Math 112 -	
------------	--

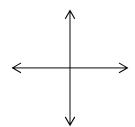
Quiz Average:

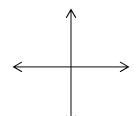
Quiz #5, version A, Spring 2012 **Sections 8.1-8.2**

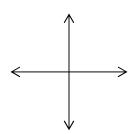
20

Seat location: _____ Semester Ave: _____

Full credit is based on work shown!

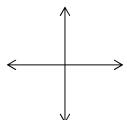

Note: Angles should be in radians for inverse trig functions. (Also consider the appropriate quadrants.)


1. Evaluate without a calculator giving **exact values**. Draw and label a sketch to illustrate each one. (Note: Your sketch should show the angle and a labeled triangle or a labeled point on the unit circle.)


a.
$$tan^{-1}(-1) =$$

b.
$$\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right) =$$

a.
$$tan^{-1}(-1) =$$
_____ b. $cos^{-1}\left(-\frac{\sqrt{2}}{2}\right) =$ ____ c. $tan\left[sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right] =$ _____



5 pts

2. Evaluate without a calculator giving an exact value. Draw and label a right triangle to illustrate how to solve this problem.

$$\cot \left[\sin^{-1} \left(-\frac{4}{5} \right) \right] = \underline{\hspace{1cm}}$$

3. Use a calculator to find the value of each expression. Round each answer to two decimal places.

a.
$$\tan^{-1} \left(-\frac{5}{2} \right) =$$

b.
$$\sec^{-1}\left(\frac{7}{4}\right)$$