Write down the first 5 terms of each sequence.

1.
$$\{(n-1)^2\}$$

$$2.\{(-1)^n(\frac{n+3}{n+1})\}$$

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$$

Evaluate using formulas.

3.
$$\sum_{k=1}^{10} (k+3) =$$

3.
$$\sum_{k=1}^{10} (k+3) =$$
 4. $\sum_{k=1}^{8} (2k^2 - 1) =$

Find a general formula for the sequence.

Arithmetic Sequences

Geometric Sequences

$$a_n = a_1 + d(n-1)$$

$$a_n = a_1 + d(n-1)$$

$$S_n = \frac{n}{2}(a_1 + a_n)$$

$$a_n = a_1 r^{n-1}$$

$$S_n = \frac{a_1(1 - r^n)}{1 - r}$$

$$S_{\infty} = \frac{a_1}{1-r}, |r| < 1$$

6. a. Write out the terms in the indicated sequence and then find the sum.

$$\sum_{k=1}^{7} 4k - 3 =$$
 (4 pts.

- c. Find the 35th term of the sequence.

d. Find the sum of the first 35 terms of the sequence.

$$S_{35} =$$
 (4 pts.)

- 7. Given the sequence
 - a. Is the sequence arithmetic or geometric?

b. Write a formula for the nth term of the sequence.

$$a_n =$$
 (4 pts.)

c. What is the 8th term?

$$a_8$$
 = _____ (4 pts.,

d. What is the sum of the first 8 terms?

$$S_8 =$$
 (4 pts.)

e. What is the sum of this infinite sequence?

$$S_n =$$
 (4 pts.)