5.5 – 5.6 Polynomial Functions

I. Rational Roots Theorem

Let f(x) be a polynomial function of degree 1 or higher of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

where each coefficient is an integer. If p/q, in lowest terms is a rational zero of f, then **p** must be a factor of a^0 and **q** must be a factor of a^n .

Possible Rational Roots (PPR): <u>Divisors of the constant</u> Divisors of the leading coefficient

Think about this example: $f(x) = 2x^2 - x - 15$. Factor and find the zeros. See how they illustrate the theorem above.

Steps for Finding Zeros of a Polynomial and Graphing

- Step 1: Use the degree of the polynomial to determine the maximum number of Zeros and turning points.
- Step 2: Use the leading coefficient to determine the end behavior of the polynomial
- **Step 3:** If the polynomial has *integer* coefficients, use the **Rational Zeros Theorem** to **identify those rational numbers** that are potential zeros. (*See if there are any common factors first and factor out the common factor first.*)
- **Step 4:** Use your **calculator table to test PPR** (Possible rational roots/zeros) to determine the actual rational zeros of the polynomial.
- Step 5: Use synthetic division to help you to write the polynomial in factored form. This will allow you to find the zeros that are not rational. (irrational, Imaginary, or complex numbers.)
 A review of synthetic division can be found on page 57 of your textbook.
- Step 6: Graph the polynomial labeling all zeros. (Set up "window" by possible rational roots. Use ZOOM "1: ZBox " to get a better view of the zeros.)

EX.	$f(x) = 2x^3 + 5x^2 - 28x - 15$						
STEP 1:	# of zeros:	Maximum # of turning points:					
STEP 2:	End behavior:						
STEP 3:							
Possible Rational Roots (PRR): = <u>Divisors of the constant</u> = Divisors of the leading coefficient							
List all of	the PPR:						

II. Finding the Zeros of a Polynomial Function

STEP 4: Use your calculator table to test PRR. What are the real rational zeros?_____

STEP 5: Use synthetic division to put f(x) in completely factored form and find any other zeros.

 $f(x) = 2x^3 + 5x^2 - 28x - 15 =$

STEP 6: Sketch.

•	→

EX.	$f(x) = 3x^5 - 12x^4 - 30x^3 + 84x^2 - 45x = _$			
	Factor out common factor before using Rational Root Test!			
STEP 1: # of zeros: Maximum # of turning points:				
STEP 2: End behavior:				
STEP 3: Factor out common factor before using Rational Root Test!				
Possible Rational Roots (PRR): = <u>Divisors of the constant</u> = Divisors of the leading coefficient				
List all of	the PPR:			

STEP 4: Use your calculator table to test PRR. What are the real rational zeros?_____

STEP 5: Use synthetic division to put f(x) in completely factored form and find any other zeros.

 $f(x) = 3x^5 - 12x^4 - 30x^3 + 84x^2 - 45x =$

STEP 6: Sketch.

EX.	$f(x) = x^3 -$	$4x^2 + 25x - 100$					
STEP 1:	# of zeros:		Maximum # of turning points:				
STEP 2:	End behavior:						
STEP 3:							
Possible Rational Roots (PRR): = <u>Divisors of the constant</u> = Divisors of the leading coefficient							
List all of	the PPR:						

STEP 4: Use your calculator table to test PRR. What are the real rational zeros?_____

STEP 5: Use synthetic division or factor by grouping to put f(x) in completely factored form and find any other zeros.

$$f(x) = x^3 - 4x^2 + 25x - 100 =$$

STEP 6: Sketch.

