Worksheet for sections 8.1 and 8.2 Math 112

 $y = \sin^{-1} x$ means $x = \sin y$ where $-1 \le x \le 1$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ notice: quadrant I and IV $y = \tan^{-1} x$ means $x = \tan y$ where $-\infty \le x \le \infty$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ notice: quadrant I and IV $y = \cos^{-1} x \text{ means } x = \cos y \text{ where } -1 \le x \le 1 \text{ and } 0 \le y \le \pi \text{ notice: quadrant } I \text{ and } II$

1. Evaluate without a calculator giving exact values, since these angles are "special angles". Draw a sketch of the angle and label the point on a unit circle to illustrate each one.

For example: If $\sin \theta = x$, then $\sin^{-1} x = \theta$. Thus if $\sin \frac{\pi}{6} = \frac{1}{2}$, then $\sin^{-1} \left(\frac{1}{2}\right) = \frac{\pi}{6}$.

a.
$$\sin\left(\frac{\pi}{2}\right) =$$
_____ so $\sin^{-1}(1) =$ _____

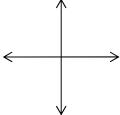
so
$$\sin^{-1}(1) =$$

b.
$$\tan\left(\frac{\pi}{3}\right) =$$
_____ so $\tan^{-1}\left(\sqrt{3}\right) =$ _____

so
$$\tan^{-1}(\sqrt{3}) =$$

c.
$$\cos\left(\frac{3\pi}{4}\right) =$$

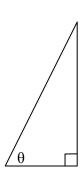
c.
$$\cos\left(\frac{3\pi}{4}\right) =$$
______ so $\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right) =$ _____



d.
$$\tan \left[\cos^{-1}\left(-\frac{1}{2}\right)\right] = \tan \left[--\right] =$$

2. Evaluate without a calculator giving an exact value. Draw and label a right triangle on these axes to illustrate how to solve this problem.

 $\left| \cot \cos^{-1} \left(-\frac{2}{3} \right) \right| = \underline{\hspace{1cm}}$


6. Use a calculator (set in radian mode) to find the value of each expression. Show how you are calculating each of these and round each answer to two decimal places.

a.
$$\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) =$$

b.
$$\csc^{-1}\left(\frac{4}{3}\right)$$

Finding the exact value of expressions involving inverse trig functions:

7. Find other trig functions of the angle θ in the right triangle show below, if $\theta = \sin^{-1}\left(\frac{12}{13}\right)$.

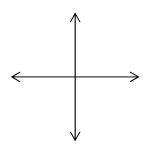
Recall that if
$$\theta = \sin^{-1}\left(\frac{12}{13}\right)$$
, then $\sin \theta = \frac{12}{13}$.

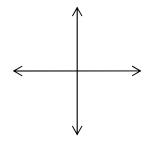
Find the exact value of
$$\tan \left(\sin^{-1} \left(\frac{12}{13} \right) \right) =$$

Find the exact value of
$$\cos\left(\sin^{-1}\left(\frac{12}{13}\right)\right) =$$

Using your calculator, find the approximate value of θ .

8. Find other trig functions of the angle θ in the right triangle show below, if $\theta = \cos^{-1}\left(\frac{3}{5}\right)$.


Recall that if
$$\theta = \cos^{-1}\left(\frac{3}{5}\right)$$
, then $\cos \theta = \frac{3}{5}$.


Find the exact value of
$$\sin\left(\cos^{-1}\left(\frac{3}{5}\right)\right) =$$

Find the exact value of
$$\tan\left(\cos^{-1}\left(\frac{3}{5}\right)\right) =$$

Using your calculator, find the approximate value of θ .

- 9. Find the exact value of $\sin\left(\cos^{-1}\left(-\frac{3}{5}\right)\right) = 10$. Find the exact value of $\cos\left(\sin^{-1}\left(-\frac{3}{5}\right)\right) = 10$.

