invisible (by use of the hideturtle
method).

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

76

Creating Multiple Turtles

It is possible to create and control any number of turtle
objects. To create a new turtle, the Turtle() method is used.

Any number of turtles may be maintained in a list.

Each turtle has its own distinct set of attributes.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

The following program displays one or more bouncing balls within a turtle
screen window. This program utilizes the following programming features.

► turtle module ► time module

77

Bouncing Balls Program

Let’s Apply It

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

78Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

79

In addition to the turtle graphics module,
the time and random Python standard
library modules are imported to allow
control of how long the simulation is
executed, and to generate the random
motion of the bouncing balls.

Functions atLeftEdge, atRightEdge,
atTopEdge, and atBottomEdge (lines
7-37) are used to determine when a ball
should be bounced off of a wall. Function
bounceBall is called to do the bouncing.

Function createBalls (lines 39–50)
initializes an empty list named balls and
creates the requested number of balls one-
by-one, each appended to the list. Each ball
is created with shape 'circle', fill color of
'white', speed of 0 (fastest speed), and pen
attribute 'up'. In addition, the initial heading
of each ball turtle is set to a random angle
between 1 and 359 (line 47).

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

80

The while loop on line 79 begins the
simulation. The loop iterates as long as
Boolean variable terminate is not True
(initialized to False on line 77). The for
loop within this loop at line 80 moves each
of the specified number of balls a small
distance until reaching one of the four
edges of the window (left, right, top, or
bottom), using Boolean functions
atLeftEdge, atRightEdge,
atTopEdge, and atBottomEdge.

Function bounceBall is called to bounce
the ball in the opposite direction heading,
and returns the new heading of the ball,
passed as the argument to that ball’s
setheading method. Finally, on line 92 a
check is made to determine whether the
user-requested simulation time has been
exceeded. If so, the Boolean variable
terminate is set to True, and the
program terminates. Because of the call to
exitonclick() on line 96, the
program will properly shut down when the
close button of the turtle window is clicked
on.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

81Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

82Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

83Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

84Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

85Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

86Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

87Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

88Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

89Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

90Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.2 Turtle Graphics

91

We design, implement and test a program that will simulate a horse
race.

Horse Race Simulation Program

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

Horse Race Simulation

The Problem

92

The problem is to create a visualization of a horse race in which
horses are moved ahead a random distance at fixed time
intervals until there is a winner.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

Horse Race Simulation

Problem Analysis

93

The program needs a source of random numbers for advancing the horses a
random distance in the race. We can use a random number generator of the
Python standard library module random.

There must also be a way to control the pace of the race, so that the horses
don’t move across the screen too quickly. For this we can make use of Python
standard library module time.

The remaining part of the problem is the creation of appropriate graphics for
producing a visualization of a horse race. We shall make use of the turtle
graphics module from the Python standard library.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

Horse Race Simulation

Program Design

94

• Meeting the Program Requirements

• Data Desciption

• Algorithmic Approach

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

95

Meeting the Program Requirements

There are no specific requirements for this problem, other than to create an
appropriate simulation of a horse race. Therefore, the requirement is
essentially the generation of horse races in which the graphics look
sufficiently compelling, and each horse has an equal chance of winning a
given race. Since a specific number of horses was not specified, we will
design the program for ten horses in each race.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

96

Data Description

The essential information for this program is the current location of each of
the ten horses in a given race. Each turtle is an object, whose attributes
include its shape and its coordinate position on the turtle screen. Therefore,
we will maintain a list of ten turtle objects with the shape attribute of a
horse image for this purpose. Thus, suitable horse images must be found or
created for this purpose.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

97

Algorithmic Approach

There is no algorithm, per se, needed in this program other than to advance
each horse a random distance at fixed time intervals until one of the horses
reaches a certain point on the turtle screen (the “finish line”).

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

98

The Overall Steps of the Program

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

Horse Race Simulation

Program Implementation

99

We first develop and then test an initial program that lays out the starting
positions of the horses on the turtle graphics screen.

The extent of this version of the program is to ensure that the turtle screen is
appropriately sized and that the initial layout of horse locations is achieved.
Therefore, this version simply uses the default turtle image. In the next
version we will focus on generating a set of horse images on the turtle screen

Stage 1— Creating an Initial Turtle Screen Layout

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

100Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

101

On line 3 the turtle module is imported. Since
the import module_name form of import is
used, each call to a method of this module must
be prefixed with the module name.

On line 40, the coordinates of the first (lowest)
horse displayed are set. The vertical separation
of horses is assigned to track_separation.

Function generateHorses, called on line 44,
returns a list of ten new turtle objects, assigned
to variable horses. Function newHorse (lines
5–7) is called to create each new turtle object (at
this stage returning a regular turtle shape).

Function placeHorses (lines 17–23) is passed
the list of turtle objects, the location of the first
turtle, and the amount of separation between
each and determines the position of each
(established as 60 pixels on line 41). Each horse
is initially hidden with pen up (lines 19–20),
placed at its starting position (line 21), heading
left (line 22), and made visible (line 23). Finally,
method exitonclick() (line 50) is called
so that the program will terminate when the user
clicks on the program window’s close box.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

Program Implementation

102

Stage 2 – Adding the Appropriate Shapes and Images

We next develop and test the program with additional code that adds the
horse shapes (images) needed.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

103Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

104

On line 3 the turtle module is imported.
Since the import module_name
form of import is used, each call to a
method of this module must be prefixed
with the module name. (The use of
Python modules is covered in Chapter 7).

We add in this stage of the program
functions getHorseImages (lines 5-
15) and registerHorseImages
(lines 15-17) (called from lines 61- 62
of main). Function getHorseImages
returns a list of GIF image files, each
image the same horse image, with a
unique number from 1 to 10 added.
Function registerHorseImages
does the required registering of images.

Function generateHorses (lines 26–
32) is the same as in stage 1, except that
it is passed a list of horse images rather
than the number of horses to generate..

Function newHorse (lines 19–24) is
altered as well to be passed a particular
horse image to set the shape of the turtle
object that this horse created,
horse.shape(image_file).

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

105

In this stage of the program we add
functions getHorseImages and
registerHorseImages, called from
lines 61 and 62. Function
getHorseImages returns a list of GIF
image files. Each image contains the
same horse image, each with a unique
number from 1 to 10. Function
registerHorseImages does the
required registering of images in by
calling turtle.register_shape
on each.

Function generateHorses (lines 26–
32) is implemented the same as in stage
1 (to return a list of turtle objects),
except that it is passed a list of horse
images, rather than the number of
horses to generate. Thus,
generateHorses in line 65 is passed
the list of images in variable
horse_images.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

Program Implementation

106

Stage 3 – Animating the Horses

Next we develop and test the program with additional code that animates the
horses so that they are randomly advanced until the first horse crosses the
finish line. The number of the winning horse is displayed in the Python shell.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

107Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

108

Two new functions are added in this version of the
program, startHorses and displayWinner.

Function startHorses (lines 44–58) is passed
the list of horse turtle objects, the location of the
finish line, and the fundamental increment amount.
Each horse is randomly advanced by one to three
times this amount. The while loop for incrementally
moving the horses is on line 48. The loop iterates
until a winner is found (until the have_winner is
True).

Since each horse in turn is advanced some amount
during the race, variable k is incremented by one,
modulo the number of horses. When k becomes
equal to num_horses – 1 (9), it is reset to 0
(for horse 1).

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

109

The amount that each horse is advanced is a factor
of one to three, randomly determined by call to
method randint(1, 3) of the Python
standard library module random on line 51.
Variable forward_incr is multiplied by this
factor to move the horses forward an appropriate
amount. The value of forward_incr is
initialized in the main program section. This value
can be adjusted to speed up or slow down the
overall speed of the horses.

Function displayWinner displays the winning
horse number in the Python shell (lines 60–61).
This function will be rewritten in the next stage of
program development to display a “winner” banner
image in the turtle screen. Thus, this
implementation of the function is for testing
purposes only.

The main program section (lines 63–100) is the
same as in the previous stage of program
development, except for the inclusion of the calls to
functions startHorses and displayWinner
on lines 94 and 97.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

Program Implementation

110

Final Stage – Adding Race Banners

Finally, we add the code for displaying banners at various points in the race. In
addition, the winning horse is made to blink.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

111Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

112Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

113Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

114Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

115

The final version of the program imports one
additional module, Python Standard Library
module time (line 5). The program uses
method sleep from the time module to
control the blinking rate of the image of the
winning horse

Function getBannerImages (line 17), along
with functions registerBannerImages
(line 47), and displayBanner (line 84)
incorporate the banner images into the program
the same way that the horse images were
incorporated in the previous program version.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

116

Added functions getBannerImages,
registerBannerImages (lines 47–50), and
displayBanner (lines 86–90) incorporate
the banner images into the program the same
way that the horse images were incorporated in
the previous program version. When the
banners appear during a race appear is based
on the location of the currently leading horse.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

117

Function startHorses was modified to take
another parameter, banners, containing the
list of registered banners displayed during the
race, passed to it from the main program
section.

While the race progresses within the while loop
at line 102 , checks for the location of the lead
horse are made in two places—before and after
the halfway mark of the race (on line 108). If
the x coordinate location of the lead horse is
less then 125, the “early lead banner” is
displayed on line 117 by a call to function
displayBanner.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

118

This version of displayWinner (line 127)
replaces the previous version that simply
displayed the winning horse number in the shell
window. A “count-down” variable,
blink_counter, is set to 5 on line 133,
decrementing it to zero in the while loop,
causing the winning horse to blink five times.

Boolean variable show, initialized to False on
line 132 , is used to alternately show and hide
the turtle. The sleep method, called on line
143, causes the program to suspend execution
for four-tenths of a second so that the
showing/hiding of the winning horse image
switch slowly enough to cause a blinking effect.

The default turtle is utilized in function
displayBanners and in the main section. It
is used to display the various banners at the
bottomof the screen. To do this, the turtle’s
“shape” is changed to the appropriate banner
images stored in list banner_images. To
prevent the turtle from drawing lines when
moving from the initial (0, 0) coordinate
location to the location where banners are
displayed, the default turtle is hidden and its
pen attribute is set to “up” (lines 160–161).

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

119

The only change in the main module of the
program is related to the display of banner
images. Added lines 171 and 173 register and
display the banners. The calls to
startHorses and displayWinner on
lines 182 and 186 are changed (and the
corresponding function definitions) to each pass
one more argument consisting of banner
images.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 6.3 Horse Race Simulation Program

	Chapter 6 Objects and Their Use
	Slide Number 2
	Slide Number 3
	Slide Number 4
	What is an Object?
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Object References
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Let’s Try It
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Let’s Try It
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Creating a Turtle Graphics Window
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Horse Race Simulation�The Problem
	Horse Race Simulation�Problem Analysis
	Horse Race Simulation�Program Design
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Horse Race Simulation�Program Implementation
	Slide Number 100
	Slide Number 101
	�Program Implementation
	Slide Number 103
	Slide Number 104
	Slide Number 105
	�Program Implementation
	Slide Number 107
	Slide Number 108
	Slide Number 109
	�Program Implementation
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119

