Test 2, version A, Spring 2011

100

Sections 7.6-7.8 & 8.1-8.5

Seat Location: ____

Show all your work. Full credit is based on your work shown! 6 pts

1. a. Use a sum or difference identity to write the expression as a function of a single angle, then find the exact value of the expression. $\cos 165^{\circ} \cos 15^{\circ} - \sin 165^{\circ} \sin 15^{\circ} =$

10 pts

b. Use a sum or difference identity to find the <u>exact value</u> of $\cos \frac{7\pi}{12}$.

2. Given that $\sin \alpha = \frac{4}{5}$ with $\frac{\pi}{2} < \alpha < \pi$, and $\sin \beta = -\frac{2}{\sqrt{5}} = -\frac{2\sqrt{5}}{5}$, with $\pi < \beta < \frac{3\pi}{2}$,

find the **exact value** of each of the following: (Sketch a reference triangle and label its sides.) 5 pts

5 pts

a. $\cos \alpha =$

b. $\cos \beta =$

6 pts

c. $\sin(\alpha + \beta) =$

6 pts

d. $\sin(2\alpha) =$

6 pts

e.
$$\cos\left(\frac{\beta}{2}\right) =$$

3. Establish each identity. Show all your steps to indicate which identities you used.

5 pts

a.
$$\cos \theta (\tan^2 \theta + 1) = \sec \theta$$

7 pts

b.
$$(\sin \theta + \cos \theta)^2 + (\sin \theta - \cos \theta)^2 = 2$$

8 pts

c.
$$\csc x - \sin x = \cos x \cot x$$

12 pts

4. Evaluate without a calculator giving **exact values**. Draw and label a sketch to illustrate each one. [Note: Your sketch should show the angle and a labeled triangle or a point on the unit circle.]

a. $\sin^{-1}\left(-\frac{1}{2}\right) =$ _____

b.
$$\tan \left[\cos^{-1} \left(-\frac{1}{2} \right) \right] = \tan \left[-\frac{1}{2} \right]$$

reference $\angle = \underline{\hspace{1cm}}$ (in radians)

reference $\angle = \underline{\hspace{1cm}}$ (in radians)

5. Write the equation of the cosine function that satisfies the following information.

Amplitude = 1.5, period = 4π , phase shift = $\frac{\pi}{4}$ units to the right, and vertical shift = up 2 unit.

16pts

6. For each of the following functions, graph at least two periods (one period in the positive x direction and one period in the negative x direction.) Find the pertinent information (amplitude, period, divisions of period, etc.) **Label the axes with appropriate values**. Asymptotes should be dashed lines. Plot at least 5 points in each period.

a. $y = -3\sin(2x - \pi)$

period: _____

amplitude: _____

phase shift: _____

b. $y = -3\csc(2x - \pi)$

24