The Need-to-know List

In order to be able to fully appreciate the calculus that you learn this year, you need to be completely comfortable with the following fundamental building blocks.

1 Arithmetic/Algebra

$$(a+b)^2 = a^2 + 2ab + b^2 \qquad \text{NOT} = a^2 + b^2!!!!!$$

$$a^2 - b^2 = (a+b) \times (a-b)$$

$$x^3 + y^3 = (x+y) \times (x^2 - xy + y^2)$$

$$x^3 - y^3 = (x-y) \times (x^2 + xy + y^2)$$

$$(a+b)/c = a/c + b/c$$

$$c/(a+b) \qquad \text{Does NOT Simplify!!!!!!}$$

Know how to factor and find roots of polynomials.

2 Powers

Simplifies	Does Not Simplify		
$x^a x^b = x^{a+b}$	$x^a + x^b$		
$a^x a^y = a^{x+y}$	$a^x + a^y$		
$x^a y^a = (xy)^a$			
$(x^a)^b = x^{ab}$	$x^{(a^b)}$		
$x^{-a} = 1/x^a$			
$\sqrt{xy} = \sqrt{x}\sqrt{y}$	$\sqrt{x+y}$		
$\sqrt{x^2} = x $			

Memorize these special values!

$$1^0 = 1$$
 $0^1 = 0$ $0^0 =$ undefined

3 Trigonometry/Triangles (Review Later)

SOH-CAH-TOA:
$$\sin(\theta) = \frac{\text{OPP}}{\text{HYP}}$$
, $\cos(\theta) = \frac{\text{ADJ}}{\text{HYP}}$, $\tan(\theta) = \frac{\text{OPP}}{\text{ADJ}}$
 $\sin^2(x) + \cos^2(x) = 1$ For all x's!
 $a^2 + b^2 = c^2$ For right triangles, hypotenuse c.

Memorize these special values!

$$30^{\circ} = \pi/6$$
 $45^{\circ} = \pi/4$ $90^{\circ} = \pi/2$ $180^{\circ} = \pi$ $360^{\circ} = 2\pi$

0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1
$\sin(0)$	$\sin(\pi/6)$	$\sin(\pi/4)$	$\sin(\pi/3)$	$\sin(\pi/2)$
$\cos(\pi/2)$	$\cos(\pi/3)$	$\cos(\pi/4)$	$\cos(\pi/6)$	$\cos(0)$

Key Identities

$$\sin(2x) = 2\sin(x)\cos(x)$$
 Sine Double Angle
 $\cos(2x) = \cos^2(x) - \sin^2(x)$ Cosine Double Angle
 $\sin^2 x = [1 - \cos(2x)]/2$ Sine Half-Angle
 $\cos^2 x = [1 + \cos(2x)]/2$ Cosine Half-Angle