
Chapter 5 Functions

Up until this point, we have viewed a computer program as a single series of instructions.

Most programs, however, consist of distinct groups of instructions, each of which

accomplishes a specific task. Such a group of instructions is referred to as a “routine.”

Program routines, called “functions” in Python, are fundamental building blocks in

software development. We take our first look at functions in this chapter.

1Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons

So far, we have limited ourselves to using only the most fundamental features of
Python— variables, expressions, control structures, input/print, and lists. In
theory, these are the only instructions needed to write any program. From a
practical point-of-view, however, these instructions alone are not enough.

The problem is one of complexity. Some smart phones, for example, contain
over 10 million lines of code. In order to manage such complexity, programs are
divided into manageable pieces called program routines (or simply routines).
Doing so is a form of abstraction in which a more general, less detailed view of a
system can be achieved. In addition, program routines provide the opportunity
for code reuse, so that systems do not have to be created from scratch. Routines,
therefore, are a fundamental building block in software development.

We look at the definition and use of program routines in Python.

2Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons

Motivation

3Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons

Measures of Lines of Program Code

We first introduce the notion of a program routine. We then
look at program routines in Python, called functions. We
have already been using Python’s built-in functions such as
len, range, and others. We now look more closely at how
functions are used in Python, as well as how to define our
own.

4Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

Program Routines

What is a Function Routine?

A routine is a named group of instructions performing
some task. A routine can be invoked (called) as many times
as needed in a given program

5Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

6

.

Call to Routine A
.

.

Call to Routine A
.

.

Call to Routine A
.

.

Routine A

When a routine terminates, execution automatically
returns to the point from which it was called. Such routines
may be predefined in the programming language, or
designed and implemented by the programmer. A function
is Python’s version of program routine.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

7

• A function header starts with the keyword def, followed by an identifier
(avg), which is the function’s name.

• The function name is followed by a comma-separated (possibly empty) list
of identifiers (n1, n2, n3) called formal parameters, or simply
“parameters.” Following the parameter list is a colon (:).

• Following the function header is the function body, a suite (program block)
containing the function’s instructions. As with all suites, the statements must be
indented at the same level, relative to the function header.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

Defining Functions

8

The number of items in a parameter list indicates the number of values that
must be passed to the function, called actual arguments (or simply
“arguments”), such as variables num1, num2, and num3 below.

Functions are generally defined at the top of a program. However, every
function must be defined before it is called.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

9

Value-Returning Functions

A value-returning function is a program routine called for its return value,
and is therefore similar to a mathematical function, e.g.,

f(x) = 2x

In this notation, “x” stands for any numeric value that function f may be
applied to,

f(2) = 2 x 2 = 4

Program functions are similarly used.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

10

Function avg takes three arguments (n1, n2, and n3) and returns the
average of the three. The function call avg(10, 25, 16), therefore, is
an expression that evaluates to the returned function value. This is
indicated in the function’s return statement of the form return expr,
where expr may be any expression.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

Let’s Try It

11

From the Python Shell, first enter the following function, making sure to
indent the code as given. Hit return twice after the last line of the function
is entered. Then enter the following function calls and observe the results.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

12

Non-Value-Returning Functions

A non-value-returning function is called not for a returned value, but for its
side effects. A side effect is an action other than returning a function value,
such as displaying output on the screen.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

Let’s Try It

13

From the Python Shell, first enter the following function, making sure to
indent the code as given. Then enter the following function calls and
observe the results.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

14

Function Calls Overview

• A call to a value-returning function is an expression. It evaluates to the
value returned by the function call. Thus, calls to value-returning
functions are made part of a larger expression or instruction,

result = avg(10, 25, 16) * factor

• A call to a non-value-returning function is a statement. Thus, calls to
non-value-returning functions are written as a statement (instruction) on
its own,

displayWelcome()

• Technically, all functions in Python are value-returning, since functions
that do not return a value return special value None.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

The following is a program that allows a user to convert a range of values
from Fahrenheit to Celsius, or Celsius to Fahrenheit, as presented in Chapter
3. In this version, however, the program is designed with the use of
functions. This program utilizes the following programming features.

➤ value-returning functions ➤ non-value-returning functions

15

Temperature Conversion Program

Let’s Apply It

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

16Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

17

In lines 3–33 are defined functions
displayWelcome, getConvertTo,
displayFahrenToCelsius, and
displayCelsiusToFahren. The
functions are directly called from the
main module of the program in lines 35–
51.

Two non-value-returning functions are
defined, used to display converted
temperatures:
displayFahrenToCelsius (line 17)
and displayCelsiusToFahren
(line 26). Each is passed two arguments,
temp_start and temp_end, which
indicate the range of temperature values
to be converted.

Note that (value-returning) function
getConvertTo (line 9) does not take
any arguments. This is because the value
returned strictly depends on input from
the user.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

18Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

19Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

20Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

21Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

22Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

23Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

24Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

25Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

26Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.1 Program Routines

We further discuss issues related to function use, including
more on function invocation and parameter passing.

27Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

More on Functions

Calling Value-Returning Functions

Calls to value-returning functions can be used anywhere that
a function’s return value is appropriate,

result = max(num_list) * 100

28Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

29

Other examples of calls to value-returning functions.

(a) Expressions containing multiple function calls
(b) Function call as an argument to another function call
(c) Function call as conditional expression
(d) Function call as part of calls to built-in print function

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

30

A value-returning function may return more than one value
by returning the values are a tuple.

(a) Assigns the returned tuple to variable highlow_temps
(b) Uses tuple assignment to assign both variables high and low

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

Let’s Try It

31

Enter the definitions of functions avg and minmax given above. Then
enter the following function calls and observe the results.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

Calling Non-Value-Returning Functions

Calls to non-value-returning functions are for the side-
effects produced, and not for a returned function value,
such as displaying output on the screen,

displayWelcome()

32

It does not make any sense to treat this function call as an
expression,

welcome_displayed = displayWelcome()

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

33

As shown in the previous examples, both value-returning and
non-value-returning functions can be designed to take no
arguments.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

Functions Designed to Take No Arguments

Let’s Try It

34

Enter the definition of function hello given below, then enter the following
function calls and observe the results.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

Parameter Passing

Parameter passing is the process of passing arguments to a
function.

Recall that actual arguments are the values passed to a
function’s formal parameters to be operated on.

35Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

36

The correspondence of actual arguments and formal parameters
is determined by the order of the arguments passed, and not
their names.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

37

The following parameter passing is perfectly valid.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

It is fine to pass actual arguments num1 and num2 to function
ordered as shown (either num1 as the first argument, or num2 as
the first)

Let’s Try It

38

Enter the definition of function ordered given above into the Python Shell.
Then enter the following and observe the results.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

39

There is an issue related to parameter passing not yet considered.

If a function changes the value of any of its formal parameters,
does that change the value of the corresponding actual argument
passed?

Mutable vs. Unmutable Arguments

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

40

When literals are passed as arguments, there is no issue.

It is when the actual arguments are variables that this must be
considered.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

41

Since function avg does not change the value of its parameters,
the corresponding actual parameters num1, num2 and num3 will
not be altered.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

42

This function simply displays a countdown of the provided integer
parameter value. For example, function call countDown(4)
produces the following output,

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

Consider, however, the following function.

43

What if the function call contained a variable as the argument, for
example, countDown(num_tics)?

Since function countDown alters the value of formal parameter n,
decrementing it until it reaches the value − 1, does the
corresponding actual argument num_tics have value − 1 as well?

If you try it, you will see that variable num_tics is left unchanged.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

44

Now consider the following function.

Function sumPos returns the sum of only the positive numbers in the provided argument
(list). It does this by first replacing all negative values in parameter nums with 0, then
summing the list using built-in function sum.

We see that the corresponding actual argument nums_1 has been altered in this case,
with all of the original negative values set to 0.

The reason that there was no change in integer argument num_tics but there was in
list argument nums_1 has to do with their types.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

45

Immutable

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

Immutable

Numeric Types
(integers and floats)

Boolean Type

String Type]

Tuples

Lists

Dictionaries
(not yet introduced)

Let’s Try It

46

Enter the following and observe the results.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

Keyword Arguments in Python

The functions we have looked at so far were called with a
fixed number of positional arguments. A positional
argument is an argument that is assigned to a particular
parameter based on its position in the argument list,

47Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

Python provides the option of calling any function by the
use of keyword arguments. A keyword argument is an
argument that is specified by parameter name, rather than
as a positional argument.

48

This can be a useful way of calling a function if it is easier
to remember the parameter names than it is to remember
their order.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

It is possible to call a function with the use of both
positional and keyword arguments. However, all positional
arguments must come before all keyword arguments in the
function call, as shown below.

49

This form of function call might be useful, for example, if
you remember that the first argument is the loan amount,
but you are not sure of the order of the last two arguments
rate and term.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

Let’s Try It

50

Enter the following function definition in the Python Shell. Execute the
statements below and observe the results.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

Default Arguments in Python
Python provides for default arguments. A default argument
is an argument that can be optionally provided.

51

Parameter term is assigned a default value, 20, and
therefore is optionally provided when calling function
mortgage_rate. All positional arguments must come
before any default arguments in a function definition.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

Let’s Try It

52

Enter the following function definition in the Python Shell. Execute the
statements below and observe the results.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

Variable Scope

53

Variable scope has to do with the parts a program that a given
variable is accessible.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

Local Scope and Local Variables

54

A local variable is a variable that is only accessible from within a
given function. Such variables are said to have local scope. In
Python, any variable assigned a value in a function becomes a
local variable of the function.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

55

Both func1 and func2 contain identifier n. Function func1 assigns n to 10,
while function func2 assigns n to 20. Both functions display the value of n
when called—func2 displays the value of n both before and after its call to
func1. If identifier n represents the same variable, then shouldn’t its value
change to 10 after the call to func1? The execution of func2, however, shows
that the value of n remains unchanged.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

56

Now consider the following.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

In this case, when func2 is called, we get an error that variable n is not defined within
func1. This is because variable n defined in func2 is inaccessible from func1.

Variable Lifetime

57

The period of time that a variable exists is called its lifetime.
Local variables are automatically created (allocated memory)
when a function is called, and destroyed (deallocated) when the
function terminates. Thus, the lifetime of a local variable is equal
to the duration of its function’s execution. Consequently, the
values of local variables are not retained from one function call
to the next.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

Let’s Try It

58

Enter the following function definition in the Python shell. Execute the
statements below and observe the results.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

Global Variables and Global Scope

59

A global variable is a variable that is defined outside of any
function definition. Such variables are said to have global scope.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

60Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

Variable max is defined outside func1 and func2, and therefore “global” to each. Thus, it
is referred to as a global variable. As a result, it is directly accessible by both functions.

The use of global variables is generally considered to be bad programming style.
Although it provides a convenient way to share values among functions, all functions
within the scope of a global variable can access and alter it. This may include functions
that have no need to access the variable, but none-the-less may unintentionally alter it.

Another reason that the use of global variables is bad practice is related to code reuse.
If a function is to be reused in another program, the function will not work properly if it is
reliant on the existence of global variables that are nonexistent in the new program

The following program computes a semester GPA and new cumulative GPA
for a given student. This program utilizes the following programming
features:

➤ tuple assignment

61

GPA Calculation Program

Let’s Apply It

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

62Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

63

Function getGrades (lines
9-12) gets the semester
grades from the user. It
returns a list of sublists.
Each containing a letter
grade and the number of
credits, [['A', 3], ['B', 4], ['A',
3], ['C', 3]].

Function convertGrade
(lines 3-7) s passed a letter
grade, and returns its
numerical value.

Function calculateGPA
(lines 24-41) is given a
current GPA (and number
credits based on), and
grades and credits for the
current semester, and
calculates both the current
semester GPA and new
cumulative GPA. (returned
as a tuple).

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

64

The program greeting is on
line 46. Lines 49–50 get
the number of earned
credits and current
cumulative GPA from the
user. These two variables
are bundled into a tuple
named cumm_gpa_info
on line 51 . Since they are
always used together,
bundling these variables
allows them to be passed
to functions as one
parameter rather than as
separate parameters.

Function getGrades is called on line 55 , which gets the semester grades from the user and assigns it to variable
semester_grades. On line 58 , function calculateGPA is called with arguments semester_grades and
cumm_gpa_info. Finally, the results are displayed on lines 61-62.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

65Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

66Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

67Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

68Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

69Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

70Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

71Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

72Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

73Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.2 More on Functions

74

We look at the problem of determining the length of time needed to
pay off a credit card balance, as well as the total interest paid.

Credit Card Calculation Program

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

Credit Card Calculation

The Problem

75

The problem is to generate a table showing the decreasing
balance and accumulating interest paid on a credit card account
for a given credit card balance, interest rate, and monthly
payment.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

76Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

Credit Card Calculation

Problem Analysis

77

The factors that determine how quickly a loan is paid off are the amount of
the loan, the interest rate charged, and the monthly payments made. For a
fixed-rate home mortgage, the monthly payments are predetermined so that
the loan is paid off within a specific number of years.

For a credit card, there is only a minimum payment required each month.
The minimum payment for a credit card is usually around 2–3% of the
outstanding loan amount each month, and no less than twenty dollars. Thus,
calculating this allows us to project the amount of time that it would take
before the account balance becomes zero, as well as the total interest paid.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

Calendar Year

Program Design

78

• Meeting the Program Requirements

• Data Desciption

• Algorithmic Approach

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

79

Meeting the Program Requirements

No particular format is specified for how the output is to be displayed. All
that is required is that the user be able to enter the relevant information and
that the length of time to pay off the loan and the total interest paid is
displayed. The user will also be given the choice of assuming the monthly
payment to be the required minimum payment, or a larger specified amount.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

80

Data Description

All that needs to be represented in this program are numerical values for the
loan amount, the interest rate, and the monthly payment made. There is no
need to create a data structure as the table of payments can be generated as
it is displayed.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

81

Algorithmic Approach

The only algorithm needed for this problem is the calculation of the required
minimum payment. The minimum payment is usually calculated at 2% or 3%
of the outstanding balance, with a lower limit of around $20. Therefore, we
will assume a worst case scenario of a minimum payment calculated at 2%,
with a minimum payment of $20.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

82

The Overall Steps of the Program

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

Credit Card Calculation

Program Implementation

83

• Prompts user for current credit card balance, interest rate, and monthly
payment they wish to have calculated.

• Function displayPayments is designed to be passed the current balance,
interest rate, and monthly payment and display the month-by-month
balance and interest accrued. In this version, the function is implemented
to simply display on the screen the values of the parameters passed.

Stage 1— Developing the Overall Program Structure

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

84Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

85

Stage 1 Testing

From the test results, we see that the appropriate values are being input and
passed to function displayPayments.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

86Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

Program Implementation

87

Stage 2 – Generating an Unformatted Display of Payments

In this stage of the program, function displayPayments is implemented
to display the new monthly balance and interest accrued, without any
concern of formatting the output at this point.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

88Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

89

Stage 2 Testing

We test this program once for the minimum monthly payment, and once for a
specified monthly payment amount .

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

90

Balance and
Accrued Interest

Calculated
Correctly for

Minimum Payment

Testing for Minimum Payment

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

91

Clearly, there is something wrong with this version of the program. The ValueError
generated indicates that the format specifier .2f is an unknown format code for a
string type value, referring to line 18. Thus, this must be referring to variable
monthly_payment. But that should be a numeric value, and not a string value! How
could it have become a string type?

Testing for Payment Specified by User

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

92

Since the problem only occurred when the user entered the monthly payment (as
opposed to the minimum payment option), we try to determine what differences there
are in the program related to the assignment of variable monthly_payment.

determine monthly payment
response = input('Use the minimum monthly payment? (y/n): ')
if response in ('y', 'Y'):

if balance < 1000:
monthly_payment = 20

else:
monthly_payment = balance * .02

else:
monthly_payment = input('Enter monthly payment: ')

Since the variable monthly_payment is not a local variable, we can display its value
directly from the Python shell,

>>> monthly_payment
'140'

We immediately realize that variable monthly_payment is input as a string type!
We fix this problem by replacing the line with the following,

monthly_payment = int(input('Enter monthly payment: '))

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

Program Implementation

93

Stage 3 – Formatting the Displayed Output

In this final stage of the program, input error checking is added. The program
is also modified to allow the user to continue to enter various monthly
payments for recalculating a given balance payoff. Output formatting is added
to make the displayed information more readable. Finally, we correct the
display of a negative balance at the end of the payoff schedule.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

94Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

95Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

96Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

97

Stage 3 Testing

We give example output of this version of the program for both a payoff using
the required minimum monthly payment, and for a user-entered monthly
payment. The following depicts a portion of the output for the sake of space.

Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

98Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

Testing for Minimum Payment

99Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

Testing for Payment Specified by User

100Introduction to Computer Science Using Python – Dierbach Copyright 2013 John Wiley and Sons Section 5.3 Credit Card Calculation Program

Results of Testing of Final Stage

	Chapter 5 Functions
	Slide Number 2
	Slide Number 3
	Slide Number 4
	What is a Function Routine?
	Slide Number 6
	Defining Functions
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Let’s Try It
	Slide Number 12
	Let’s Try It
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Calling Value-Returning Functions
	Slide Number 29
	Slide Number 30
	Let’s Try It
	Calling Non-Value-Returning Functions
	Functions Designed to Take No Arguments
	Let’s Try It
	Parameter Passing
	Slide Number 36
	Slide Number 37
	Let’s Try It
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Let’s Try It
	Keyword Arguments in Python
	Slide Number 48
	Slide Number 49
	Let’s Try It
	Default Arguments in Python
	Let’s Try It
	Variable Scope
	Local Scope and Local Variables
	Slide Number 55
	Slide Number 56
	Variable Lifetime
	Let’s Try It
	Global Variables and Global Scope
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Credit Card Calculation�The Problem
	Slide Number 76
	Credit Card Calculation�Problem Analysis
	Calendar Year�Program Design
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Credit Card Calculation�Program Implementation
	Slide Number 84
	Slide Number 85
	Slide Number 86
	�Program Implementation
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	�Program Implementation
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100

