
DISSERTATION

TRANSFORMING UML CLASS MODELS

Submitted by

Devon Michael Simmonds

Department of Computer Science

In partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2007

COLORADO STATE UNIVERSITY

March 15, 2007

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED

UNDER OUR SUPERVISION BY DEVON MICHAEL SIMMONDS ENTITLED

TRANSFORMING UML CLASS MODELS BE ACCEPTED AS FULFILLING

IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOS-

OPHY.

Committee on Graduate Work

James M. Bieman, Ph.D., Committee Member

Gregory L. Florant, Ph.D., Committee Member

Sudipto Ghosh, Ph.D., Co-Adviser

Robert B. France, Ph.D., Adviser

L. Darrell Whitley, Ph.D., Department Head

ii

ABSTRACT OF DISSERTATION

TRANSFORMING UML CLASS MODELS

In a model driven development (MDD) environment, developers create and

evolve applications by creating models and transforming abstract models to more

concrete models. To realize the benefits of MDD, model transformation languages

are needed. The MOF 2.0 Query View Transformation (QVT) Language is an

Object Management Group’s (OMG) standard for specifying model transforma-

tions. QVT transformations are specified explicitly (in terms of) using instances

of metamodel level classes. Using QVT to specify transformations on moderately-

sized UML class models results in large object-level specifications that can be

tedious to read and understand.

This dissertation presents a language for specifying class model transforma-

tions at a higher level of abstraction than the level of instances of metamodel

classes. The language leverages the UML class model notation, and is used to

create transformation schemas that consist of transformation directives. An in-

terpreter for performing the transformation is also presented. The interpreter

performs the transformation by processing the directives found in the transforma-

tion schema. The interpretation algorithm is described in this dissertation.

To demonstrate the use of the transformation technique, platform-independent

class models describing transaction and distribution features are transformed into

iii

platform-specific class models describing CORBA and Jini realizations of the fea-

tures.

Devon Michael Simmonds
Department of Computer Science
Colorado State University
Fort Collins, Colorado 80523
Spring 2007

iv

ACKNOWLEDGEMENTS

I thank God who is the source of my life, for the grace, mercy, strength and

blessings that He generously provided us during this research. His goodness and

His mercy have sustained us.

Thanks to my advisors, Dr. Robert France and Dr. Sudipto Ghosh for their

support and guidance during the process. Special thanks to Dr. France who

provided support during his sabbatical when he certainly could have used his

time for other purposes. Thanks as well to Dr. James Bieman and Dr. Greg

Florant my other committee members.

During my years at CSU, I enjoyed excellent relationships and consistent fi-

nancial support from the Computer Science Department. In that regard, I would

like to thank my advisors and all departmental administrators and staff involved.

These include: Dr. Dale grit, Dr. L. D. Whitley, Susan Short, Sharon Vangoirder

and Carol Calliham. Special thanks as well to Dr. Raghu Reddy, Arnor Solberg

and the other members of the CSU software engineering research group who all

made a positive contribution to my program. My collaborations with Raghu and

Arnor were the best I had with other students during my stay at CSU and I wish

to express my thanks to them. Thanks as well to Dr. Eunjee Song and Dr. Trung

Thanh Ding Trong.

Words are inadequate to express my sincere gratitude to my wife Marie. This

dissertation would not have been completed without her love, care, many devoted

v

prayers and consistent support. While it is only my name that will appear on the

CSU academic transcript, I am very happy that in the courts of heaven, there is

another transcript, one more noble and more glorious - with her name on it!

Finally, thanks to my relatives and friends for their constant love, prayers and

support. This includes my parents Vivian and Icylin Simmonds; Dr. Devon Lynch

and Jennifer Lynch; the pastors and members of the Jamaica Conference of the

Church of God (7th day); the pastors and members of the Church of God (7th

day) in Denver, Colorado; Faith Gordon; Lennox and Mercedes Deane; Winnifred

Taylor; Paul Anderson; Barbara Angella Smith; and Norris George McDermott,

the great Man of God.

vi

DEDICATION

I dedicate this dissertation to my lovely, loving, beautiful, darling wife Marie: as

a trophy to good wifing, selfless love and warm generosity. Thanks Beautiful!

vii

TABLE OF CONTENTS

1 Introduction 1

1.1 Problem Statement . 1

1.2 Solution Overview . 6

1.3 Contribution and Scope of Dissertation 7

1.4 Structure of Dissertation . 8

2 Background 9

2.1 Model Transformation . 9

2.2 Model Driven Development (MDD) 11

2.3 Representing Model Patterns Using Templates 12

2.4 Middleware Technologies . 14

2.4.1 Jini . 15

2.4.2 Common Object Request Broker Architecture (CORBA) 16

3 Related Work 18

3.1 Kermeta . 18

3.2 The ATLAS Transformation Language (ATL) 20

3.3 Visual Model Transformation (VMT) 20

3.4 MOLA . 21

3.5 Tefkat . 23

3.6 QVT . 24

3.6.1 The Relations Language . 24

3.6.2 Comparison . 27

viii

3.7 Summary and Discussion . 27

4 Model-To-Model Transformation 29

4.1 Introduction . 29

4.2 Class Transformation Example . 31

4.3 Form of Class Transformation Schemas 36

4.4 Transformation Directives . 40

4.4.1 The rename Directive . 40

4.4.2 The source Directive . 41

4.4.2.1 Merging Classes Using the Source Directive 43

4.4.2.2 Operation Template source Directive 45

4.4.3 The redefine Directive . 46

4.4.4 The new Directive . 48

4.4.5 The exclude Directive . 52

4.4.6 Applying Directives to Relationships 54

4.5 Class Diagram Transformation Metamodels 56

4.5.1 Transformation Schema Class Diagram Metamodel 58

4.5.2 Transformation Schema Object Diagram 58

4.5.3 Transformation Implementation Metamodel 61

4.6 A Grammar for Transformation Directives 62

4.7 A Transformation Directive Processing Algorithm For Class Models . 68

4.8 How the Algorithm Implements Rules for Processing Transformation

Directives . 84

4.8.1 Transformation Rules . 85

4.8.1.1 General Rules . 85

4.8.1.2 How the Algorithm Implements the General Rules 86

4.8.1.3 Specific source Directive Rules 89

ix

4.8.1.4 How the Algorithm Implements source Directive Rules 89

4.8.1.5 Specific redefine Directive Rules 90

4.8.1.6 How the Algorithm Implements redefine Directive Rules 90

4.8.1.7 Specific exclude Directive Rules 93

4.8.1.8 How the Algorithm Implements exclude Directive Rules 93

4.8.1.9 Specific new Directive Rules . 95

4.8.1.10 How the Algorithm Implements new Directive Rules 96

4.8.2 Summary . 98

4.9 Lessons Learned . 99

4.10 Discussion: Use of Target Patterns to Validate Transformations . . . 105

5 Pilot Studies: Transforming Distribution Class Models 108

5.1 Pilot Study 1: Transforming Distribution Class Model to CORBA

Class Model . 108

5.1.1 CORBA Support For Server Distribution 108

5.1.2 Source Class Pattern . 110

5.1.3 Specify CORBA Model Transformations 110

5.1.4 Source Model and Binding Specification 111

5.1.5 Process Transformation Directives 113

5.2 Pilot Study 2: Transforming Distribution Class Model to Jini Class

Model . 121

5.2.1 Specify Model Transformations . 121

5.2.2 Process Transformation Directives 122

5.3 Discussion . 128

6 Pilot Studies: Transforming Distributed Transaction Models 132

x

6.1 Pilot Study 3: Transforming Transaction Class Model to CORBA

Class Model . 132

6.1.1 Overview of CORBA Transaction Service 132

6.1.2 Source Class Pattern . 134

6.1.3 Specify Model Transformations . 136

6.1.4 Source Class Model and Binding Specification 137

6.1.5 Process Transformation Directives 138

6.2 Pilot Study 4: Transforming Transaction Class Model to Jini Class

Model . 142

6.2.1 Overview of Jini Transaction Service 142

6.2.2 Specify Model Transformations . 145

6.2.3 Process Transformation Directives 145

6.3 Discussion . 148

7 Conclusion and Future Work 154

7.1 Lessons Learned . 155

7.2 Future Work . 156

References 158

xi

LIST OF TABLES

4.1 Binding Specification. 34

5.1 Binding Specification. 112

5.2 Target Binding Specification. 130

6.1 Bindings for Money Transfer Transaction Source Model. 138

6.2 Target CORBA Binding Specification. 152

6.3 Target Jini Binding Specification. 153

xii

LIST OF FIGURES

1.1 QVT Server Distribution Transformation. 3

1.2 A Source Model. 4

1.3 The Target Model. 5

1.4 Model-to-model Transformation Process. 7

2.1 Example of A Class Diagram Template 13

2.2 Example of An Instantiated Class Diagram 13

2.3 Class Template Metamodel. 14

3.1 Features of Kermeta [50] . 18

3.2 MOLA Specification to Transform A Class to A Table [16]. 22

3.3 UML Class to Relational Table Relation [26]. 25

3.4 QVT Relation With where Clause [25]. 26

4.1 Model Transformation Process. 30

4.2 Source Pattern for Simple Transaction Service. 31

4.3 Transformation Schema. 32

4.4 Source Model for Simple Transaction Service. 33

4.5 Target Model After Transaction Schema Classes are Processed. 35

4.6 Target Model for Simple Transaction Service. 37

4.7 Transformation Schema Compartments. 38

4.8 Transformation Schema Stereotypes. 39

4.9 Merging Model Elements Using The source Directive. 44

xiii

4.10 The source Directive Applied to Operation Templates. 45

4.11 The redefine Directive. 49

4.12 The new Directive. 51

4.13 Implicit Use of The new Directive. 52

4.14 The exclude Directive. 54

4.15 Applying Directives to UML Relationships. 55

4.16 Model-to-model Transformation Conceptual Model. 57

4.17 Transformation Schema Class Diagram Metamodel. 59

4.18 Transformation Schema Object Diagram. 60

4.19 Transformation Implementation Metamodel Showing Relationships. . 62

4.20 Transformation Implementation Metamodel Showing Behavioral Fea-

tures. 63

4.21 EBNF Grammar for Transformation Directives. 64

4.22 EBNF Grammar for Transformation Directives (part 2). 65

4.23 Call Graph of Algorithm for Processing Class Transformation Schemas. 69

4.24 Sequence Diagram for Transformation Algorithm. 72

4.25 Transformation Algorithm for Class Models (part 1). 73

4.26 Transformation Algorithm for Class Models (part 2). 74

4.27 Transformation Algorithm for Class Models (part 3). 75

4.28 Transformation Algorithm for Class Models (part 4). 76

4.29 Transformation Algorithm for Class Models (part 5). 77

4.30 Transformation Algorithm for Class Models (part 6). 78

4.31 Transformation Algorithm for Class Models (part 7). 79

4.32 Transformation Algorithm for Class Models (part 8). 80

4.33 Transformation Algorithm for Class Models (part 9). 81

4.34 Transformation Algorithm for Class Models (part 10). 82

xiv

4.35 The merge Operation. 83

4.36 Ordering Transformation Directives - Example 1. 100

4.37 Ordering Transformation Directives - Example 2. 101

4.38 Ordering Transformation Directives - Example 3. 102

4.39 Transformation Conceptual Model With Target Pattern. 105

5.1 Source Pattern. 110

5.2 CORBA Class Transformation Schema. 111

5.3 Source Model for Server Distribution. 112

5.4 CORBA Distribution Target Model. 120

5.5 Class Transformation Schema. 121

5.6 Jini Server Distribution Target Model. 127

5.7 Target Class Pattern . 128

6.1 Source Class Pattern for Distributed Transactions. 135

6.2 CORBA Class Diagram Transaction Transformation Schema. 136

6.3 A Money Transfer Service Class Diagram. 137

6.4 Target CORBA Transaction Class Model. 142

6.5 Jini Class Diagram Transaction Transformation Schema. 145

6.6 Target Jini Transaction Class Model. 149

6.7 Target Pattern for Distributed Transactions. 150

xv

Chapter 1

Introduction

Models can aid the process of understanding, creating and evolving complex soft-

ware systems [33]. A model is an abstract representation of a system or entity,

that is, a model does not describe all the properties of the entity being repre-

sented, but describes only selected properties depending on its purpose. Model

Driven Development (MDD) [32, 33] aims to leverage the benefits of models in

software engineering. MDD methods take a model-centric approach to software

development in which applications are created by transforming abstract models

to concrete implementations.

A model transformation is a process that takes as input one or more source

models and produces one or more target models [11, 23]. For example, model

transformations may be used to integrate multiple source models, divide a single

source model into multiple target models, add details to source models or remove

details from source models.

1.1 Problem Statement

To realize the benefits of MDD, model transformation languages and mechanisms

are needed. A model transformation language provides constructs for specifying

transformations. The MOF 2.0 Query View Transformation (QVT) Language [27]

1

is an Object Management Group’s (OMG) standard for specifying model transfor-

mations. QVT includes an operational mappings language, a core language and

a relations language. The relations language and the core language are designed

for describing declarative transformation specifications. In contrast, the opera-

tional mappings language is designed for describing imperative implementations

of transformations.

The relations language includes equivalent textual and graphical syntax nota-

tions. In the graphical notation, a transformation is expressed as a relationship

between a source domain and a target domain, where a domain is a pattern that is

specified as an object diagram. The source domain pattern describes valid input

or source models and the target domain pattern describes valid output or target

models.

Each model element in the source domain is an instance of a class in the source

metamodel and each model element in the target domain is an instance of a class

in the target metamodel. The source and target metamodels are expressed using

the OMG’s MetaObject Facility (MOF) [28]. The MOF is a standard for creating

metamodels. The MOF was used to create the Unified Modeling Language (UML)

2.0. metamodel [46]. The UML is an OMG modeling language standard.

Specifying transformations on UML models using the QVT relations language

requires one to work at the level of instances of metamodel classes. Describing

models in terms of metamodel class instances can produce large descriptions, and

expressing transformations at this level of granularity can be tedious for medium

to large-sized models. For example, a QVT source pattern that describes class

models consisting of two classes with one attribute each, and one association

between the classes, will contain instances for the classes, the attributes, the

attribute types, the association and the association ends, that is, at least 9 model

2

Target Pattern

c1p2: Property

name = ORB

c1: Class

c1p: Property

c1Op: Operation

name =init

name =CORBA.Object

c1Op2rt2: Type

name =resolve_initial_references

c1Op2: Operation

name =run

c1Op3: Operation
c1Opp2: Parameter

name =props

name =Properties

c1Oppt2: Typec1Op2p: Parameter

name =obj name =String

c1Op2pt: Type

name =Properties

c1Oprt: Type

name =args

c1Opp: Parameter

c1Oppt: Type

name =String

cc1a: Association

cc1p2: Property

cc1p1: Property

c2p: Property

<<domain>>

c1pa: Association

name=providesInterface

c2pa: Realization c2p2: Property

name = IDLInterfacePOA

c3: Class

c3a: Association

c3p2: Property

c3p: Property

name=IDLInterfaceOperations

c4: Class

name=sOpt.name

c4Opt: Type

c4Opp: Type

name=sOppt.name

sOppt: Type

sOpp: Parameter

name =p

<<domain>>
server: Class

name = Server

sOp: Operation

name=providesInterface

rel: Realization

p_a: Property

p_b: Property

name = ServerOperations

sint: Interface

c5c2p1: Property

c2ca: Association

c5c2p2: Property

name = POA

c5: Interface
c5p1: Property

name = POAManager

c2: Interface

sOpt: Type

c2Op: Operation

name =activate

+returnType

+returnType

c2cp2: Property

c2cp1: Property

target: Class

name = Server

CORBAdistribution

name =init

c4Op: Operation

c4Opp: Parameter

name =sOpp.name

name=configurePOA
c5p2: Property

c5a: Association

E

um1:UML um2:UML

c5c2a: Association

Source Pattern

Figure 1.1: QVT Server Distribution Transformation.

elements.

In addition to being large, QVT specifications are difficult to understand be-

cause it is difficult to differentiate between types of model elements if they are all

represented as instances of metamodel classes. For example, Figure 1.1 shows a

QVT transformation specification for transforming a platform-independent server

distribution class model into a CORBA distribution class model. The figure in-

cludes a source pattern and a target pattern. The dotted lines between the source

pattern from the target pattern is added to separate the two patterns and is not

a part of the QVT specification.

The source pattern describes valid source or input models and the target pat-

tern describes valid target or output models. The source pattern includes nine

3

UML object symbols and eight links. A valid source model is shown in Figure 1.2.

The source model consists of only a UML class, a UML interface with two opera-

tions and a realization dependency between the class and the interface. Figure 1.3

shows a valid target model consisting of nineteen model elements (one interface,

five classes, eight operations and five relationships). In comparison, the target

pattern consists of eighty three model elements (forty three object symbols and

forty links).

The example illustrates that describing families of small models at the level

of instances of metamodel classes can be tedious since patterns and relation-

ships among model elements are expressed in terms of explicitly defined object

structures. There is a need to raise the level of abstraction at which transfor-

mations are specified above the level of instances of metamodel classes. Given

two specifications, Specification-A and Specification-B, Specification-A

is said to be at a higher level of abstraction than Specification-B, if a unit

of specification in Specification-A describes one or more units of specification

in Specification-B. This dissertation proposes a transformation language that

raises the level of abstraction at which transformations are specified above the

level of instances of metamodel classes. The new language defines units of specifi-

cation, each of which describes one or more instances of metamodel level classes.

Server

withdraw(acc:String, amount:float)

providesInterface

ServerOperations

deposit(acc:String, amount:float)

Figure 1.2: A Source Model.

4

Server

ORB

run()

init(args:String[], props:Properties):ORB

resolve_initial_references(refName:String):CORBA.Object

IDLInterfacePOA

deposit(acc:String, amount:float)

withdraw(acc:String, amount:float)

IDLInterfaceOperations

providesInterface

0..1

activatePOA

0..1

initializeORB

*

*

*

*

configurePOA

activate()

POAManager

the_POAManager():POAManager
servant_to_reference(sobj:Server):CORBA.Object

POA

Figure 1.3: The Target Model.

5

1.2 Solution Overview

This dissertation addresses the problems associated with the use of QVT for spec-

ifying class model transformations. The proposed transformation technique con-

sists of a graphical transformation language that raises the level of abstraction

at which transformations are specified above the level of instances of metamodel

classes, and a mechanism that takes a transformation specification expressed in

the language as input, and performs the specified transformation on instances of

metamodel classes.

It is advantageous if available modeling tools can be used to specify transfor-

mations. We designed the language so that existing UML tools can be used to

create the transformation specifications. The language leverages the UML class

diagram notation so that the transformation specifications more directly reflect

how the target model elements are produced from source model elements.

An overview of the technique is described in the activity diagram shown in

Figure 1.4. The activities shown in the diagram are described below:

1. The Develop Source Pattern activity produces the Source Pattern that

describes the set of properties that valid source models must possess. Each

source model is an instance of the source pattern.

2. The transformation specification is created in the Specify Model

Transformations activity. A transformation specification is called a

Transformation Schema and it includes imperative statements called di-

rectives that stipulate how Source Model elements are transformed into

Target Model elements.

3. The directives in the transformation schema are processed in the Process

Transformation Schema activity. The input to this activity are the Source

6

Develop Source Pattern

Transformation
Schema

Target
Model

Specify

Transformations
Model

Source
Pattern

Source
Model

Process Transformation
Schema

Figure 1.4: Model-to-model Transformation Process.

Model and the transformation schema. The activity outputs the Target

Model.

1.3 Contribution and Scope of Dissertation

The primary contribution of this dissertation is a model transformation technique

consisting of a graphical model transformation language that raises the level of

abstraction at which transformations are defined and an associated interpreter

that performs the specified transformations on metamodel class instances. The

technique is demonstrated by using it to transform platform-independent trans-

action and distribution class models into platform-specific CORBA and Jini class

models.

7

The key feature of the transformation schema language is that the language

raises the level of abstraction of transformation specifications above the level of

instances of metamodel classes. This is accomplished by leveraging the use of

UML class model notation.

The model transformation language was created to transform UML class dia-

grams because class diagrams are the most widely used models in object-oriented

modeling. One can expect that there will be many cases in which transformations

on class diagrams will be needed. This dissertation provides a tailored language

for specifying class diagram transformations.

1.4 Structure of Dissertation

Chapter 2 provides background information and Chapter 3 discusses related re-

search. Chapter 4 presents the technique for transforming class models using

transformation schemas. The technique is applied to the transformation of distri-

bution and transaction class models in Chapters 5 and 6. Chapters 5 presents the

transformation of a distribution class model to CORBA and Jini class models and

Chapter 6 presents the transformation of a transaction class model into CORBA

and Jini class models. The conclusion and future research is presented in Chapter

7.

8

Chapter 2

Background

This chapter includes an overview of model transformation, an overview to model

driven development, a description of how model patterns are expressed and a

description of CORBA and Jini middleware features.

2.1 Model Transformation

Model transformation [2, 5, 11, 14, 23, 29, 35, 36] is a process that takes as

input one or more source models and produces target models. Model transforma-

tions can be classified into various types, based on the way the source models are

changed to realize the target models, for example [11]:

1. Composition is a transformation in which multiple source models are inte-

grated.

2. Anti-composition is a transformation in which a single source model is

divided into multiple target models.

3. Refactoring is a transformation in which a model is reorganized into dif-

ferent parts at the same level of abstraction.

4. Refinement is a transformation in which more detail is added to a model.

9

5. Abstraction is a transformation in which detail is removed from a model.

The transformation language presented in this dissertation may be used to

effect abstraction, refinement, refactoring and anti-composition. Composition is

beyond the scope of the dissertation. Abstraction may be effected by excluding

model elements from a source model using exclude directives. Refinement may be

effected by using transformation directives (e.g. new) to add model elements to

a source model. Refactoring may be effected by using transformation directives

(e.g. new, source, exclude) to reorganize the model elements in a source model.

Anti-composition may be effected by specifying a transformation model (i.e. a

transformation schema) with two or more sub-schemas each of which results in a

separate target model.

Vertical transformations take source models at one level of abstraction and pro-

duces target models at another level of abstraction, while horizontal transforma-

tions have source and target models at the same levels of abstraction [10, 11, 23].

Refinement and abstraction are vertical transformations while composition, anti-

composition and refactoring are horizontal transformations.

Model transformations may also be classified based on the way transforma-

tions are specified. A declarative transformation specification defines a rela-

tionship between source model and target model elements. An imperative or

operational transformation specification defines a transformation in terms of

actions performed on model elements.

Model transformations are also classified based on the distinction between

source and target models [2]. Model-to-model transformations produce one or

more output models from one or more input models while model-to-code transfor-

mations produces source code from input models. Model-to-code transformations

are a special case of model-to-model transformations where the output model is

10

code. Model-to-code transformations are a special case of model-to-text transfor-

mations where the output model is code. In model-to-text transformations the

output model may be text, such as source code, XML documents and configura-

tion information.

2.2 Model Driven Development (MDD)

In model-driven development (MDD) [32, 33, 37] design models are the central

artifacts of software development. The Model Driven Architecture (MDA) [31, 42,

43, 44, 45] is the most well known MDD initiative. The MDA is the work of the

Object Management Group (OMG) [47], a large international trade association,

that seeks to help reduce complexity, lower costs, and hasten the introduction of

new software applications. In order to achieve these goals the OMG has provided

a number of resources and standards, including the Unified Modeling Language

(UML), the Meta-Object Facility (MOF), the Common Warehouse Metamodel

(CWM), the Object Management Architecture (OMA), and the Model Driven

Architecture.

The MDA has two primary principles, (1) models should be the primary arti-

facts in developing software, and (2) application development should be separated

from the integration of a specific technology. The MDA proposes an architectural

separation of concerns that articulates three viewpoints of a system:

1. A Computation Independent Model (CIM): A representation of the system

requirements from a business perspective without considering software con-

cerns.

2. A Platform Independent Model (PIM): A representation of a system that

ignores details related to specific platforms. It captures those elements of a

system that remain the same from platform to platform.

11

3. A Platform Specific Model (PSM): A representation of a system that com-

bines platform independent information with information related to a spe-

cific platform.

The MDA proposes the development of transformations to support the trans-

formation of models across different abstraction levels, for example a PIM to PSM

transformation or a PIM to PIM transformation.

2.3 Representing Model Patterns Using Tem-

plates

In this research, model patterns are used to specify the metamodel of source

models. A model pattern is described using a variant of the Role Based Meta-

modeling Language (RBML) [7, 6, 8, 9, 21, 20, 19]. RBML is a UML [46] based

language that supports rigorous specification of pattern solutions, where a pattern

solution characterizes a family of solutions for a recurring design problem. In

RBML, structural design diagrams are specified using class diagram templates.

Class diagram templates have template model elements that are explicitly marked

using the “|” symbol.

A class diagram template consists of parameterized class diagram elements,

for example, class templates and association templates. A class diagram template

defines a family of class diagrams where each class diagram is obtained by binding

the parameters to actual values. An example of a class diagram template is shown

in Figure 2.1 and the instantiated class diagram is shown in Figure 2.2.

A class template consists of two parts: attribute templates and operation tem-

plates. Attribute templates produce attributes when instantiated, and operation

templates produce operations when instantiated.

The class diagram template shown in figure 2.1 consists of the following class

12

|Operation[1..*](|reqId, |params*)

attribute

|accesses

|m |n

|checksWith

|x

Constraints on values that can be
substituted for multiplicity parameters

class templatemultiplicity parameter

|m.lower>=0
|n.lower>=0
|x.lower>=0

|authreqId

|AuthRepository

operation template

|authoperId

Instantiation multiplicity

association template

1

|reqId

|Requestor

|checkAuth(|reqId, |operId)

|Authorizer

do_|Operation[1..*](|reqId, |params*)

template

Figure 2.1: Example of A Class Diagram Template

Controller

userId

1*

accesses

|checksWith

authuserId

AuthorizationRepository

authoperId

1

*

Client

checkAuth(userId, operId)

addAccount(userId, accountId)
do_addAccount(userId, accountId)

Figure 2.2: Example of An Instantiated Class Diagram

templates: |Requestor, |Authorizer, and |AuthRepository. |Requestor has an at-

tribute template named |reqId. The instantiation of |reqId is the userId attribute.

|Authorizer has a operation templates named |Operation and do |Operation .

Other attribute and operation templates are similarly specified. The instanti-

ation of operation template |Operation is the addAccount operation.

The template metamodel shown in Figure 2.3, defines types of modeling ele-

ments for representing class templates. Each template type is a specialization of a

UML metaclass, for example, Classifier Template is a specialization of UML Clas-

sifier. Instances of these elements are specialized classes using the same syntax as

the parent UML metaclass. Class Template instances, for example, are specified

13

Classifier Template Feature Template

Property Template
Template
StructuralFeature Type Template

Template
BahavioralFeature

Operation Template

Parameter Template

Template
InteractionFragment

Relationship Template

Element

Element Template

Class Template

Interface Template

Association Template

Usage Template

Realization Template

Generalization Template

Composite

Element Template

**
0..1

*

0..1*

0..1

0..1

*

*

0..1

*

*

0..1
0..10..1

*

Figure 2.3: Class Template Metamodel.

using UML Class notation. When a model element template is instantiated, the

result is an instance of the parent UML metaclass. Class templates, for example,

result in UML classes when instantiated and operation templates result in UML

operations.

2.4 Middleware Technologies

Middleware platforms are designed to enable the development of complex distrib-

uted systems by hiding infrastructural details from the application program.

14

2.4.1 Jini

Jini is a Java-based middleware technology that enables a federated group of

users to share distributed services over a local area network [4, 38, 39, 51]. A

federation consists of a collection of users, software, and devices that share a

basic understanding on issues of policy, identification, administration, and trust.

A service is any resource on the network that can be used by members of the

federation. Services may be hardware, software or a combination of both, for

example: application programs, operating systems, servers, hardware devices and

appliances (e.g., printers) and storage. The main goals of Jini are:

1. To enable the sharing of services and resources over the network

2. To enable all persons and entities in the federation to have the flexibility to

add and remove services randomly.

3. To provide location transparency to users (their network locations can

change randomly), and easy access to resources on the network.

4. To simplify the construction, modification, and maintenance of a federation.

A federated group becomes a single, dynamic distributed system, and groups of

federated entities can be federated into even larger systems. Jini extends the Java

application environment from a single virtual machine to a collection of virtual

machines. Jini built-in facilities include lookup, event, leasing, and transaction

services.

1. The Lookup Service: Jini supports dynamically adding and removing ser-

vices through the lookup service. The lookup service forms a repository

where proxies for services are stored. A proxy is an application that knows

how and where to access the actual service. The use of proxies shields the

15

actual service from direct manipulation and facilitates transparent addition

and removal of services. When a new entity wishes to join the federation,

it first locates a lookup service using the Jini discovery protocol, and then

joins the federation (using the Jini join protocol) by registering its proxy

with the lookup service. The lookup service will then inform all members

of the federation of the availability of the new services.

2. Events - Jini supports a distributed events model that allows one object to

receive a notification of events in another object.

3. Leasing - a lease is a grant of guaranteed access to a resource for a given time

period. Leases may be either exclusive (only one user per time period), on

non-exclusive (multiple users allowed per time period). A lease is negotiated

between client and service, and may be renewed, although a renewal request

may be denied.

4. Transactions - A transaction is a indivisible collection of operations between

servers and clients that remain atomic even if some clients and servers fail.

Jini provides a transaction interface that specifies the service protocol used

to coordinate a two-phase commit.

2.4.2 Common Object Request Broker Architecture

(CORBA)

CORBA [12, 41, 48] is an OMG [47] standard for open distributed object com-

puting. CORBA builds upon the core object model of the OMG’s Object Man-

agement Architecture (OMA) and provides a framework for interoperability, and

a set of mappings from its interface definition language (IDL) to implementa-

tion languages. The OMA is the OMG framework within which all technologies

16

adopted by the OMG fits. CORBA provides a comprehensive set of services and

facilities including:

1. The CORBA naming Service allows objects to be located by the name of

the object. Objects do not have fixed names, instead the name of an object

is the name bound to the object within a specific context.

2. The CORBA event Service supports communication between objects where

one object called a supplier, creates event data and and another object

called a consumer object, receives and processes the event-based data.

3. The CORBA security Service provides facilities that address confiden-

tiality, integrity, accountability and availability. The main features of the

CORBA security service are: identification and authentication, authoriza-

tion and access control, security auditing and administration of the security

service.

4. The CORBA transaction Service provides the facilities through distrib-

uted transactions are managed in CORBA. A transaction is a set of discrete

operations that occur in time where all the operations are either committed

or rolled back. Committing a transaction means the results of the trans-

action are accepted by participating clients and servers. Transactions are

normally committed when the ACID[1] properties of the transaction have not

been violated. Transactions are rolled back otherwise.

17

Chapter 3

Related Work

This chapter describes related work on transformation languages.

3.1 Kermeta

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

Meta−data

Languages

Languages

Constraint

Action
Languages

Transformation

Common
denominator

Languages

Figure 3.1: Features of Kermeta [50]

Kermata [49] is an open-source imperative non-graphical metamodelling lan-

guage. A metamodelling language differs from a general purpose programming

language like Java, in that a metamodelling language is designed with features

to support the design of other transformation languages. Kermeta, for exam-

18

ple, is designed with features to support the representation and manipulation of

metamodels.

Kermeta is designed to be a foundation for implementing metadata languages,

action languages, constraint languages and transformation languages as shown in

figure 3.1. In the figure, the common denominator are those features that support

the implementation of any of these languages. Kermeta is an Eclipse [3] plugin

that is developed as an extension to the OMG’s Essential Meta-Object Facilities

(EMOF) [28].

Many metamodel-based model transformation languages support the specifica-

tion of software structure but provide no support for the specification of behavior.

Therefore, the operational semantics of metamodels cannot be specified using

these languages. Kermeta addresses this weakness by adding execution seman-

tics to EMOF. Therefore, Kermeta can be used to define both the structure and

behavior of user-designed metamodels.

Kermata differs from the model transformation language proposed in this dis-

sertation in several ways: (1) Kermeta is a general-purpose transformation lan-

guage while the language proposed in this dissertation is specific to UML class

models. (2)Kermeta is designed to be used to specify other transformation lan-

guages and the language proposed in this dissertation is not designed for this

purpose. (3) Kermeta is a textual transformation language while the language

proposed in this dissertation is graphical. (4) The language proposed in this dis-

sertation uses imperative transformation directives. Such directives do not exist

in Kermata.

Since Kermeta provides an environment for implementing transformation lan-

guages, Kermeta may be used to implement the model transformation language

defined in this dissertation.

19

3.2 The ATLAS Transformation Language

(ATL)

The ATLAS Transformation Language (ATL) [13] is a hybrid declarative and

imperative model transformation language. In ATL, the source metamodel, tar-

get metamodel and transformation metamodel, all conform to the OMG’s Meta

Object Facility (MOF) core specification [28]. The language is designed to en-

courage a declarative transformation approach. However, imperative language

constructs are provided for cases where a complete declarative approach is diffi-

cult. A transformation is effected by executing a transformation definition written

in ATL. Transformations are unidirectional, converting read-only source models

to write-only target models. Bi-directional transformations are implemented as

two unidirectional transformations.

ATL differs from the model transformation language proposed in this disser-

tation in that ATL is a textual rather than a graphical language. In addition,

ATL does not provide a transformation specification syntax based on the syntax

of UML class models nor does ATL use imperative transformation directives.

3.3 Visual Model Transformation (VMT)

VMT [34] is a visual, declarative, model transformation language that supports

the specification, composition and reuse of model transformation rules. VMT

transformation rules uses a visual notation and the Object Constraint Language

(OCL) [52] to support the creation, modification and deletion of model elements.

The VMT transformation approach is based on graph transformations. Specif-

ically, a VMT transformation is defined by a set of transformation rules. Each

transformation rule is a mapping from source UML diagram elements to tar-

get UML diagram elements. A transformation rule is described by a rule

20

specification consisting of two parts: a matching schema and a result

schema. The matching schema is represented by a graph that defines:

• The conditions under which transformation rules can fire.

• The input arguments for the transformation.

• The input arguments that will be deleted when the rule is executed.

The result schema is represented by a graph that defines the target model

elements based on the elements specified in the matching schema. The VMT

approach also supports the use of a rule ordering schema that specifies the

order of execution of rules.

While VMT is a graphical model transformation language, VMT does not

provide a transformation specification syntax based on the syntax of UML class

models nor does VMT use imperative transformation directives.

3.4 MOLA

MOLA [15, 17, 18] (MOdel transformation LAnguage) is a graphical model trans-

formation language created at the University of Latvia. The primary goal of the

language is the creation of easily readable graphical transformation specifications

that make use of simple iterative control structures. MOLA combines traditional

structured programming language constructs with pattern-based model transfor-

mation rules to create a graphical notation for specifying model transformations.

A MOLA program transforms a source model into a target model where the

source model is an instance of a source metamodel and the target model is an

instance of a target metamodel. A MOLA program consists of a sequence of

graphical statements (rounded rectangles) linked by arrows, and somewhat like a

structured flowchart. Two statement types are rules and loops.

21

Figure 3.2: MOLA Specification to Transform A Class to A Table [16].

A rule is the simplest kind of statement. Each rule has two parts: a pattern

and an action specification. A pattern is a set of elements representing class

and association instances. The pattern is built in accordance with the source

metamodel and may have OCL constraints associated with model elements in the

pattern. An action specification is a description of new class or association in-

stances to be created or deleted, and the modified attribute values. The semantics

of a rule requires the actions to be applied for all pattern instances in the source

model.

A loop is represented graphically as a bold-lined rectangle, containing a se-

quence of statements. This sequence begins with a special statement called a loop

head, represented by a grey rounded rectangle. A loop head is a pattern, with a

22

single element, the loop variable. A loop variable is highlighted by a bold frame

and represents an arbitrary element of the given class. The semantics of a loop

requires the execution of the loop for all loop variable instances that satisfy the

conditions specified by the pattern. Figure 3.2 shows a MOLA specification to

transform a class to a table. Tool support for MOLA has been built [18].

While MOLA is a graphical model transformation language, MOLA does not

provide a transformation specification syntax based on the syntax of UML class

models nor does MOLA use imperative transformation directives.

3.5 Tefkat

Tefkat [22] is a declarative logic-based transformation language designed for the

transformation of MOF models. Tefkat is based on the use of patterns and rules.

A Tefkat transformation specification asserts a set of constraints that should hold

over a collection of source and target models. These constraints are used to create

a set of target models that satisfy the constraints.

Three kinds of models can be represented in a mapping: a set of source models,

a set of target models and a single tracking model. A transformation rule may

query source models and the tracking models. A transformation rule may also

make assertions about target models and the tracking model. The tracking model

is therefore the only model that can be both queried and constrained. A rule has

two parts: the query and the constraint. A rule also has two sets of variables:

those that occur in the query and those that occur only in the constraint. A trans-

formation specification may contain class definitions, rules, pattern definitions and

template definitions.

Tefkat differs from the model transformation language proposed in this disser-

tation in that Tefkat is a textual rather than a graphical language. In addition,

23

Tefkat does not provide a transformation specification syntax based on the syntax

of UML class models and Tefkat does not use imperative transformation directives.

3.6 QVT

The Query View Transformation (QVT) specification [24] includes declarative

and operational parts. The declarative part consists of a two-level architecture

that has (1) a relations language and an associated metamodel and (2) a core

language and an associated metamodel. The operational part consists of an

operational mappings language and an associated metamodel.

3.6.1 The Relations Language

The relations language supports the specification of transformations as a set of

relations among domains where a domain is a pattern of objects. The relations

must hold in order for the transformation to be successful. A relation is a subset

of a N-ary product of sets A1 x A2 x ... x An where each set Ai is a model

type, for example a MOF type. This model type is called a domain.

A domain has a pattern that describes valid candidate models, where a candi-

date model is any model that conforms to the model type. Each domain pattern

is a template for locating, modifying and creating objects and their properties

in a candidate model to satisfy the relation. Relations also include definition of

rules for determining the model elements that are to be related. Rules include

variables of MOF types, object template patterns, OCL constraints over domains

and variables of the relation, and assertions that other relations hold. Before a

transformation can be effected, the domain pattern is matched against objects in

the candidate model.

The relations language has equivalent textual and graphical forms. Figure

24

Metamodel of candidate model

a:Attribute

name = an

<<domain>>

name = n

c:Class

name = an

col:Column

<<domain>>

name = n

t:Table

c c

uml1:UML r1:RDBMS

UML2Rel

Domain of target patternName of relation

Transformation symbol

Domain of source pattern

Name of candidate model

Figure 3.3: UML Class to Relational Table Relation [26].

3.3 shows a class-to-relational-table relation specified using the graphical syntax.

In the graphical syntax a relation is described by two patterns: a source domain

pattern and a target domain pattern. Each pattern is an object diagram consisting

of objects, links and values. In the Figure, the source domain is the c:Class

domain and the target domain is the t:Table domain.

The target domain of a relation may be marked as checkonly or enforced. A

checkonly domain is marked with a c on the transformation symbol as shown in

the figure. An enforced domain is marked with a C on the transformation symbol .

When a transformation executes in the direction of a checkonly domain, candidate

models are checked to determine if they satisfy the constraints defined by the

relation. When a transformation executes in the direction of an enforced domain,

if a candidate model does not satisfy a relational constraint, then the target model

25

PackageToSchema

<<domain>> <<domain>>

uml1:UML r1:RDBMS

name = n name = n

p:Package s:Schema

c:Class t:Table

EC

where

UML2Rel(c, t)

Where clause

Figure 3.4: QVT Relation With where Clause [25].

is modified so that the relational constraint is satisfied. The equivalent textual

syntax for Figure 3.3 is the following:

relation UML2Rel {

checkonly domain uml1 c:Class {name = n, attribute =

a:Attribute{name = an}}

checkonly domain r1 t:Table {name = n, column =

col:Column{name = an}}

}

The relational language allows constraints on relations to be specified using

the when and where clauses. Each when clause specifies conditions under which

the relation must hold. A where clause specifies conditions that must be satisfied

by all model elements participating in the relation. Figure 3.4 shows an example

26

of a where clause. The UMLeRel relation must hold for each class participating in

the PackageToSchema relation.

3.6.2 Comparison

While QVT provides a graphical syntax, QVT does not provide a transformation

specification syntax based on the syntax of UML class models nor does QVT

use imperative transformation directives. Difficulties with using QVT to specify

transformation models are presented in Section 1.1.

3.7 Summary and Discussion

Model transformation approaches that support a graphical notation (e.g., MOLA)

are desirable in MDD because mappings specified in the notation may be used

to visualize and communicate information about a transformation in a way that

cannot be done as conveniently with textual notation. VMT, MOLA and QVT

support a graphical notation, however, none of these languages have a graphical

notation closely related to the notation of the target models of the transformation.

Metamodel-based transformation approaches have many benefits, such as sup-

port for domain-specific modeling. However, these approaches may be difficult

to use when the metamodels are large and fragmented and transformations are

specified using metaclasses. For example, the UML metamodel for classes and

interactions as specified in the UML 2 is fragmented, and the fragments are tied

together via several other metamodel packages. As a result, using the UML meta-

model to specify transformations can be difficult, time consuming and tedious.

Moreover, specifying models using the RBML template metamodel, as is done

for the model-to-model transformation technique, is more concise that the use

of UML metaclasses because the RBML template metamodel elements use the

27

notation of the UML model elements.

In addition to being graphical and using a notation closely related to the nota-

tion of the target models, the model-to-model transformation language provides

a small set of transformation directives with well-defined semantics. Although

graphical, neither VMT, MOLA nor QVT is based on the use of transformation

directives.

28

Chapter 4

Model-To-Model Transformation

This chapter presents a technique for transforming class models from one level of

abstraction to another. We first provide an introduction to the transformation

technique, followed by an example of a transformation schema. We then describe

the form of transformation schemas, followed by transformation directives used

in transformation schemas. Class transformation metamodels, a grammar for the

language and a transformation algorithm are also presented.

4.1 Introduction

The transformation technique is illustrated in Figure 4.1. In the figure a Source

Pattern is created during the Develop Source Pattern activity. A Source

Pattern describes valid source models.

The transformation of a source model into a target model is specified by a

class Transformation Schema. Transformation schemas are developed during the

Specify Model Transformations activity. A transformation schema contains

imperative statements called directives, that stipulate how target model elements

are formed. One can view a transformation schema as a program that takes a

source model as input and produces a target model. A transformation is effected

by applying a transformation schema to a source model.

29

Develop Source Pattern

Transformation
Schemas

Target
Model

Process Transformation
Schemas

Specify

Transformations
Model

Develop Binding
Specification

Source
Model

Source
Pattern

Specification
Binding

Figure 4.1: Model Transformation Process.

Target models are developed during the Process Transformation Schemas

activity. The input to this activity are the source pattern, the source models

and a Binding Specification. Before a transformation can be effected, the

source model element that each source pattern element represents must be iden-

tified. This is accomplished using the Binding Specification. This specifica-

tion is a listing of source pattern model elements and the corresponding source

model element that each source pattern model element represents. The Binding

Specification is created during the Develop Binding Specification activity.

A source model conforms to a source pattern. The notion of conformance used

in this dissertation is that established by Kim et al. [19]. A source model con-

forms to a source pattern if the source model satisfies the structural and semantic

properties defined in the source pattern. A source model element conforms to (or

30

plays the role of) a source pattern element if the source model element satisfies

the properties defined in the source pattern element. A source model element that

plays the role of a source pattern model element is said to be bound to the source

pattern model element.

Source models are described using UML and source patterns are specified using

a template version of the Role-Based Metamodeling Language(RBML) [7]. RBML

Class diagram templates have template model elements that are explicitly marked

using the “|” symbol.

4.2 Class Transformation Example

|openTransaction(|t:|TTtype)

|TransactionManager|Participant

|clientID:String
|clientName:String

|transOperation(|Tid:|type, |params1*)
|canCommit(|Tid:|type):Boolean
|doCommit(|Tid:|type)
|doAbort(|Tid:|type)

|closeTransaction(|t:Boolean)
|getTransState():Boolean

|handles_participants

|joinTransaction(|Tid:|type,|Pid:|type2)

Figure 4.2: Source Pattern for Simple Transaction Service.

Figure 4.2 shows a source pattern for a simple transaction service. The

|Participant class template provides service to clients through instances of its

|transOperation operation template and initiates a transaction whenever an in-

stance of this operation template is invoked. The |TransactionManager class tem-

plate manages transactions.

|Participant provides the |canCommit, |doCommit and |doAbort operation

templates to indicate: (1) its readiness to commit a transaction, (2) to commit

a transaction and (3) to abort a transaction respectively. |TransactionManager

provides the |openTransaction operation template to allow new transactions to be

created and the |joinTransaction operation template to allow participating objects

31

to join a transaction. The |closeTransaction operation template is used to commit

or abort a transaction depending on the value of its argument.

source.|TransactionManager{name=Current}

exclude |closeTransaction(<params>)

new commit()

new abort()

redefine |joinTransaction{name=register}(|Tid:|type,|Pid:|type2)

source.|Participant

new |transState:String

new |getState():Boolean

redefine |clientId:|String
{name=Integer}

Figure 4.3: Transformation Schema.

Figure 4.3 shows a transformation schema for transforming source models that

conform to this source pattern. The transformation schema has two source di-

rectives, an exclude directive, two redefine directives, four new directives and

three rename directives.

This transformation schema may be applied to any source model that conforms

to the pattern shown in Figure 4.2. An example of such a source model is presented

in Figure 4.4 and the binding specification for this source model is presented in Ta-

ble 4.1. Note that UserManagement and |UserRepository have no corresponding

source pattern model elements. UserManagement and |UserRepository represent

mechanisms for authenticating users of the transaction service.

The target model is obtained by processing the transformation schema. When-

ever a directive in the transformation schema references a model element from

the source pattern, the corresponding source model element listed in the binding

specification is processed. For example, a reference to the |Participant class

template in the transformation schema results in the AccountManager class being

processed. The source.|Participant transformation schema class is processed

as follows.

32

getState():Boolean

TransactionManager

|UserRepository

AccountManager

clientName:String
clientid:String

withdraw(tid:Integer, amount:float, acc:Account)
deposit(tid:Integer, amount:float, acc:Account)

commit(tid:Integer)
prepare(tid:Integer):Boolean

abort(tid:Integer)

UserManagement

deleteUser(user:|User)
checkUser(user:|User):Boolean

addUser(user:|User)

accessRepository

handles_participants

manageUser

join(tid:Integer,pid:AccountManager)

create(t:Boolean)

close(t:Boolean)

Figure 4.4: Source Model for Simple Transaction Service.

1. The source.|Participant directive is processed. The source directive is

used to copy model elements from the source model to the target model.

The source.|Participant directive results in the AccountManager class

being copied to the target model.

2. The new |transState:String directive is processed. The new directive is

used to create a new model element. The new |transState:String direc-

tive results in the attribute template: |transState:String being created

and inserted into the AccountManager class in the target model.

3. The new |getState():Boolean directive results in the operation template:

|getState():Boolean being created and inserted into the AccountManager

class in the target model.

4. The directive, redefine |clientID:String{name=Integer} changes the

type of the |clientID:String attribute template in the AccountManager

class from String to Integer.

Figure 4.5 (a) shows the target model after all directives in the

33

Table 4.1: Binding Specification.

Source Pattern Element Source Model Element

|Participant AccountManager
|Participant::clientID AccountManager::clientID
|Participant::clientName AccountManager::clientName
|Participant::|transOperation AccountManager::withdraw
|Participant::|transOperation AccountManager::deposit
|Participant::|canCommit AccountManager::prepare
|Participant::|doCommit AccountManager::commit
|Participant::|doAbort AccountManager::abort
|Participant::|Tid AccountManager::tid
|Participant::|type AccountManager::Integer
|TransactionManager TransactionManager
|TransactionManager:: openTrans-
action

TransactionManager::create

|TransactionManager:: joinTransac-
tion

TransactionManager::join

|TransactionManager:: closeTrans-
action

TransactionManager::close

|TransactionManager::getTransState TransactionManager::getState
|TransactionManager::|t TransactionManager::t
|TransactionManager::|TType TransactionManager::Boolean
|TransactionManager::|Tid:|type TransactionManager::tid:Integer
|TransactionManager::|Pid::|type2 TransactionManager::

pid:AccountManager
|handles participants handles participants

source.|Participant transformation schema class are processed.

The source.|TransactionManager{name=Current} class template is

processed as follows:

1. The source.|TransactionManager class is bound to the TransactionMan-

ager class. As a result, the source.|TransactionManager{name=Current}

directive results in the TransactionManager class being copied to the target

model and the name of the copied class template being changed to Current.

34

are processed

(a) Target model after all directives in source.|Participant

Current

commit()

abort()

create(t:Boolean)

register(tid:Integer,pid:AccountManager)

getState():Boolean

AccountManager

clientName:String
|transState:String

withdraw(tid:Integer, amount:float, acc:Account)
deposit(tid:Integer, amount:float, acc:Account)
prepare(tid:Integer):Boolean
commit(tid:Integer)
abort(tid:Integer)
|getState():Boolean

clientID:Integer

AccountManager

clientName:String
|transState:String

withdraw(tid:Integer, amount:float, acc:Account)
deposit(tid:Integer, amount:float, acc:Account)
prepare(tid:Integer):Boolean
commit(tid:Integer)
abort(tid:Integer)
|getState():Boolean

clientID:Integer

(b) Target model after all directives in source.|Participant and source.|TransactionManager class templates

transformation schema class are processed

Figure 4.5: Target Model After Transaction Schema Classes are Processed.

2. The redefine |joinTransaction{name=register}(|Tid:|type,

|Pid:|type2) directive results in the name of the join operation in

the Current class being changed to register.

3. The exclude |closeTransaction(<params>) directive results in the close

operation being removed fron Current.

4. The new commit() and new abort() directives results in two new opera-

tions: commit() and abort() being created and inserted into the Current

class.

35

Figure 4.5 (b) shows the target model after all directives in the

source.|TransactionManager{name=Current} transformation schema class are

processed. At this point all the directives in the transformation schema have

been processed. The other model elements not referenced by a transformation

directive (i.e., UserManagement, |UserRepository, handles participant,

manageUser, accessRepository) are copied to the target model. The model

elements not referenced by a transformation directive may be identified using the

binding specification which does not list these items. The complete target model

is shown in Figure 4.6.

In this example, the source directive is used to copy the AccountManager and

TransactionManager classes to the target model. The source directive is used

when modifications are to be made to a source model element. Each source model

element may be transformed in one of three ways: (1) a source model element may

be deleted using an exclude directive, (2) a source model element may be copied

without modification, or (3) a source model element may be copied and modified

using a source directive. When a source model element is to be copied without

modification, the use of a transformation directive is not required since model

elements that are not referenced in the transformation schema are automatically

copied to the target model.

4.3 Form of Class Transformation Schemas

Model elements in a class transformation schema are either composite or non-

composite. Transformation schema classes and transformation schema interfaces

are composite elements while transformation schema operations, transformation

schema attributes and transformation schema relationships are non-composite.

A composite transformation schema model element is divided into compart-

36

abort()

|UserRepositoryUserManagement

deleteUser(user:|User)
checkUser(user:|User):Boolean

addUser(user:|User)

accessRepository

withdraw(tid:Integer, amount:float, acc:Account)
deposit(tid:Integer, amount:float, acc:Account)

commit(tid:Integer)
prepare(tid:Integer):Boolean

handles_participants

AccountManager

|transState:String
clientName:String
clientid:Integer

abort(tid:Integer)
|getState():Boolean

manageUser

TransactionManager

create(t:Boolean)
register(tid:Integer, pid:AccountManager)
getState():Boolean
commit()

Figure 4.6: Target Model for Simple Transaction Service.

ments. A transformation schema class is divided into an AttributeDirective

Compartment, an OperationDirective Compartment and a NameDirective

Compartment. Transformation schema interfaces have AttributeDirective

Compartments and OperationDirective Compartments only.

Except for exclude directives, each directive in a name directive compartment

results in a model element name when processed. Except for exclude directives,

each directive in an attribute directive compartment results in an attribute or

attribute template when processed, and except for exclude directives, each direc-

tive in an operation directive compartment results in an operation or operation

template when processed. Figure 4.7 (a) gives a pictorial view of transformation

schema compartments, and Figure 4.7 (b) shows a transformation schema class

diagram. Transformation schema compartments may contain directives as follows:

1. A name directive compartment may contain source directives, rename di-

rectives, an exclude directive or a new directive.

2. Attribute directive compartments and operation directive compartment may

37

Resource

|canCommit()
commit_one_phase()
forget()

(b) Transformation schema Example

source.|TransClient

new directive new clientId:Integer

source directive

|manages_clientTrans

redefine directive source.|TransactionManager{name=Current}

new |getState():|Boolean

exclude |managerId:|type2

exclude |decision(|dec:Boolean)

|requests_service

exclude |close(<params>)

exclude directive

{name=String}, new duration:Integer)
|join(exclude |Tid:|type,|Pid:|type2

rename directive

Attribute directives Compartment

Operation directives Compartment

Name Directives Compartment Name Directives Compartment

Operation directives Compartment

Transformation Schema Class Transformation Schema Interface

|transState:|type{name=String}

source.|Patricipant.|id{name=serverId}
:Integer

|handles_participants

(a) Compartments of transformation schema classes and interfaces

new |Participant

new sortResources()
source.|Participant.getClientId(exclude <params>)

participantId:Integer

Figure 4.7: Transformation Schema Compartments.

contain any directive: source, redefine, new, exclude or rename.

Transformation schema relationships may have source, new or exclude direc-

tives. Figure 4.8 shows the model elements used to describe class transformation

schemas. Each transformation schema model element is a stereotype of a UML

metaclass. For example, a transformation schema class is a stereotype of a UML

class, a transformation schema interface is a stereotype of a UML interface, a

transformation schema operation is a stereotype of a UML operation and a trans-

formation schema attribute is a stereotype of a structural feature.

38

1..*

<<metaclass>>
Class

Transformation Schema
Class

<<stereotype>>

<<metaclass>>
Interface

<<metaclass>>
Operation

<<metaclass>>
StructuralFeature

Transformation Schema
Interface

<<stereotype>>

<<metaclass>>
Type

<<metaclass>>
Property

<<metaclass>>
Parameter

<<metaclass>>
Relationship

<<metaclass>>
Element

Transformation Schema
Operation

<<stereotype>>

Transformation Schema
Attribute

<<stereotype>>

Relationship
Transformation Schema

<<stereotype>>

Type
Transformation Schema

<<stereotype>>

Transformation Schema
Property

<<stereotype>>

Parameter
Transformation Schema

<<stereotype>>

Transformation Schema
Element

<<stereotype>>

Directive
<<stereotype>>

1

Figure 4.8: Transformation Schema Stereotypes.

The directives in name-directive compartments, attribute-directive compart-

ments and operation-directive compartments are processed in order from top to

bottom. Different ordering of directives may result in different target models. A

name-directive compartment may contain multiple source directives. The seman-

tics of these directives is that the source model class or interface referenced by the

first source directive is copied, after which the attributes and operations in the

classes or interfaces referenced by the other source directives are merged into the

copied class or interface in any arbitrary order. The merge operation preserves

39

the integrity of the target namespace. The order in which transformation schema

classes, interfaces and relationships are processed is determined manually.

4.4 Transformation Directives

The transformation directives that can be used in a class transformation schema

are: source, rename, exclude, redefine and new. Each directive is described

using the following format [30]:

• Directive Name: this section states the name of the directive.

• Purpose: this section describes the purpose of the directive.

• Form: this section describes the syntactic form of the directive and the model

elements that the directive operates on. Items in square brackets, ‘[]’, are

optional and keywords are italicized.

• Constraint: this section gives the conditions that must hold if the directive

is to have the intended effect.

• Effect: this section describes the effect of the directives on the target model.

Transformation directives are described in the subsections that follow. In

order to simplify the presentation of directives, source model elements are given

the same name as the source pattern elements to which they are bound with the

exception of the ‘|’. For example, a |ServiceParticipant class template in the

source pattern is bound to a ServiceParticipant class in the source model.

4.4.1 The rename Directive

Directive Name: rename

40

Purpose: The rename directive is used to provide a platform-specific name for

a model element.

Form: The rename directive has the form:

ModelElement {name=modelElementName}.

ModelElement is a reference to a model element in the source pattern and

modelElementName is the platform-specific name to be given to the source

model element bound to ModelElement. For example, middleware protocols

typically define specific names for their model elements. The Jini transaction

service, for example, specifies a TransactionManager interface while the CORBA

transaction service specifies Current, Control, Coordinator and Terminator

interfaces. The name directive may be used to associate these platform-specific

names with platform-independent model elements.

Constraint: The model element referenced by ModelElement must exist.

Effect: The name of the model element bound to ModelElement has been

changed to modelElementName.

Examples: Examples of the rename directive will be given in the sections that

follow.

4.4.2 The source Directive

Directive Name: source

Purpose: The source directive is used to copy a source model element or

meta-attribute to the target model. When a model element is copied, any

41

constraint associated with the model element is also copied.

Form: The source directive has the following forms.

1. source.Parent[RenameDirective] . Parent is a reference to a composite

source pattern model element and RenameDirective is an optional rename

directive. The source directive stipulates that the model element bound to

Parent should be copied to the target model. All properties of the model

element bound to ModelElement are copied.

2. source.Parent.ModelElement[RenameDirective] . Parent is a reference

to a composite source pattern model element and ModelElement is a sub-

element of Parent. ModelElement must be bound to an operation, operation

template, attribute or attribute template, in the model element bound to

Parent.

When an operation (or operation template) is copied into a different

namespace from the one in which it was defined, the developer must en-

sure that all constraints associated with the operation hold, and that all

references to the operation are valid. The same is true of attributes, at-

tribute templates, and other source model elements such as class templates,

that are copied and modified.

3. source.ModelElement.Property[.SubElement].MetaAttribute .

SubElement is a reference to an optional subelement of ModelElement.

A sub-element of a model element is an element defined in the model

element, for example, an operation defined in a class. MetaAttribute is a

meta-attribute of ModelElement or SubElement.

Constraint: The model element bound to ModelElement must exist. When

42

Parent and SubElement occur in the source directive, the model elements bound

to Parent and SubElement must exist.

Effect: For the first forms of the directive, a copy of the model element bound to

Parent is present in the target model. If a rename directive is present, the name

of the copied model element is the platform-specific name specified in the rename

directive, otherwise, the name of the newly created model element remains the

name of the model element bound to ModelElement. For the second form of the

directive, a copy of the model element bound to ModelElement is present in the

target model. For the third form of the directive, the specified the meta-attribute

value has been copied to the target model.

Examples: Some examples of source directive are given in section 4.2.

4.4.2.1 Merging Classes Using the Source Directive

The source directive may be used to merge multiple classes or multiple in-

terfaces. For example, Figure 4.9 shows a source pattern with two class

templates and a transformation schema with a single transformation schema

class specified using two source directives: source.|AccountParticipant and

source.|ServiceParticipant. The effect of the directives is to merge that at-

tributes and operations of the class to which |ServiceParticipant is bound into

a copy of the class to which |AccountParticipant is bound.

The name of the new merged model element in the target model is the name

associated with the source model element that is bound to the first source di-

rective. As a result the name of the class in the target model in Figure 4.9 is:

AccountParticipant. Merging preserves the integrity of the namespace by en-

suring that an operation or attribute is only added to the class or interface if a

model element with that signature is not already present.

43

Exclude |ServiceParticipant

findService(name:String):Service

closeService(name:String)

ServiceParticipantAccountParticipant

openAccount|tAccType)

closeAccount(t:AccType)

findService(name:String):Service

Source Model

AccountParticipant

openAccount|tAccType)
closeAccount(t:AccType)
findService(name:String):Service
closeService(name:String)

|closeService(|name:String)

|AccountParticipant

|findService(|name:String):|Service

|closeAccount(|t:|AccType)

|openAccount(|t:|AccType) |findService(|name:String):|Service

|ServiceParticipant

Target Model

Transformation Schema

Source Pattern

source.|ServiceParticipant
source.|AccountParticipant

Figure 4.9: Merging Model Elements Using The source Directive.

The effect of the two source directives is illustrated in the target model in the

figure. The target model has four operations: three from the AccountParticipant

class and the closeService(name:String) operation from the ServiceManager

class. The findService operation in the ServiceManager class has the same

signature as the findService operation in the AcountManager so only one copy

of this operation is added.

44

new managesAccount

source.(|Participant.|transOperation)()

new AccountManager

pre:

post:
managerParticipant^join(..)

Participant.joined = true

Participant

joined:Boolean

transOperation(p:Ptype)

TransactionManager

join(Tid:TidType, Pid:PidType)

manages

Participant

|Participant

|transOperation(|p:|Ptype)

|joined:|Boolean

pre:

post:
managerParticipant^join(..)

Participant.joined = true

Participant

joined:Boolean

transOperation(p:Ptype)

joined:Boolean

transOperation(p:Ptype)

AccountManager

TransactionManager

join(Tid:TidType, Pid:PidType)

manages

Participant

managesAccount

Transformation SchemaSource Pattern

|join(Tid:|TidType, Pid:|PidType)

|TransactionManager

Source Model Target Model

pre:

post:
managesAccount^join(..)

AccountManager.joined = true

|managesParticipant

source.|TransactionManager

Figure 4.10: The source Directive Applied to Operation Templates.

4.4.2.2 Operation Template source Directive

Figure 4.10 provides an example of an operation template source directive.

The figure illustrates the use of the source directive to copy an operation

to a target class. In the figure, the new AccountManager transformation

schema class has the directive: source.|Participant.|transOperation. The

45

new AccountManager directive stipulates the creation of a new class. The

source.|Participant.|transOperation directive stipulates that an operation

from the source model should be copied to the new class. The operation

to be copied is the one bound to the |Participant.|transOperation opera-

tion template. In the example, Participant class from the source model is

bound to the |Participant class template, TransactionManager is bound to

|TransactionManager, |joined:|Boolean is bound to joined:Boolean and so

on.

The effect of the source directive is illustrated in the target model which has

a new AccountManager class. The target model shows that the transOperation

operation, including its pre and post conditions were copied from the Par-

ticipant class to the AccountManager class. The pre and post conditions

were updated to reflect the context of the AccountManager class. Specifically,

managesParticipant was changed to managesAccount and Participant.joined

was changed to AccountManager.joined.

A metaattribute may be copied using the second form of the source directive.

For example, the isAbstract property of the class to which the |Participant class

template is bound may be copied to a target model class or class template using

the directive: source.|Participant.property.isAbstract.

4.4.3 The redefine Directive

Directive Name: redefine

Purpose: The redefine directive is used to modify a model element that is

copied to the target model using the source directive.

Form: The redefine directive has two forms.

46

1. redefine TSModelElement where TSModelElement is a reference to a source

pattern operation or attribute. When TSModelElement is an operation, it

must have an associated exclude, new or rename directive. The associated

rename directive may be applied to a transformation schema parameter of

the transformation schema operation. The associated rename directive may

also be applied to the name of the transformation schema operation. The as-

sociated new or exclude directive may be applied to a transformation schema

parameter of the transformation schema operation. When TSModelElement

is a transformation schema attribute, it must have an associated rename

directive.

When an operation (or operation template) is redefined, the developer must

ensure that all constraints associated with the operation hold, and that all

references to the operation are valid. The same is true of an attribute or

attribute template.

2. redefine[ModelElement.]Property[.SubElement].MetaAttribute=val ,

where val is the value to be given to the meta-attribute. This form of the

redefine directive is used to change the value of a meta-attribute.

Constraint: The model element bound to TSModelElement must exist. When

Parent and SubElement occur in the redefine directive, the model elements

bound to Parent and SubElement must exist. The types of MetaAttribute and

newValue must be compatible. A redefine directive may only be specified in a

composite transformation schema model element specified using a source directive.

Effect: For the first form of the directive, the model element bound to

TSModelElement has been modified according to the associated exclude, new or

rename directives used. For example, if a rename directive is applied to the name

47

of a transformation schema operation, then the name of the model element refer-

enced by TSModelElement is changed to the platform-specific name specified in the

rename directive. If an exclude directive is applied to the name of a transforma-

tion schema parameter, then the transformation schema parameter is eliminated

from the model element bound to TSModelElement .

For the second form of the directive, the meta-attribute in the target model

has the value newValue.

Example:

In Figure 4.11, the Participant class from the source model

is bound to the |Participant class template. The redefine

|committed:Boolean{name=Integer} transformation schema attribute redefines

the committed:Boolean attribute defined in Participant by changing its type to

Integer. Similarly, the redefine |canCommit{name=prepare}(|Pid:|PidType)

:|commitVal{name=Vote} transformation schema operation redefines the

canCommit operation defined in Participant by specifying platform-specific

names for the operation name and the return type. The target model shows the

effect of the two redefine directives.

A metaattribute may be modified using the second form of the redefine direc-

tive. For example, in Figure 4.11, the isAbstract property of the Participant

class in the target model may be changed by specifying the directive: redefine

property.isAbstract = false or redefine property.isAbstract = true in

the transformation schema.

4.4.4 The new Directive

Directive Name: new

48

doCommit()

post:
|committed = false

pre: true

|Participant
|committed : Boolean

|doCommit()

|canCommit():|commitVal

post:
|committed = false

pre: true

Transformation Schema

redefine |canCommit{name=prepare}()
:|commitVal{name=Vote}

source.|Participant

redefine |committed:Boolean
{name=Integer}

Target ModelSource Model

Source Pattern

post:

pre: true

Participant

doCommit()

canCommit():commitVal

committed = false

committed : Boolean

Participant

committed:Integer

prepare():Vote

Figure 4.11: The redefine Directive.

Purpose: The new directive is used to specify a new model element or a value

for a metaattribute.

Form: The new directive has three forms.

1. [new] TSModelElement where TSModelElement is the specification of a

new class, class template, interface, interface template, operation, operation

template, attribute, attribute template, parameter, parameter template, re-

lationship or relationship template.

49

2. new . In this form, the directive is attached to a transformation schema

association or transformation schema relationship that is to be created.

3. [new] Property.metaAttribute = newValue .

Constraint: A model element with the signature of TSModelElement must not

exist in the target namespace.

Effect: For the first form of the directive, a new model element with the

signature of TSModelElement is present in the target namespace. For the second

form of the directive, a new model element corresponding with that associated

with the directive is present in the target namespace. For the third form of the

directive, the specified meta-attribute of the model element in the target model

has the value: newValue.

Example:

Figure 4.12 shows a source model with the |Participant class template. This

class template defines one attribute template and two operation templates. The

figure also shows a transformation schema with the following features:

1. The directive, new participantId:Integer defines a new attribute.

2. The directive, new getStatus():String, defines a new operation.

3. The directive, new quickSort(records:String[]), defines a new opera-

tion.

The effect of the three new directives can be seen in the target model which

shows that a new attribute and two new operations are added to the Participant

class from the source model.

50

getStatus():String

post:
|committed = false

pre: true

|Participant
|committed : Boolean

|doCommit()
|canCommit(|Pid:|PidType)

:|commitVal

post:

pre: true

committed = false

Participant

Transformation Schema

source.|Participant

new
quickSort(resords:String[])

new participantId:Integer

new

Source Model Target Model

post:

pre: true

Participant
committed : Boolean

doCommit()
canCommit(Pid:PidType)

:commitVal

committed = false

Source Pattern

committed:Boolean
participantId:Integer

quickSort(resords:String[])
doCommit()
canCommit(Pid:PidType):commitVal

getStatus():String

Figure 4.12: The new Directive.

A transformation schema model element that is specified without using a lead-

ing directive keyword defaults to ‘new’ as the leading directive keyword. A leading

directive keyword is the first word in a directive. Source, exclude, new and

redefine are leading directive keywords. The specification of a model element

without using a leading directive keyword is referred to as the implicit form of

the new directive. For example, in Figure 4.13 Current is a new class that may

be specified as: new Current. Similarly, the |joined:Boolean transformation

51

|manages

source.(|Participant.|transOperation)()

|AccountManager

|join(Tid:|TidType, Pid:|PidType)

|joined:Boolean

Current

Transformation Schema

Participant

Figure 4.13: Implicit Use of The new Directive.

schema attribute template, the |join(Tid:|TidType, Pid:|PidType) transfor-

mation schema operation template and the |managesParticipant transformation

schema association template are new model elements.

4.4.5 The exclude Directive

Directive Name: exclude

Purpose: The exclude directive is used to exclude source model elements from

inclusion in the target model.

Form: The exclude directive has the two forms: (1) exclude ModelElement and

(2) exclude. In the first form, ModelElement is a reference to a source pattern

model element. In the second form, the directive is attached to a transformation

schema association or transformation schema relationship that is to be excluded

from the target model. The exclude directive may be applied to any model

element.

52

Constraint: The model element bound to ModelElement must exist in the

source model. A model element can only be omitted from a namespace if the

model element is visible within that namespace.

Effect: For the first form of the directive, a copy of the model element bound

to ModelElement is not present in the target model. For the first form of the

directive, the source model element corresponding to the transformation schema

model element to which the directive is attached, is not present in the target

model.

Example:

Figure 4.14 shows a source model with two classes: TransactionManager

and Participant. TransactionManager contains four operations, two of which

(timeOut and initiateVotingPhase) have no CORBA equivalents. The fig-

ure also shows a transformation schema defined for CORBA. The trans-

formation schema is specified as a class template using a source directive.

Based on this source directive, all four operation templates are copied to the

target model including the two operations that are undefined in CORBA.

These two operations are eliminated from inclusion in the target model us-

ing two exclude directives: exclude |timeOut(|Tid:|TidType) and exclude

|initiateVotingPhase(|Tid:|TidType. The other exclude directive in the fig-

ure: |join(exclude |Tid:|TidType) results in this parameter template being

eliminated from the operation. The effect of the directives can be seen in the

target model.

53

TransactionManager

{name = Current}

exclude |timeout(|Tid:|TidType)

|inititiateVotingPhase(|Tid:|TidType)exclude
|join(exclude |Tid:|TidType)

transOperation(p:Integer)

Participant

transOperation(p:Integer)

Participant

Transformation Schema

Source Pattern

SourceModel

|inititiateVotingPhase(|Tid:|TidType)

|joined:|Boolean

|timeout(|Tid:|TidType)
|openTransaction(|t:|TransType)
|join(|Tid:|TidType, |Pid:|PidType)

|TransactionManager

openTransaction(t:TransType)
timeout(Tid:TidType)
inititiateVotingPhase(Tid:TidType)

TargetModel

join(Tid:TidType, Pid:PidType)

joined:Boolean

join(Pid:PidType)
openTransaction(t:TransType)

Current

joined:Boolean

source.|TransactionManager

Figure 4.14: The exclude Directive.

4.4.6 Applying Directives to Relationships

The source, new and exclude directives may be applied to relationships. Figure

4.15 illustrates:

• The application of the source directive to the |vehicleDetails transforma-

54

new

Lincoln

Navigator

Mercury

Montego

Vehicle

Ford

MotorPowered
Vehicle

Land Vehicle

Truck

source.|TruckType

|Description

Description

Lincoln

Navigator

Mercury

Montego

Ford

Description

Vehicle
new

Land Vehicle
new

Vehicle
MotorPowered

new

Source Model

Source Pattern

Target Model

source.|vehicleMaker

|TruckType

|Make

source.|Makesource.|Description

|vehicleDetails

|details

redefine |details.multiplicity = *

details

*

details1..*

maker

manufacturer

{name=manufacturer}
rename |truck

|truck

Transformation Schema

Binding

|Make
|TruckType

|Description Description
Ford

Lincoln, Mercury

new Truck

exclude

new
new

new

newnew

Figure 4.15: Applying Directives to UML Relationships.

tion schema association.

• The application of the redefine directive to the |details and |truck trans-

formation schema association ends.

55

• The application of the exclude directive to the transformation schema gen-

eralization between source.|TruckType and source.|Make.

• Six applications of the new directive to transformation schema generaliza-

tions.

A directive may be attached directly to an association end, or an association

end may be accessed using the syntax, associationName.AssociationEndName

or AssociationEndName. AssociationName is the name of an association and

AssociationEndName is the name of one of its association ends.

The multiplicity at an association end is accessed using the

syntax, associationName.AssociationEndName.multiplicity,

AssociationEndName.multiplicity or multiplicity. For example, in

Figure 4.15, the directive redefine |details.multiplicity = *, results in

the multiplicity of the corresponding association end in the target model being

changed to *.

4.5 Class Diagram Transformation Metamodels

The relationships among transformation concepts participating in the model-to-

model transformation of class models are illustrated in Figure 4.16.

The Source Metamodel and the Target Metamodel is the class template

metamodel presented in Figure 2.3 in Section 2.3. The Source Pattern describe

a subset of instances of the Source Metamodel. The source pattern describes

the properties expected of each valid source model. A source model element is

transformed into a target model element using the directives associated with the

source pattern element to which the source model element is bound. In effect,

source models may have model elements not described by the source pattern.

56

<<conforms_to>>TransformationSchema

Transformation

Algorithm

TransformationSchema

Metamodel

Transformation
Implementation

Metamodel

Source Model

Binding Specification

Source Pattern

<<conforms_to>>

<<conforms_to>>
<<conforms_to>>

Source Metamodel Target Metamodel

Target Model

<<input>>
<<input>>

<<input>> <<output>>

<<input>>

<<conforms_to>>

Figure 4.16: Model-to-model Transformation Conceptual Model.

These model elements that are not described by any model element in the source

pattern are retained in the target model.

A transformation is effected by executing the Transformation Algorithm.

The input to the algorithm are the source model, the source pattern, the binding

specification and the transformation schema. The algorithm outputs the target

model. The Transformation Algorithm is an instance of the Transformation

Implementation Metamodel.

A model transformation maps source model elements to target model elements.

The Transformation Implementation Metamodel describes these mappings by

specifying relationships between: (1) source metamodel elements and transfor-

mation schema metamodel elements, and (2) transformation schema metamodel

elements and target metamodel elements.

57

The transformation schema metamodel and the transformation implementa-

tion metamodel are described in the subsections that follow. An object diagram of

a transformation schema is also presented to illustrate the conformance of trans-

formation schemas to the transformation schema metamodel.

4.5.1 Transformation Schema Class Diagram Metamodel

The relationships between transformation schema directives and other transfor-

mation schema model elements are illustrated in the transformation schema class

diagram metamodel shown in Figure 4.17. A Directive is a ComplexDirective

or a Rename directive. A ComplexDirective is an Exclude directive or a

CreateDirective. Source, Redefine and New are CreateDirectives. A

CreateDirective may contain other subdirectives where the first directive is the

primary directive and the subdirectives are secondary directives.

A transformation schema relationship may have a source, new, or exclude

directive. Transformation schema attributes, transformation schema operations,

transformation schema types and transformation schema parameters must have

an associated complex directive.

4.5.2 Transformation Schema Object Diagram

This section presents an object diagram of a transformation schema based on the

transformation schema class diagram metamodel specified in Figure 4.17. Fig-

ure 4.18(a) shows a transformation schema with a single transformation schema

class. The directives in the transformation schema class are numbered from 1 to

12. Figure 4.18(b) shows an object diagram of the transformation schema class

that conforms to the metamodel shown in Figure 4.17. The original transforma-

tion schema class may be recreated from the object diagram using the following

algorithm:

58

0..1

Transformation Schema
Attribute

Transformation Schema
Operation

Parameter
Schema

Transformation

Schema
Transformation

Type

Exclude CreateDirective

Relationship
Transformation Schema

Redefine

ComplexDirective

Transformation Schema
Element

Transformation Schema
Property

Transformation Schema
Element

Composite

Rename

Directive

OperationDirective
Compartment

AttributeDirective
Compartment

Transformation Schema
Class

Transformation Schema
Interface

* *

1

1

*

1

Source 1

New

1*

primary

secondary
*

0..1

2..*
+memberEnd

*

0..1

*0..1

0..1 * +raisedException+/type

0..1

*

*
0..1

*

0..1

1

1

1

1

1

1

1

1
1 1

1

NameDirective

Compartment 0..1

0..1

1

0..1

0..1

0..1

0..1 0..1

0..1
0..1

1..* 0..1

1..*

1..*
1..*1..*

Figure 4.17: Transformation Schema Class Diagram Metamodel.

1. Create a new transformation schema class.

59

Compartment Instance
AttributeDirective

4
Instance

RedefineDirective

|part

5
Instance

RenameDirective

Service

TransformationSchema
Attribute Instance

2

|TransactionManager

SourceDirective
Instance

Compartment Instance
NameDirective

1TransformationSchema
Class Instance

3Instance
RenameDirective

name=Current

1

2
3

4 5

6 7

8 9 10

Compartment Instance
OperationDirective

TransformationSchema
Operation Instance

6RedefineDirective
Instance

|close

7
Instance

RenameDirective

commit

Compartment Instance
OperationDirective

TransformationSchema
Operation Instance

8

9

TransformationSchema
Type Instance

|Participant

TransformationSchema
Parameter Instance

|Tid

10
Instance

ExcludeDirective

TransformationSchema
Parameter Instance

|Pid

11
Instance

RenameDirective

id

TransformationSchema
Type Instance

|type

12
Instance

RenameDirective

long

11 12

TransformationSchema
Type Instance

|type

Object Diagram

Transformation Schema

source.|TransactionManager{name=Current}

redefine |part{name=service}:|Participant

redefine |close{name=commit}()

RedefineDirective
Instance

Instance
RenameDirective

|join

join

redefine |join{name=join}(exclude |Tid:|type, |Pid{name=id}:|type{name=long)}

(a)

(b)

Figure 4.18: Transformation Schema Object Diagram.

2. Obtain the directive for the name directive compartment from the objects

connected to the name directive compartment instance.

60

3. Obtain the directive for the attribute directive compartment from the ob-

jects connected to the attribute directive compartment instance.

4. Obtain the directives for the operation directive compartment from each

section the object diagram that begins with an operation directive compart-

ment instance.

Ambiguities can be resolved my marking each element in the object diagram

once the element has been visited and noting that a rename directive instance

associated with a source directive in the name directive compartment, will always

have a single link to the source directive instance.

4.5.3 Transformation Implementation Metamodel

The transformation implementation metamodel is shown in Figure 4.19 and Figure

4.20. The first figure illustrates two sets of relationships. The +canBeAppliedTo

association describes relationships between model elements of the source meta-

model, and model elements of the transformation schema class diagram meta-

model. A Transformation schema interface, for example, may be applied to one

or more interface templates. An association end template labeled +source is

connected to a model element from the source metamodel.

The +canBeDerivedFrom association describes the relationship between model

elements of the transformation schema class diagram metamodel and model el-

ements of the target metamodel. An interface template, for example, may be

derived from a transformation schema interface, by processing the directives in

the transformation schema interface. The +canBeDerivedFrom is a one-to-one

relationship. An association end template labeled target is connected to a model

element from the target metamodel.

Figure 4.20 augments the metamodel shown in Figure 4.19 by adding new

61

Property
Transformation Schema

Relationship
Transformation Schema

Property Template

Type TemplateParameter Template

Relationship Template

Transformation Schema
Class

Transformation Schema
Interface

Class Template

Transformation Schema
Element

Interface Template

Operation Template

Element Template

Transformation Schema
Operation

Transformation Schema
Attribute

Parameter
Transformation Schema Transformation Schema

Type

Classifier TemplateTransformation Schema
Classifier

+canBeAppliedTo
1..*1..*

0..1 0..10..1

0..1

2..*

*0..1

+memberEnd

1 1

1

+canBeAppliedTo

1..*

*

Constraint Template

+source1..*

1..*

+target

1

1

**

0..1

+raisedException

0..1

0..1+/type
0..1

**

1

1

+canBeAppliedTo

1..*

1..* +source

+canBeDerivedFrom

1+target

1

1 1+canBeDerivedFrom +target

+source

+canBeDerivedFrom

+target

+source
1..*

1
1

+canBeAppliedTo
1..*

1..*
+canBeDerivedFrom+canBeDerivedFrom

+canBeAppliedTo

+canBeDerivedFrom+canBeAppliedTo
1

1

1

1 +target+source

1

1+source +target

+canBeAppliedTo
1

1

+source

+target
1

1

+source 1

1

1

1

+canBeAppliedTo

+canBeDerivedFrom

1

+target

Figure 4.19: Transformation Implementation Metamodel Showing Relationships.

metaclasses and behavioral features to support the transformation of class tem-

plate models. Figure 4.20 only shows those model elements of Figure 4.19 to which

behavioral features are added.

4.6 A Grammar for Transformation Directives

Figures 4.21 and 4.22 show a grammar for class transformation schema directives

written in ExtendedBackus-Naur Form (EBNF). The grammar uses the following

62

processRedefineAttr(d:Element,a:Attribute,c:Directive)

getNameCompartmentDirective():Directive

TransformationSchemaClassModel

getFirstConnectedComponent():Model
getNextConnectedComponent():Model
getFirstCompositeElement():Element

TransformationSchema
Element

addComponent(c:ClassModel)
addElement(cur:Element)

ClassModel
getFirstAttributeDirective():Directive

TransformationSchema
Class

addOperation(Operation op)

getFirstOperation():Operation

CompositeElementTemplate

getFirstAttribute():Attribute

addAttribute(attr:Attribute)

ClassTemplate

+transSchema

* 1

processAllConnectedComponents()
processConnectedComponent(c:ClassModel):ClassModel
processCompositeElement(cur:Element):Element

processAttributeDirectives(elm:Attribute)
1

*

visited:Boolean
composite:Boolean
signature:String

markVisited()
visited():Boolean
next():Element
getFirstConstraint():Constraint
getNextConstraint():Constraint
getDirective():Directive

TransformationSchemaElement
Composite

getFirstOperationDirective():Directive

EXCLUDE=5:Integer

ClassTransformer

*

1

*

1

*

1

+targetModel

composite:Boolean
visited:Boolean

markVisited()
visited():Boolean
next():Element
getName():String
setName(String name)
getFirstConstraint():Constraint
getNextConstraint():Constraint
getFirstProperty():Element
getNextProperty():Element
addConstraint(Constraint c)

SOURCE=1, NEW=2, REDEFINE=3, RENAME=4,

processRelationship(cur:Element):Element

processAttributeDirectives(d:Element,a:Attribute,c:Element)

createElement(cur:Element):Element
getSourceReference(cur:Element):Object

getTargetName(name:String):String
getSourceName(name:String):String
directiveType(dir:String):Integer
getSourceElementSignature(s:String):String
processOperationDirectives(p:element, t:Element):Element
processSourceOp(d:Element,a:Operation,c:Directive)
processRedefineOp(d:Element,a:Operation,c:Directive)

getBoundElement(b:Table, d:Directive):Element
getBoundSubElement(b:Table,sig:String, d:Directive):Element
getTargetBoundSubElement(b:Table,parentSig:String,

getTargetBoundParameter(newOp:Operation,
directive:Directive, target:element):Element

boundOp:Operation, paramDir:Directive):Element
isExcludeDirective(dir:String):Boolean
copyConstraints(cur:Element, target:Element):Element

isExcluded(p:Property, d:Directive):Boolean

Element

+sourcePattern

+sourceModel

processSourceAttr(d:Element,a:Attribute,c:Directive)

Figure 4.20: Transformation Implementation Metamodel Showing Behavioral Fea-
tures.

syntax rules:

• Optional items are enclosed in: ‘[’, ‘]’ pairs.

63

Figure 4.21: EBNF Grammar for Transformation Directives.

• Repetition is indicated by: ‘{’, ‘}’ pairs.

64

Figure 4.22: EBNF Grammar for Transformation Directives (part 2).

• Items are grouped using pairs of parenthesis: ‘(’, ‘)’.

The grammar shows the rules for the source, redefine, new, exclude and

rename directives. The directives are organized divided into parts based on how

the directives are used with model elements. The SOURCE directive has the follow-

ing sub-rules:

• ClassNameSource describes the use of source directives with transformation

schema classes and interfaces.

• AttrSource describes the use of source directives with transformation

schema attributes.

65

• OpSource describes the use of source directives with transformation schema

operations.

• RelationshipSource describes the use of source directives with transfor-

mation schema relationships.

• PropertySource describes the use of source directives with meta-attributes.

The new directive has the following sub-rules:

• NewClassName describes the use of the new directive to give a name to a

class or interface.

• NewAttr describes the use of the new directive with transformation schema

attributes.

• NewOp describes the use of the new directive with transformation schema

operations.

• NewRelationship describes the use of new directives with transformation

schema relationships.

• NewProperty describes the use of new directives with meta-attributes.

The exclude directive has the following sub-rules:

• ClassExclude describes the use of exclude directive with transformation

schema classes and interfaces.

• AttrExclude describes the use of the exclude directive with transformation

schema attributes.

• OpExclude describes the use of the exclude directive with transformation

schema operations.

66

• ParamExclude describes the use of the exclude directive with formal para-

meters of a transformation schema operation.

• RelationshipExclude describes the use of exclude directive with transfor-

mation schema relationships.

The redefine directive has the following sub-rules:

• AttrRedefine describes the use of the redefine directive with transformation

schema attributes.

• OpRedefine describes the use of the redefine directive with transformation

schema operations.

• PropertyRedefine describes the use of the redefine directive with meta-

attributes.

67

4.7 A Transformation Directive Processing Al-

gorithm For Class Models

An algorithm for transforming source class models by processing directives in a

transformation schema is shown in Figures 4.25 - 4.34. The algorithm is based

on the metamodel shown in Figure 4.19 and Figure 4.20. The algorithm assumes

class diagrams are represented as graphs and performs the following steps:

1. If source model conforms to source pattern then

(a) Repeat for each connected component in the transformation schema

graph:

i. Repeat for each model element in a connected component:

• Get a model element from the component.

• Process the directives associated with the model element.

(b) Copy all source model elements not referenced in the transformtion

schema to the target model.

Figure 4.23 shows a partial call graph of the algorithm and Figure 4.24 shows

a sequence diagram for the algorithm. The algorithm is based on the assumption

that the source model conforms to the source pattern. Model conformance is be-

yond the scope of this dissertation. The core operations in the algorithm performs

the following tasks:

1. The main operation in Figure 4.34 is the first operation executed. The

command-line arguments supplied to main are the name of the file contain-

ing the source pattern, the name of the file containing the source model

and the name of the file containing the class model transformation schema.

68

processConnectedComponent

processOperation
Directives Directives

processAttribute

getFirstCompositeElement

processCompositeElement

getFirstConnectedComponent getNextConnectedComponent
processAllConnectedComponents

main

addElement

processSourceAttr

getTargetName

processRelationship

getBoundElementprocessSource

processSourceOp

getSourceName

processRedefineAttr

addAttribute

getNextAttributeDirective

deleteAttribute

processRedefineOp

addOperation

getTargetBoundSubElement

deleteOperation

getNextOperationDirective

Figure 4.23: Call Graph of Algorithm for Processing Class Transformation
Schemas.

The class constructor ClassTransformer, creates internal representations of

these input files. The source class pattern is represented in the ClassTrans-

former class by sourcePattern, the class model transformation schema

is represented by transSchema, the source class model is represented by

sourceModel and the binding specification is represented by bindings. In

the body of the main operation the transformation of the source model is

initiated with the invocation of the processAllConnectedComponents op-

eration. The class constructor is represented in the sequence diagram by the

create message invocation on the ClassTransformer instance.

69

2. processAllConnectedComponents processes each connected graph compo-

nent, that is, each set of model elements connected by relationships. Enu-

merated templates for example, normally do not have direct associations

with other model elements and are therefore isolated components.

3. processConnectedComponent processes one component.

4. processCompositeElement processes a composite model element such as a

transformation schema class or transformation schema interface.

5. processNameDirectives processes a transformation schema class or inter-

face that has a source directive in the name compartment.

6. processAttributeDirectives processes all attribute directives for a trans-

formation schema class.

7. processSourceAttr processes a transformation schema attribute source di-

rective.

8. processRedefineAttr processes a redefine directive applied to an attribute.

9. getTargetName returns the target model name from a transformation

directive. For example, the operation returns Current for a directive

source.|TransactionManager{name=Current}.

10. getTargetType returns the target model type from a attribute or opera-

tion directive. For example, the operation returns Current for a directive

val:|TransactionManager{name=Current}.

11. processOperationDirectives processes all operation directives for a trans-

formation schema class or interface.

12. copyConstraints copies constraints from one model element to another.

70

13. processSourceOp processes a transformation schema operation source di-

rective.

14. processRedefineOp processes a transformation schema operation redefine

directive.

15. getBoundElement returns a reference to the source model element bound to

a source pattern model element referenced by a directive.

16. getBoundSubElement returns a reference to an attribute, operation.

17. getTargetBoundSubElement returns a reference to an attribute or op-

eration of a newly created class or interface. For example assume the

source.pCurrent transformation schema class has the directive, redefine

someOp(x:float). If the Current class in the source model is bound

to pCurrent, then the source directive results in the Current class

being copied before the redefine directive is applied. Therefore the

getTargetBoundSubElement operation is used to return a reference to the

someOp(x:float) operation of the copied Current class rather that Current

in the source model.

18. getTargetBoundParameter returns a reference to a parameter of an opera-

tion in a newly created class or interface. The operation is used, for example,

when a redefine directive is applied to a parameter of an operation that is

in a class to which a source directive is applied.

71

[current.composite()]

processConnectedComponent(comp)

getNextConnectedComponent()

comp

current:Element

newElement:Element

sourceAspect:ClassModel

:ClassTransformer

create(sourceAspectClassFile, transSchemaClassFile)

temp = processNonCompositeElement(current)

newElement = createElement(current)

targetModel:
ClassModel

comp

current = getFirstCompositeElement()

loop

alt

directive = getDirective()

setNema(cName)

sourceName=getSourceName(directive)

alt

loop

getFirstConnectedComponent()

[comp <> null]

[current <> null]

[directiveType(directive)=SOURCE]

markVisited()

current = next()

temp = processCompositeElement(current)

cName = getTargetName(directive.signature)

sd TransSequence

create(transSchemaClassFile)

create(sourceAspectClassFile)

create()

processAllConnectedComponents()

transSchema:TransFormationSchemaClassModel

comp:ClassComponent

[current.composite()=false]

return(newElement)

addElement(temp)

sourceRef=getRefToRelationship(sourceName)

copyConstraints(sourceRef, current)

Figure 4.24: Sequence Diagram for Transformation Algorithm.

72

Figure 4.25: Transformation Algorithm for Class Models (part 1).

73

Figure 4.26: Transformation Algorithm for Class Models (part 2).

74

Figure 4.27: Transformation Algorithm for Class Models (part 3).

75

Figure 4.28: Transformation Algorithm for Class Models (part 4).

76

Figure 4.29: Transformation Algorithm for Class Models (part 5).

77

Figure 4.30: Transformation Algorithm for Class Models (part 6).

78

Figure 4.31: Transformation Algorithm for Class Models (part 7).

79

Figure 4.32: Transformation Algorithm for Class Models (part 8).

80

Figure 4.33: Transformation Algorithm for Class Models (part 9).

81

Figure 4.34: Transformation Algorithm for Class Models (part 10).

82

Figure 4.35: The merge Operation.

83

4.8 How the Algorithm Implements Rules for

Processing Transformation Directives

A class model is defined as a collection of connected graph components, where

each component is a set of classes and interfaces connected by relationships. The

transformation algorithm processes one component on each iteration of the while-

loop of the processAllConnectedComponents operation. On each iteration of

the loop, the processConnectedComponent operation is called to effect the trans-

formation of a component.

The processConnectedComponent operation processes a transformation

schema class, a transformation schema interface or a transformation schema

relationship during each iteration of its while-loop. The algorithm deter-

mines the order in which transformation schema classes, transformation schema

interfaces and transformation schema relationships are processed using the

getFirstElement and next operations. The first transformation schema model

element to be processed is identified by the operation call: TSElement current

= comp.getFirstElement(). Thereafter, model elements are selected to be

processed by the call: current = current.next(). If the selected model element

is a transformation schema class or interface, the model element is processed by the

operation call: Element temp = processCompositeElement(comp). Otherwise

the selected model element is a transformation schema relationship. Transforma-

tion schema relationships are processed by the operation call: Element temp =

processRelationship(current).

Transformation schema model elements (classes, interfaces, etc) consist of one

or more transformation directives. Directives are processed according to the trans-

formation rule defined for each directive. The subsections that follow describe

general rules for transforming class models and rules specific to each directive.

84

For each set of rules, (e.g., general rules), a list of rules is presented in one subsec-

tion (e.g. section 4.8.1.1) followed in the next subsection (section 4.8.1.2) by an

explanation of how the algorithm implements each rule. Explanations are ordered

based on the list of rules in the previous subsection. The first explanation is for

the first rule, the second explanation is for the second rule, and so on.

4.8.1 Transformation Rules

Transformation rules are classified into general rules and specific rules.

4.8.1.1 General Rules

1. Directives in the name-directive compartment are processed before directives

in the attribute-directive and operation-directive compartments.

2. For each name-directive, attribute-directive and operation-directive com-

partment, directives are processed in the order specified from top to bottom.

3. A rename directive is always associated with either a source or a redefine

directive.

4. A name-directive compartment may contain a new directive, an exclude

directive or source directives.

5. An attribute-directive compartment may contain a new directive, an exclude

directive, a redefine directive or a source directive.

6. An operation-directive compartment may contain a new directive, an ex-

clude directive, a redefine directive or a source directive.

7. Transformation schema relationships may have new, exclude and source di-

rectives only.

85

4.8.1.2 How the Algorithm Implements the General Rules

The algorithm implements the general transformation rules as follows:

1. Transformation schema classes or interfaces are being processed by the

processCompositeElement operation (see Figure 4.26). Within the opera-

tion, directives in the name-directive compartment are processed as follows:

• When the directive in the name-directive compart-

ment is a source directive, the Element newElement =

processNameDirectives(boundElement, current) operation

call first processes name-compartment directives, before di-

rectives in the attribute-directive compartment (for transfor-

mation schema classes) and operation-directive compartment

are processed by the processAttributeDirectives(..) and

processOperationDirectives(..) operation calls respectively (see

Figure 4.26).

• When the directive in the name-directive compartment is an exclude

directive, the exclude directive is processed, but attribute direc-

tives and operation directives are ignored. Exclude directives

are processed by the EXCLUDE case of the switch statement in

processCompositeElement.

• When the directive in the name-directive compartment is a new

directive, the createElement operation is called in the NEW case

of the switch statement to process the transformation schema

class or interfaces (see Figure 4.26). The createElement op-

eration processes the new directive in the name-directive com-

partment before calling createAttributesFromNewDirectives and

86

createOperationsFromNewDirectives to process attribute directives

and operation directives respectively (see Figure 4.33).

2. The algorithm enforces processing order of directives in compartments as

follows. For the name-directive compartments, the first directive is ob-

tained using the getFirstNameDirective operation call. This opera-

tion returns the directive at the top of the name-directive compartment.

Other directives in the name-directive compartment are obtained by calls

to the getNextNameDirective operation (see Figure 4.26). This opera-

tion returns directives in the order specified from top to bottom. Di-

rectives are processed in attribute-directive compartments and operation-

directive compartments similarly. The getFirstAttributeDirective op-

eration returns the first attribute directive and other attribute direc-

tives are obtained by calls to getNextAttributeDirective (see Figure

4.27). Similarly, getFirstOperationDirective returns the first oper-

ation directive and other operation directives are obtained by calls to

getNextOperationDirective (see Figure 4.29).

3. A rename directive is only processed if it appears as part of a source

or a redefine directive. Rename directives are processed by four oper-

ations: processSourceAttr, processRedefineAttr, processSourceOp,

processRedefineOp. These operations are only called during the

processing of a source directive or a redefine directive. The op-

erations are called by the processAttributeDirectives(..) and

processOperationDirectives(..) operations (see Figure 4.27 - Figure

4.30).

4. Directives in name-directive compartments are identified by the switch

87

statement in the processCompositeElement operation, and by the if state-

ment in the processNameDirectives operation. Any directive other than

source, new and exclude are trapped as errors in this code (see Figure 4.26

and Figure 4.27). The processNameDirectives operation identifies situa-

tions where the first directive in name-compartments is a source directive

but a subsequent directive is not.

5. Directives in attribute-directive compartments are identified by the switch

statement in the processAttributeDirectives operation. Any directive

other than new, exclude, source or redefine are trapped as an error by the

default case of the switch statement (see Figure 4.27).

6. Directives in operation-directive compartments are identified by the switch

statements in the processOperationDirectives, processSourceOp and

processRedefineOp operations (see Figure 4.29 and Figure 4.30). When

processing operation-directives, any directive other than new, exclude,

source or redefine are trapped as an error by the default case of the switch

statement in processOperationDirectives. When processing parameters,

any directive other than new, exclude, source or rename are trapped as an

error by the default case of the switch statements in processSourceOp

and processRedefineOp.

7. Directives associated with transformation schema relationships are identified

by the default case of the switch statement in the processRelationship

operation. Any directive other than a new, exclude or source directive is

trapped as an error by the default case of the switch statement (see Figure

4.34).

88

4.8.1.3 Specific source Directive Rules

1. Source directives effect a deep copy of model elements so that when a model

element is copied, associations and constraints are also copied.

2. When a name-directive compartment has multiple source directives, the

name of the transformed model element is the name associated with the first

source directive. Attributes and operations of model elements referenced

by source directives other than the first, are merged with attributes and

operations of the model element referenced by the first directive.

4.8.1.4 How the Algorithm Implements source Directive Rules

The algorithm implements the transformation rules for source directives as follows:

1. When a source directive is being processed, model elements are copied

using the copyElement operation (see Figure 4.26). The operation

copies all properties associated with a model element. This operation is

called by: (1) processNameDirectives to copy a class or interface, (2)

processSourceAttr to copy a class attribute, (3) processSourceOp to copy

an operation, and (4) processRelaionship to copy a relationship (see Fig-

ure 4.26, Figure 4.27, Figure 4.30 and Figure 4.34 respectively).

2. The processNameDirectives operation processes the source directives in

a name-directive compartment (see Figure 4.26). The source model ele-

ment referenced by the first source directive is copied using the statement:

Element newElement = copyElement(bound), where bound is a reference

to the source model element and newElement is a reference to the new model

element created. The source model element referenced by other source di-

rectives are merged into the copied model element by the operation call:

89

newElement.merge(bound), where bound is a reference to the source model

element that is being added. The merge operation merges attributes and

operations that are not already present in the newElement namespace (see

Figure 4.35).

4.8.1.5 Specific redefine Directive Rules

1. A redefine directive associated with a transformation schema attribute is

executed by: (a) processing a rename directive associated with the name of

the attribute, and/or (b) processing a rename directive associated with the

type of the attribute, and/or (c) changing the default value of the referenced

attribute.

2. A redefine directive associated with a transformation schema operation is

executed by: (a) processing a rename directive associated with the name

of the operation, and/or (b) processing a rename directive associated with

the return type of the operation, and/or (c) processing rename directives

associated with parameters, and/or (d) processing new directives associated

with parameters and/or (e) processing exclude directives associated with

the parameters.

3. When used with transformation schema attributes and operations, a rede-

fine directive must appear in a transformation schema class defined using a

source directive in the name-directive compartment.

4.8.1.6 How the Algorithm Implements redefine Directive Rules

The algorithm implements the transformation rules for redefine directives as fol-

lows:

1. Transformation schema attribute redefine directives are processed

90

in the REDEFINE case of the switch statement in the

processAttributeDirectives operation (See Figure 4.27). Process-

ing is done in two steps:

• A reference to the attribute to be transformed is obtained by a call to

the getTargetBoundSubElement operation.

• The processRedefineAttr operation (see Figure 4.28) is called to

transform the attribute as follows: (a) The name of the attribute is

changed in the first if statement. The newAttributeName operation

returns true when the attribute directive has a rename directive

attached to the name of the attribute. The statement, String

attrName = getTargetName (attrSig) returns the name specified

in the rename directive. For example, for the directive: redefine

counter{name=index }:Integer, the operation returns index. The

name of the attribute being redefined is changed using the statement:

boundAttr.setName(attrName).

(b) The type of the attribute is changed in the second if statement.

The newAttributeType operation returns true when the attribute

directive has a rename directive attached to the type of the attribute.

The statement, String attrType = getTargetType(attrSig) re-

turns the name specified in the rename directive. For example, for the

directive: redefine counter:Integer{name=Long }, the operation

returns Long. The type of the attribute being redefined is changed

using the statement: boundAttr.setType(attrType).

(c) The default value of the attribute is changed in the third if state-

91

ment in the operation. The last if statement identifies redefine at-

tribute directives that do not effect any change to the target attribute.

2. Transformation schema operation redefine directives are processed in the

SOURCE case of the switch statement in the processOperationDirectives

operation (See Figure 4.29). Processing is done in three steps:

• A reference to the source model operation that is being transformed is

obtained by a call to the getBoundSubElement operation.

• A reference to the copy made of the source model operation is obtained

by a call to the getTargetBoundSubElement operation.

• The operation is transformed by calling the processRedefineOp op-

eration (See Figure 4.30). The operation: (a) processes rename direc-

tives associated with the name and the return type of the operation

using the operation call: processOpRenameDir(newOp, opDir), (b)

processes all directives associated with parameters of the operation

using the operation call: processParameters (sourceElm, newOp,

sourceOP, opDir).

3. The algorithm ensures that redefine directives for transformation schema

attributes and operations always appear in a transformation schema class

or interface that is defined using a source directive.

Directives in the name-directive compartment are processed by the

processCompositeElement(..) operation. Redefine directives in the

attribute-directive compartment and operation-directive compartment are

processed by the processRedefineAttr(..) and processRedefineOp(..)

operations respectively. The processRedefineAttr(..) operation is called

92

by processAttributeDirectives(..) and processRedefineOp(..) is

called by processOperationDirectives(..).

The processAttributeDirectives(..) and

processOperationDirectives(..) operations are only called in the

SOURCE case of the switch statement in processCompositeElement(..).

These operation calls are made after directives in the name-directive com-

partment have been processed by the operation call Element newElement

= processNameDirectives(boundElement, current) (see Figure 4.26).

4.8.1.7 Specific exclude Directive Rules

1. A source model element that is referenced by an exclude directive must be

eliminated from the target model.

2. When used with transformation schema attributes and operations, an ex-

clude directive must appear in a transformation schema class defined using

a source directive in the name compartment.

4.8.1.8 How the Algorithm Implements exclude Directive Rules

1. The exclude directive may be used with (1) transformation schema classes,

interfaces and relationships, (2) transformation schema class attributes, (3)

transformation schema operations, and (4) transformation schema parame-

ters.

• Exclude directives in name-directive compartments of transformation

schema classes and interfaces, and exclude directives associated

with transformation schema relationships do not result in any

immediate change to the target model. Instead, references to

93

these model elements are stored to be processed after the trans-

formation is complete. When the transformation is complete, the

removeDeletedElements operation is called to determine if the

target model has any excluded class, interface or relationship. This

operation call, (removeDeletedElements(newModel)) is made in the

processConnectedComponent operation (See Figure 4.25).

References to excluded classes and interfaces are stored using the

statement: deletedList.add(boundELement), in the EXCLUDE case of

the switch statement in the processCompositeElements operation

(See Figure 4.26). In the statement, deletedList is a vector and

boundElement is a reference to the element to be excluded.

References to relationships are stored using the statement:

deletedList.add (sourceRel), in the EXCLUDE case of the switch

statement in the processRelationship operation (see Figure 4.34).

In this statement, deletedList is a vector and sourceRel is a refer-

ence to the relationship to be excluded.

• Exclude directives associated with transformation schema at-

tributes are processed in the EXCLUDE case of the switch state-

ment in the processAttributeDirectives operation (see Fig-

ure 4.27). Processing is done in two steps: (1) A refer-

ence to the attribute to be removed is obtained by the op-

eration call: boundAttr = getTargetBoundSubELement(bindings,

psig, attrDir, newElm), and (2) The attribute is removed by

the operation call: newElm.deleteAttribute(boundAttr), where

94

boundAttr is a reference to the attribute that is being removed.

• Exclude directives associated with transformation schema opera-

tions are processed in the EXCLUDE case of the switch state-

ment in the processOperationDirectives operation (see Fig-

ure 4.29). Processing is done in two steps: (1) A refer-

ence to the operation to be removed is obtained by the op-

eration call: boundOp = getTargetBoundSubELement (bindings,

psig, opDir, newElm), and (2) The operation is removed by the op-

eration call: newElm.deleteOperation(boundOp), where boundOp is a

reference to the operation that is being removed.

• Exclude directives associated with transformation schema parame-

ters are processed in the EXCLUDE case of the switch statement in

the processParameters operation. A reference to the parameter to

be removed is obtained by a call to the getTargetBoundParameter

operation. The parameter is then removed by the a call to the

deleteParameter operation (see Figure 4.30).

2. As was the case for redefine directives, the algorithm ensures that exclude di-

rectives for transformation schema attributes and operations always appear

in a transformation schema class or interface that is defined using a source

directive. This is done by processing exclude directives in the attribute-

directive compartment and operation-directive compartment after a source

directive is identified in the name-directive compartment (see Figure 4.26).

4.8.1.9 Specific new Directive Rules

1. A new directive results in a new model element being created.

2. When a new directive is used in a name-directive compartment, all directives

95

in the attribute-directive compartment and the operation-directive compart-

ment must be new directives.

4.8.1.10 How the Algorithm Implements new Directive Rules

1. The new directive may be used with (1) transformation schema classes, in-

terfaces and relationships, (2) transformation schema class attributes, (3)

transformation schema operations, and (4) transformation schema parame-

ters.

• A new directive in the name-directive compartment is processed in the

NEW case of the switch statement in the processCompositeElement

operation. A new class or interface is created and all directives in the

transformation schema class or interface are executed by a call to the

createElement operation (see Figure 4.26).

• New directives associated with transformation schema attributes

where the name-directive compartment has a source directive,

are processed in the NEW case of the switch statement in the

processAttributeDirectives operation. A new class attribute is cre-

ated by a call to the createAttribute operation (see Figure 4.27).

• New directives associated with transformation schema operations

where the name- directive compartment has a source directive,

are processed in the NEW case of the switch statement in the

processOperationDirectives operation. A new operation is created

by a createOperation operation call (see Figure 4.29).

• New directives associated with transformation schema parameters

where the name- directive compartment has a source directive, and the

transformation schema operation has a source directive, are processed

96

in the NEW case of the switch statement in the processParameters op-

eration. A new parameter is created by a createParameter operation

call (see Figure 4.30).

• New directives associated with transformation schema parameters

where the name-directive compartment has a source directive, and the

transformation schema operation has a redefine directive, are processed

in the NEW case of the switch statement in the processParameters op-

eration. A new parameter is created by a createParameter operation

call (see Figure 4.30).

• New directives associated with transformation schema relationships are

processed in the processRelationship operation. A new relationship

is created by a Element newElement = createElement(sourceRel)

operation call, where sourceRel is a reference to the source model

relationship being transformed.

2. The algorithm ensures that all attribute directives and operation

directives that appear in a transformation schema class or in-

terface defined using a new directive are new directives. The

createElement operation is called in the NEW case of the switch

statement in the processCompositeElement operation to process trans-

formation schema classes or interfaces (see Figure 4.26). The

createElement operation processes the new directive in the name-directive

compartment before calling createAttributesFromNewDirectives and

createOperationsFromNewDirectives to process attribute directives and

operation directives respectively (see Figure 4.33). An error condi-

tion is recorded when the createAttributesFromNewDirectives and

createOperationsFromNewDirectives operations detects a directive that

97

is not a new directive.

4.8.2 Summary

In addition to implementing the transformation rules, the algorithm also traps a

number of error conditions including the following:

1. Attempts to delete a non-existent operation, attribute, parameter or

relationship. This is done by examining the model element re-

turned by deleteOperation,deleteAttribute, deleteParameter and

deleteRelationship operation calls respectively. For example, in the

EXCLUDE case of the switch statement in the processOperationDirectives

operation, the statement: if(temp == null){...} records an attempt to

delete a non-existent operation.

2. The absence of a required model element in the source model. For example,

the absence of a required class or interface is detected by the following

statements in processCompositeElement (see Figure 4.26):

if(boundElement == null)

String s = directive.getSignature()

errorList.add(‘Non-existent class or interface: ’ + s)

3. Invalid operation, attribute, parameter directives and invalid direcives in

name-directive compartments. For example, invalid direcives in name-

directive compartments are identified by the default case of the switch

statement in the processCompositeElement operation, and in the else

condition of the if statement in the processNameDirectives operation

(see Figure 4.26).

98

It is important to note that combinations of different parts of the algorithm

do not violate the transformation rules. Several parts of the algorithm can only

affect a rule if a target model element may be produced by applying the directives

associated with two or more transformation schema model element to the same

source model element. For example, if an operation may be created by applying

two or more operation directives to the same source model operation. This is not

possible. Each time a directive is applied to a source model element, a target

model element results. Target model elements are never modified by any directive

in the transformation schema.

4.9 Lessons Learned

The order of directives in transformation schema compartments is important.

This is illustrated by the transformations described in Figure 4.36, Figure 4.37

and Figure 4.38.

Figure 4.36 shows two transformation schemas, each containing a trans-

formation schema class with an exclude directive and a source directive.

Transformation Schema A has the exclude directive before the source directive.

Transformation Schema B has the directives in reverse order: the source direc-

tive followed by the exclude directive.

The source model contains two classes, MoneyTransfer and TransManager.

MoneyTransfer is bound to |MoneyTransfer in the source pattern and

TransManager is bound to |TransManager. The commit(x:int):boolean opera-

tion in MoneyTransfer is bound to the |commit(|x:type):|commitVal operation

template in |MoneyTransfer. Similarly, the commit(x:int):boolean operation

in TransManager is bound to the |commit(|y:type2):|commitVal2 operation tem-

plate in |TransManager.

99

(b1)

exclude |commit(<params>)

source.|MoneyTransfer

source.|TransManager.|commit(<params>)

source.|MoneyTransfer

exclude |commit(<params>)

source.|TransManager.|commit(<params>)

|TransManager

|commit(|y:|type2):|commitVal2

|MoneyTransfer

|commit(|x:|type):|commitVal

post:
y is false when x != 0

pre: x > 0 AND x <= 7

MoneyTransfer
commit(x:int):boolean

TransManager
commit(x:int):boolean

manageTransaction

post:
y is false when x != 0

pre: x > 0 AND x <= 7

TransManager
commit(x:int):boolean

manageTransaction

MoneyTransfer

post:
y is false when x != 0

pre: x > 0 AND x <= 7

TransManager
commit(x:int):boolean

MoneyTransfer

commit(x:int):boolean

manageTransaction

post:
y is false when x != 0

pre: x > 0 AND x <= 7

post:
y is false when x != 0

pre: x > 0 AND x <= 7

commit(x:int):boolean

MoneyTransfer

manageTransaction

TransManager
commit(x:int):boolean

Target Model A
(After source directive is executed)

post:
y is false when x != 0

pre: x > 0 AND x <= 7

TransManager
commit(x:int):boolean

manageTransaction

MoneyTransfer

Target Model B
(After exclude directive is executed)

Transformation Schema A
Source Pattern

|manageTransaction

Transformation Schema B

Source Model Target Model BTarget Model A
(After exclude directive is executed) (After source directive is executed)

(c)

(d)

(a1)

(a3)

(a2)

(b3)

(b2)

Figure 4.36: Ordering Transformation Directives - Example 1.

Figure 4.36 (a2) and Figure 4.36 (a3) show the effect of executing the directive

in the order specified in Transformation Schema A and Figure 4.36 (b2) and (b3)

show the effect of executing the directive in the order specified in Transformation

Schema B.

For Transformation Schema A, the exclude directive results in the dele-

100

(b3)

exclude |commit(<params>)

source.|MoneyTransfer

source.|TransManager.|commit(<params>)

source.|MoneyTransfer

exclude |commit(<params>)

source.|TransManager.|commit(<params>)

|TransManager

|commit(|y:|type2):|commitVal2

|MoneyTransfer

|commit(|x:|type):|commitVal

post:
y is false when x != 0

pre: x > 0 AND x <= 7

TransManager
commit(x:int, a:ClientID):boolean
commit(x:boolean):boolean
commit(x:int):boolean

manageTransaction

commit(x:int):boolean

MoneyTransfer

post:
y is false when x != 0

pre: x > 0 AND x <= 7

post:
y is false when x != 0

pre: x > 0 AND x <= 7

MoneyTransfer
commit(x:int, a:ClientID):boolean
commit(x:boolean):boolean
commit(x:int):boolean

TransManager
commit(x:int, a:ClientID):boolean
commit(x:boolean):boolean
commit(x:int):boolean

manageTransaction

MoneyTransfer
commit(x:int, a:ClientID):boolean
commit(x:boolean):boolean
commit(x:int):boolean

post:
y is false when x != 0

pre: x > 0 AND x <= 7

TransManager
commit(x:int, a:ClientID):boolean
commit(x:boolean):boolean
commit(x:int):boolean

MoneyTransfer

post:
y is false when x != 0

pre: x > 0 AND x <= 7

TransManager
commit(x:int, a:ClientID):boolean
commit(x:boolean):boolean
commit(x:int):boolean

manageTransaction

MoneyTransfer

post:
y is false when x != 0

pre: x > 0 AND x <= 7

TransManager
commit(x:int, a:ClientID):boolean
commit(x:boolean):boolean
commit(x:int):boolean

manageTransaction

Transformation Schema A
Source Pattern

|manageTransaction

Transformation Schema B

Source Model B Target Model A Target Model B

Target Model A

(After exclude directive is executed) (After source directive is executed)

(After source directive is executed)

manageTransaction

Target Model B
(After exclude directive is executed)

(a1)

(a2)

(a3)

(c)

(d)

(b1)

(b2)

Figure 4.37: Ordering Transformation Directives - Example 2.

tion of the commit operation copied from the source model by the

source.MoneyTransfer directive (see Figure 4.36 (a2)). The source directive

then results in the commit operation being copied from the TransManager class.

101

manageTransaction

|TransManager

|commit(|y:|type2):|commitVal2

|MoneyTransfer

|commit(|x:|type):|commitVal

post:
y is false when x != 0

pre: x > 0 AND x <= 7

TransManager
commit(x:int, a:ClientID):boolean
commit(x:boolean):boolean
commit(x:int):boolean

manageTransaction

commit(x:int):boolean

MoneyTransfer

post:
y is false when x != 0

pre: x > 0 AND x <= 7

post:
y is false when x != 0

pre: x > 0 AND x <= 7

MoneyTransfer
commit(x:int, a:ClientID):boolean
commit(x:boolean):boolean
commit(x:int):boolean

TransManager
commit(x:int, a:ClientID):boolean
commit(x:boolean):boolean
commit(x:int):boolean

manageTransaction

MoneyTransfer
commit(x:int, a:ClientID):boolean
commit(x:boolean):boolean
commit(x:int):boolean

post:
y is false when x != 0

pre: x > 0 AND x <= 7

TransManager
commit(x:int, a:ClientID):boolean
commit(x:boolean):boolean
commit(x:int):boolean

MoneyTransfer

post:
y is false when x != 0

pre: x > 0 AND x <= 7

TransManager
commit(x:int, a:ClientID):boolean
commit(x:boolean):boolean
commit(x:int):boolean

manageTransaction

post:
y is false when x != 0

pre: x > 0 AND x <= 7

TransManager
commit(x:int, a:ClientID):boolean
commit(x:boolean):boolean
commit(x:int):boolean

MoneyTransfer

pre: x > 0 AND x <= 7
post:

y is false when x != 0

Transformation Schema A
Source Pattern

|manageTransaction

Transformation Schema B

Source Model B Target Model A Target Model B

Target Model A

(After exclude directive is executed) (After source directive is executed)

(After source directive is executed)

manageTransaction

Target Model B
(After exclude directive is executed)

(a1)

(a2)

(a3)

(c)

(d)

(b1)

(b2)

(b3)

source.|MoneyTransfer

source.|TransManager.|commit(<params>)

source.|MoneyTransfer

source.|TransManager.|commit(<params>)exclude |commit(|x:|type)

exclude |commit(|x:|type)

commit(x:int, a:ClientID):boolean
commit(x:boolean):boolean

Figure 4.38: Ordering Transformation Directives - Example 3.

Therefore, after the source directive in Transformation Schema A is executed,

the MoneyTransfer class has a copy of the commit operation defined in the

TransManager class.

102

For Transformation Schema B, the source directive is first executed. The

execution of the directive does not result in any change in the state of the

MoneyTransfer class in Figure 4.36 (b2) because an operation with the iden-

tical signature to the one being copied from the TransManager class already

exists in the MoneyTransfer class. When the exclude directive is executed,

the commit operation in the MoneyTransfer class is deleted. Therefore, in

contrast with the transformed model for Transformation Schema A where the

MoneyTransfer class has an operation (Figure 4.36 (a3)), the transformed model

for Transformation Schema B does not have an operation in the MoneyTransfer

class (Figure 4.36 (b3)).

Figure 4.37 defines the same transformations specified in Figure 4.36 but

uses a different source model. In this case the order of directives defined in

Transformation Schema A result in a transformed model with three new opera-

tions (see Figure 4.37 (a3)). In contrast, the order of directives in Transformation

Schema B result in a transformed model with no operations in the MoneyTransfer

class because the exclude directive results in the removal of the three operations

that were copied from the TransManager class (see Figure 4.37 (b2) and (b3)).

If the goal of the modeler in the two examples above (Figure 4.36 and Figure

4.37) was to have the MoneyTransfer class in the transformed model having sim-

ilar operations to TransManager, (for example, if MoneyTransfer is to act as a

proxy for TransManager), then the order of directives specified in Transformation

Schema A is the correct sequence. In these examples it is fairly easy to detect the

error resulting from the order of directives shown in Transformation Schema B

because the transformed MoneyTransfer class has no operations. Figure 4.38 il-

lustrates a scenario where the error resulting from the execution order specified

in Transformation Schema B is more difficult to detect.

103

In Figure 4.38, the commit(x:int):boolean operation in MoneyTransfer

is bound to the |commit(|x:type):|commitVal operation template in

|MoneyTransfer. In addition, the three commit operations in TransManager

are all bound to the |commit(|y:type2):|commitVal2 operation template in

|TransManager. The order of directives specified by Transformation Schema

A results in the MoneyTransfer class in the transformed model having three

commit operations (Figure 4.38 (a2) and (a3)). The order of directives speci-

fied by Transformation Schema B results in one operation being deleted from

MoneyTransfer class in the transformed model (Figure 4.38 (b2) and (b3)). In

this scenario, it may be difficult for a modeler to identify that one commit opera-

tion is missing from the class.

104

4.10 Discussion: Use of Target Patterns to Val-

idate Transformations

Target PatternTransformationSchema

Transformation

Algorithm

TransformationSchema

Metamodel

Transformation
Implementation

Metamodel

Source Model

Binding Specification

Source Pattern

<<conforms_to>>

<<conforms_to>>
<<conforms_to>>

Source Metamodel Target Metamodel

Target Model

<<input>>
<<input>>

<<input>> <<output>>

<<input>>

<<conforms_to>>

<<conforms_to>>

<<conforms_to>>

Figure 4.39: Transformation Conceptual Model With Target Pattern.

In declarative approaches to model transformation such as QVT, a transfor-

mation specification consists of a source model and a target model. The source

model is a pattern that describes valid input models and the target model is a

pattern that describes valid output models. In this dissertation, a transforma-

tion specification consists of a source pattern that describes valid input models

and a transformation schema that describes how output (i.e., target) models are

obtained from input models.

In addition to the source pattern, a target pattern may be used as an oracle

to help determine the correctness of model transformations. This is illustrated

in Figure 4.39. In the figure, Target Pattern is a description of valid Target

105

Models where a target model is a class diagram that describes the transformed

software feature. Each target pattern describes the minimum set of properties ex-

pected of valid target models. The Target Pattern describe a subset of instance

of the Target Metamodel.

A correct transformation algorithm rejects all invalid source models and so an

incorrect target model may only result from (1) an incorrect source pattern, (2) an

incorrect transformation schema, or (3) a faulty transformation algorithm. If the

transformation algorithm is correct, then an incorrect target model may only result

from a faulty source pattern or a faulty transformation schema. Therefore, a target

pattern may be used to validate the correctness of source patterns, transformation

schemas and transformation algorithm. This may be done in several ways:

1. An target model that does not conform to a correct target pattern indicates

a faulty transformation schema when the source pattern and transformation

algorithm are correct.

2. An target model that does not conform to a correct target pattern indicates

a faulty algorithm when the source pattern and transformation schema are

correct.

3. An target model that does not conform to a correct target pattern indicates

a faulty source pattern when the transformation schema and transformation

algorithm are correct.

This suggests a test case design approach. For example, a transformation algo-

rithm should always produce correct output when exercised using source patterns

and transformation schemas that are known to be correct.

A target pattern may contain three types of model elements: source pattern

model elements copied without modification by transformation directives, source

106

pattern model elements modified by one or more transformation directives and

new model elements created by one or more transformation directives. Therefore,

all model elements in a target model result from use of transformation directives

in the transformation schema. It is therefore possible to create a target pattern

from the source pattern and the transformation schema. The ease or difficulty of

this process will depend on the complexity of the transformation schema.

107

Chapter 5

Pilot Studies: Transforming
Distribution Class Models

This chapter presents two pilot studies to illustrate the application of the trans-

formation algorithm to a platform independent distribution class model. The first

pilot study uses the transformation language to transform a platform independent

distribution class model into a CORBA distribution class model. The second pi-

lot study uses the transformation language to transform the platform independent

distribution class model into a Jini distribution class model. The transformation

context is illustrated by the activity diagram shown in Figure 4.1.

5.1 Pilot Study 1: Transforming Distribution

Class Model to CORBA Class Model

This section illustrates the transformation a platform-independent server distrib-

ution class model into a CORBA class model. CORBA is an OMG standard for

open distributed object computing.

5.1.1 CORBA Support For Server Distribution

Server distribution is the process of making a server object available to remote

clients. In CORBA, distribution can be realized by: (1) initializing an object

108

request broker (ORB) through which clients communicate with the server, (2)

initializing a portable object adapter that is used to manage object properties

(e.g, object persistence) and to invoke operations on objects on behalf of the

ORB and (3) registering the server with the CORBA naming service. CORBA

provides a number of features to support the distribution of server objects, these

include:

1. The CORBA object request broker (ORB): a collection of libraries,

processes, and other infrastructure that connects objects requesting services

to the objects providing the services and allows the objects to communicate

by sending and receiving messages. In order for a server object to be dis-

tributed, the ORB must be initialized using its init operation and made to

enter an infinite request processing loop by invoking its run operation.

2. An object adapter: the ORB component responsible for managing object

references, object activation, and object state. An object adapter maintains

a mapping of object references to actual objects, and provides support for

invoking operations on the objects on behalf of the ORB. In CORBA, the

Portable Object Adapter, or POA, is a CORBA object adapter designed

to: (1) allow programmers to construct object implementations that are

portable between different ORB products, (2) provide support for objects

persistence, (3) support the transparent activation of objects and (4) allow

a single object to support multiple object identities simultaneously. Since

an application may have multiple POAs, the first POA, called the rootPOA

is typically obtained from the ORB. CORBA provides a number of classes

and interfaces to support the POA role, these include: a POA interface, a

POAHelper class and a POAManager interface.

3. The CORBA interface definition language (IDL) [40]: an OMG defined lan-

109

guage standard for defining interfaces for CORBA objects. An IDL interface

may contain operations, exceptions, and attributes. An IDL file specifying

the operations that the server will provide, must be created in order for a

server to use the services and facilities provided by the ORB.

5.1.2 Source Class Pattern

<<Interface Template>>
|ServerInterface

|Server

|operation(|params*)

|providesInterface

<<Class Template>>

Figure 5.1: Source Pattern.

Figure 5.1 shows a source pattern that describes services that are to be dis-

tributed using middleware. The figure is expressed as an RBML class diagram

template. The Server class template represents the application that is to be dis-

tributed. This application must have an associated provided interface represented

by ServerInterface.

5.1.3 Specify CORBA Model Transformations

The mappings to transform the generic distribution class model into a CORBA

distribution model is specified as a transformation schema as shown in Figure 5.2.

The POAManager transformation schema interface and the POAHelper transforma-

tion schema class represent parts of the CORBA POA that support preparation

of the middleware infrastructure. POAHelper provides the narrow operation that

is used to provide a reference to the POA while the POAManager provides the

110

rebind(s:String, obj:Remote)

NameComponent

<<Interface>>
POAManager

activate()

withdraw(amount:float)

Account

deposit(amount:float)

<<Interface>>

NamingContextExtHelper

NamingContextExt

ORB

bind(n:NameComponent, obj:CORBA.Object)

to_name(str:String)

run()

|IDLInterfacePOA
1..*

0..1

0..1

activatePOA

configureObject

manageNamingContext

1..*

manageNameComponent

useComponent

0..1

0..1

initializeORB

*

*

**

*

POAHelper

0..1configurePOA

configureManager

manages

*

1*

*
source.|Server

{name=|IDLInterfaceOperations}

source.|ServerInterface

init(args:String[], props:Properties):ORB

resolve_initial_references(refName:String):CORBA.Object

narrow(obj:CORBA.Object):NamingContextExt

narrow(obj:CORBA.Object) : POA

<<Interface>>

the_POAManager():POAManager

POA

servant_to_reference(sobj:|Server):CORBA.Object
unbind(s:String)

Naming

list(s:String}):String[]

lookup(s:String}):Remote

Figure 5.2: CORBA Class Transformation Schema.

activate operation that is used to change the state of the POA-manager to

active and cause associated POAs to start processing requests.

CORBA requires the creation of an IDL interface file for the server. An

IDL interface is similar to a Java interface but may also contain attributes and

exceptions. The source.|ServerInterface{name= |IDLInterfaceOperations}

transformation schema interface represents a Java interface generated from the

IDL interface by the CORBA IDL compiler and the |IDLInterfacePOA transfor-

mation schema class represents a Java class generated.

5.1.4 Source Model and Binding Specification

Figure 5.3 shows a valid source model for the source pattern. The source model

consists of the AccountManager and Account classes and the AccountOperations

111

interface. The AccountManager class is bound to AccountManager class template

and the AccountOperations interface is bound to AccountInterface. Note that

the Account class and manages association are not bound to any source pattern

model elements. The complete binding specification is shown in Table 5.1.

providesInterface

withdraw(amount:float)

Account

deposit(amount:float)

deposit(acc:String, amount:float)

withdraw(acc:String, amount:float)

AccountOperations

*1

manages

AccountManager

Figure 5.3: Source Model for Server Distribution.

Table 5.1: Binding Specification.

Source Pattern Element Source Model Element

|Server AccountManager
|ServerInterface AccountOperations
|ServerInterface::|operation AccountOperations::withdraw
|ServerInterface::|operation::|params AccountOperations::withdraw::

acc:String
|ServerInterface::|operation::|params AccountOperations::withdraw::

amount:float
|ServerInterface::|operation AccountOperations::deposit
|ServerInterface::|operation::|params AccountOperations::deposit::

acc:String
|ServerInterface::|operation::|params AccountOperations::deposit::

amount:float
|providesInterface providesInterface

112

5.1.5 Process Transformation Directives

In order to provide a systematic way of describing the order in which transfor-

mation schema model elements are processed, the following element selection

heuristic is used.

1. The first element to be processed is selected arbitrarily.

2. After the first element has been processed, other model elements are se-

lected to be processed based on the lexographic ordering of names of model

elements. An element with a smaller name in lexographic ordering is chosen

before an element with a larger name.

The transformation schema contains a single set of connected model elements

and therefore the loop in the processAllConnectedComponents operation in

the class model transformation algorithm will be executed only once. A new

component is created prior to the while loop in processConnectedComponent

and a transformed source model element is added to this new component for

each iteration of the while-loop in processConnectedComponent. On each iter-

ation of this loop, all the directives associated with the source model element

that is being transformed are processed. Directives associated with a single

source model element are expressed in one transformation schema model ele-

ment. Each numbered item below lists the transformation schema model elements

and directives processed during the corresponding iteration of the the while-loop

in processConnectedComponent operation. For example, the source.|Server

transformation schema class and the source.|Server transformation directive

are processed during the first iteration of the loop.

• Iteration 1: The source.|Server transformation schema class is processed

by a processCompositeElement operation call in the first iteration of the

113

while loop in processConnectedComponent. From the binding speci-

fication, the |Server class template in the source pattern is bound to

the AccountManager class in the source model. Processing results in the

AccountManager class being copied to the new component.

• Iteration 2: The activatePOA transformation schema association is

the next item processed. Associations are processed by calls to

processNonCompositeElement. A transformation schema model element

that is specified without using a leading directive keyword defaults to ‘new’

as the leading directive keyword. In this instance, processing results in a

new association with the name activatePOA being created and inserted into

the new component.

• Iteration 3: The POAManager transformation schema interface is processed,

resulting in the creation of a new interface with the name POAManager. The

activate() transformation schema operation is a new directive. Processing

results in the creation of the operation: activate(). The operation is

inserted into the newly created POAManager interface and the interface is

inserted into the new component.

• Iteration 4: The configureManager transformation schema association

is processed. Processing results in a new association with the name

configureManager being created and inserted into the new component.

• Iteration 5: The POAHelper transformation schema class is processed re-

sulting in the creation of a new class with the name POAHelper. The em-

bedded directive: narrow(obj:CORBA.Object):POA results in the creation

of the operation: narrow(obj:CORBA.Object):POA. The operation is in-

serted into the newly created POAHelper class and the class is inserted into

114

the new component.

• Iteration 6: The configureObject transformation schema association

is processed. Processing results in a new association with the name

configureObject being created and inserted into the new component.

• Iteration 7: The NamingContextExtHelper transformation schema

class is processed resulting in the creation of a new class with the

name NamingContextExtHelper. The embedded directive: narrow

obj:CORBA.Object):NamingContextExt results in the creation of the op-

eration: narrow(obj:CORBA.Object):NamingContextExt. The operation

is inserted into the newly created NamingContextExtHelper class and the

class is inserted into the new component.

• Iteration 8: The configurePOA transformation schema association is

processed. Processing results in a new association with the name

configurePOA being created and inserted into the new component.

• Iteration 9: The POA transformation schema interface is processed result-

ing in the creation of a new interface with the name POA. The embedded

directives are processed as follows:

1. The directive the POAManager():POAManager is processed resulting in

the creation of the operation: the POAManager():POAManager. The

operation is inserted into the newly created POA interface.

2. The directive servant to reference(sobj:|Server):CORBA.

Object is processed resulting in the creation of the operation:

servant to reference(sobj:|Server):CORBA.Object. The opera-

tion is inserted into the newly created POA interface.

115

The POA interface is inserted into the new component.

• Iteration 10: The generalization relationship between source.|Server and

|IDLInterfacePOA is processed. Processing results in a new generalization

being created and inserted into the new component.

• Iteration 11: The |IDLInterfacePOA transformation schema class

is processed. Processing results in a new class with the name

|IDLInterfacePOA being created and inserted into the new component.

• Iteration 12: The realization dependency between |IDLInterfacePOA

and source.|ServerInterface{name=|IDLInterfaceOperations} is

processed. Processing results in a new realization dependency being created

and added to the new component.

• Iteration 13: The source.|ServerInterface{name=

|IDLInterfaceOperations} transformation schema interface is

processed. Processing results in a new interface with the name

|IDLInterfaceOperations being created. The |operation(|params*)

operation template is bound to the withdraw and deposit operations. As

a result these operations are copied to the new interface. The new interface

is then inserted into the new component.

• Iteration 14: The initializeORB transformation schema association

is processed. Processing results in a new association with the name

initializeORB being created and inserted into the new component.

• Iteration 15: The ORB transformation schema class is processed. A new

class with the name ORB is created. The embedded directives are processed

as follows:

116

1. The directive init(args:String[], props:Properties):ORB

is processed resulting in the creation of the operation:

init(args:String[], props:Properties):ORB. The operation

is inserted into the created ORB class.

2. The directive resolve initial references(obj:

String):CORBA.Object is processed resulting in

the creation of the operation: resolve initial

references(obj:String):CORBA.Object. This operation is used

to create a CORBA reference for a server object. The operation is

inserted into the created ORB class.

3. The directive run() is processed resulting in the creation of the oper-

ation: run(). The operation is inserted into the created ORB class.

The ORB class is inserted into the new component.

• Iteration 16: The manageNamingContext transformation schema associ-

ation is processed. Processing results in a new association with the name

manageNamingContext being created and inserted into the target model.

• Iteration 17: The NamingContextExt transformation schema interface

is processed resulting in the creation of a new interface with the name

NamingContextExt. The embedded directives are processed as follows:

1. The directive bind (n:NameComponent, obj: CORBA.Object) re-

sults in the creation of the operation: bind(name=n:NameComponent,

obj:CORBA.Object). The operation is inserted into the newly created

NamingContextExt interface.

117

2. The directive to name (str:String) results in the creation of the op-

eration: to name(str:String). The operation is inserted into the

newly created NamingContextExt interface.

The NamingContextExt interface is inserted into the new component.

• Iteration 18: The useComponent transformation schema association

is processed. Processing results in a new association with the name

useComponent being created and inserted into the new component.

• Iteration 19: The NameComponent transformation schema class is processed

resulting in a new class with the name NameComponent being created and

inserted into the new component.

• Iteration 20: The manageNamingService transformation schema associ-

ation is processed. Processing results in a new association with the name

manageNamingService being created and inserted into the new component.

• Iteration 21: The Naming transformation schema class is processed result-

ing in a new class with the name Naming being created. The embedded

directives are processed as described below.

1. The list (s:String):String[] transformation schema op-

eration is processed. Processing results in the operation

list(s:String):String[] being created and inserted into the

new class.

2. The lookup (s:String):Remote transformation schema op-

eration is processed. Processing results in the operation

lookup(s:String):Remote being created and inserted into the

new class.

118

3. The rebind (s:String, obj:Remote) transformation schema op-

eration is processed. Processing results in the operation

rebind(s:String, obj:Remote) being created and inserted into the

new class.

4. The unbind (s:String) transformation schema operation is

processed. Processing results in the operation unbind(s:String)

being created and inserted into the new class.

The Naming class is inserted into the new component.

The Account class and the manages association are not bound to any source

pattern model elements. These items are copied to the new component and the

new component is added to the target model. The resulting CORBA distribution

class model is shown in Figure 5.4.

119

resolve_initial_references(refName:String):CORBA.Object

NameComponent

<<Interface>>
POAManager

activate()

withdraw(amount:float)

Account

deposit(amount:float)

<<Interface>>

NamingContextExtHelper

NamingContextExt

ORB

narrow(obj:CORBA.Object):|NamingContextExt

bind(n:NameComponent, obj:CORBA.Object)

to_name(str:String)

run()

|IDLInterfacePOA
1..*

0..1

0..1

activatePOA

configureObject

manageNamingContext

1..*

manageNameComponent

useComponent

0..1

0..1

initializeORB

*

*

**

*
AccountManager

POAHelper

0..1configurePOA

configureManager

manages

*

1*

*

deposit(acc:String, amount:float)

withdraw(acc:String, amount:float)

|IDLInterfaceOperations

providesInterface

rebind(s:String, obj:Remote)

unbind(s:String)

Naming

lookup(s:String}):Remote

list(s:String}):String[]

narrow(obj:CORBA.Object) : POA

<<Interface>>
POA

the_POAManager():POAManager

servant_to_reference(sobj:|Server):CORBA.Object

init(args:String[], props:Properties):ORB

Figure 5.4: CORBA Distribution Target Model.

120

5.2 Pilot Study 2: Transforming Distribution

Class Model to Jini Class Model

This section uses the model-to-model transformation technique to transform the

platform independent source model shown in Figure 5.3 into a Jini distribution

class model. The source pattern for the transformation is shown in Figure 5.1 and

the binding specification for the source model is shown in Table 5.1.

5.2.1 Specify Model Transformations

ServiceRegistrar

|ServiceProxy

Serializable

|RemoteInterface

Remotesource.|ServerInterface

|jini−id:|Type
codebase:String

|ServiceWrapper

:EventRegistration{exception RemoteException}

trans:Integer, listener:RemoteEventListener,
h:MarshalledObject, leaseDuration:long)

1..*

1

<<interface>>

source.|Server

Activatable

|Thread

|threadOp()

<<Classifier Template>>

**

*

1

*

*1
*

*
*1

|JiniFeature

lookup(tmpl:ServiceTemplate):Object
{exception RemoteException}

register(item:ServiceItem, leaseDuration:long)
:ServiceRegistration{exception RemoteException}

notify(tmpl:ServiceTemplate,

Figure 5.5: Class Transformation Schema.

The mappings to transform the generic distribution class model into a Jini

distribution model is specified as a transformation schema as shown in Figure 5.5.

The transformation schema has the following features:

1. The Thread classifier template represents a protocol for managing threads.

The Thread classifier template can be instantiated using classes or interfaces.

121

2. The ServiceProxy class template is a proxy for the Server class template. A

proxy is an entity that acts on behalf of another entity. Client programs in-

teract with the Server transparently through the ServiceProxy. This shields

the Server from direct manipulation and allows services to be added to the

Jini Lookup Service, or removed from the Jini Lookup Service transparently.

The federated Jini service is a combination of Server and ServiceProxy. They

can be combined in three distinct ways. (1) The Proxy and the Server can

share the service functionality, or (2) the complete functionality of the ser-

vice can be implemented in the ServiceProxy or (3) The complete function-

ality of the service can be implemented in the Server. However, if either

of the first two options are used then the proxy may have to be changed

each time the service is updated. In order to make service proxies down-

laodable by clients, Jini requires that service proxies be serializable. This

is accomplished by causing the service proxy to provide the Serializable

class template which facilitates object serialization.

3. The Activatable class template facilitate persistent access to the Server

with activation on demand.

5.2.2 Process Transformation Directives

The transformation schema contains a single set of connected model elements and

therefore the loop in the processAllConnectedComponents operation in the class

model transformation algorithm will be executed only once. A new component is

created prior to the while loop in processConnectedComponent. Model elements

in the transformation schema are processed and added to this new component as

described below.

122

1. |ServiceWrapper results in a new class template with the

name |ServiceWrapper being created. The |jini-id:|Type and

codebase:String directives result in new attribute templatess being

created and inserted into the new class. The new class is then add to the

new component.

2. The transformation schema association between |ServiceProxy and

|ServiceWrapper is the next item processed. Processing results in a new

association being created and inserted into the new component.

3. |ServiceProxy results in a new class with the name |ServiceProxy being

created and added to the new component.

4. The transformation schema realization dependency between |ServiceProxy

and |Serializable is the next item processed. Processing results in a new

realizaion dependency being created and inserted into the new component.

5. Serializable results in a new class with the name Serializable being

created and added to the new component.

6. The transformation schema association between |ServiceProxy and

source.|Server is the next item processed. Processing results in a new

association being created and inserted into the new component.

7. The source.|Server transformation schema class results in the

AccountManager class being copied from the source model to the new com-

ponent.

8. The transformation schema generalization between source.|Server and

Activatable is the next item processed. Processing results in a new gener-

alization being created and inserted into the new component.

123

9. Activatable results in a new class with the name Activatable being cre-

ated and added to the new component.

10. The transformation schema realization dependency between

source.|Server and |RemoteInterface is the next item processed.

Processing results in a new realization dependency being created and

inserted into the new component.

11. |RemoteInterface results in a new interface template with the name

|RemoteInterface being created and added to the new component.

12. The transformation schema generalization between |RemoteInterface and

Remote is the next item processed. Processing results in a new generalization

being created and inserted into the new component.

13. Remote results in a new class with the name Remote being created and added

to the new component.

14. The transformation schema generalization between |RemoteInterface and

source.|ServiceInterface is the next item processed. Processing results

in a new generalization being created and inserted into the new component.

15. The source.|ServiceInterface transformation schema interface results in

the AccountOperations being copied from the source model to the new

component.

16. The transformation schema association between |ServiceWrapper and

|Thread is the next item processed. Processing results in a new associa-

tion being created and inserted into the new component.

17. |Thread results in a new classifier template with the name |Thread being

created. The threadOp() directive results in a new operation template being

124

created and inserted into the new classifier template. The new classifier

template is then added to the new component.

18. The transformation schema association between |ServiceWrapper and

|Jinifeature is the next item processed. Processing results in a new asso-

ciation being created and inserted into the new component.

19. The |Jinifeature transformation schema classifier results in a

new classifier template with the name |Jinifeature being created.

The |initialize(|params1*), |registerServer(|ser:|Server) and

|configureServer(|ser:|Server, |params3*) operation templates are

copied into the new classifier template. The new classifier template is then

added to the new component.

20. The transformation schema usage dependency between |ServiceWrapper

and ServiceRegistrar is the next item processed. Processing results in a

new usage dependency being created and inserted into the new component.

21. The ServiceRegistrar transformation schema interface is processed re-

sulting in a new interface template with the name ServiceRegistrar being

created. The embedded directives are processed as follows:

• The lookup(impl:ServiceTemplate) :Object{exception

RemoteException} directive results in the operation:

lookup(impl:ServiceTemplate):Object {exception

RemoteException} being created and added to the new interface.

• The register (item:ServiceItem, leaseDuration:long):

ServerRegistration {exception RemoteException} direc-

tive results in the operation: register(item:ServiceItem,

125

leaseDuration:long):ServerRegistration {exception

RemoteException} being created and added to the new interface.

• The notify(impl:ServiceTemplate, listener:

RemoteEventListener, h:MarshalledObject,

leaseDuration:long): ServerRegistration {exception

RemoteException} directive results in the operation:

notify(impl:ServiceTemplate, listener:RemoteEventListener,

h:MarshalledObject, leaseDuration:long):ServerRegistration

{exception RemoteException} being created and added to the new

interface. The new interface is added to the new component.

The Account class and the manages association are not bound to any source

pattern model elements. These items are copied to the new component and the

new component is added to the target model. The resulting Jini distribution class

model is shown in Figure 5.6.

126

AccountManager

|initialize(|params1*)

|registerServer(|ser:|Server, |params3*)

|registerServer(|ser:|Server)

|JiniFeature
<<Classifier Template>>

1

*

Serializable

|ServiceWrapper

|jini−id:|Type
|codebase:|String

deposit(acc:String, amount:float)

withdraw(acc:String, amount:float)

AccountOperations

deposit(amount:float)

withdraw(amount:float)

Account
1..*

ServiceRegistrar
<<interface>>

|RemoteInterface

Remote

{exception RemoteException}
lookup(tmpl:ServiceTemplate):Object

{exception RemoteException}

register(|item:ServiceItem,
leaseDuration:long):ServiceRegistration

notify(tmpl:ServiceTemplate, trans:Integer,
listener:RemoteEventListener,

h:MarshalledObject, leaseDuration:long)
:EventRegistration{exception RemoteException}

|Thread

|threadOp()

<<Classifier Template>>

*

1 *

.*1.*

*
*

*

Activatable

1

|ServiceProxy
1

.*

Figure 5.6: Jini Server Distribution Target Model.

127

5.3 Discussion

source.|ServerInterface.|operation(|params*)

<<Class Template>>
|IDLInterfacePOA

<<Class Template>>
source.|Server

source.|providesInterface

|registerServer

<<Classifier Template>>

|initOp(|params1*)

|configureServer

<<Classifier Template>>
|Register

|registerServer(|params3*)

|initializeService

|configureServer(|params2*)

<<Classifier Template>>

|Initialize

|Configure

<<Interface Template>>
|IDLInterfaceOperations

Figure 5.7: Target Class Pattern

In Chapter 4 the use of target patterns as transformation testing oracles was

discussed. Figure 5.7 shows a target pattern for the model-to-model transforma-

tion of server distribution class models. The target pattern includes:

• The source.|Server class template represents the |Server class template of

the source pattern.

• The |IDLInterfacePOA class template and the |IDLInterfaceOperations in-

terface template represent model elements generated by the CORBA IDL

compiler to support the distribution of servers. The |IDLInterfaceOperations

interface template is created using operation templates defined in the

128

|ServerInterface interface template in the source pattern. This is specified

using the source.|ServerInterface.|operation(|params*) directive.

• The middleware distribution service is represented by the Initialize, Register

and Configure Classifier templates.

• The Initialize Classifier template represents the protocol for initializing the

middleware infrastructure that supports distribution. Instances of the ini-

tOp operation template are used to prepare the middleware features that

support distribution, for example, initialization of the CORBA ORB.

• The Register Classifier template represents the protocol for registering the

server with the middleware distribution service. The Server is made avail-

able to clients by registering the server with the middleware using instances

of the registerServer operation template.

• After a service has registered, it may be necessary to interact with the

middleware service. For example to change a property associated with the

server or to reset a property associated with the distribution service. This

is accomplished using instances of the configureServer operation template

of the Configure Classifier template.

The process of establishing conformance of the target model to this target

pattern involves determining that there is a target model element that plays the

role (or conforms) of each model element in the target pattern.

A binding specification for this target pattern and the CORBA target model

shown in Figure 5.4 is shown in Table 5.1 and Table 5.2. The binding specification

would be used in determining the conformance of the target model to the target

pattern.

129

Table 5.2: Target Binding Specification.

Target Pattern Element Target Model Element

|IDLInterfacePOA |IDLInterfacePOA
|IDLInterfaceOperations |IDLInterfaceOperations
|Initialize ORB
|Initialize::|initOp ORB::init
|Initialize::|initOp:: |params1* ORB:: init::args:String[]
|Initialize::|initOp:: |params1* ORB:: init::props:Properties
|Initialize::|initOp ORB::run
|Register POAManager
|Register::|registerServer POAManager::activate
|Register NamingContextExt
|Register::|registerServer NamingContextExt::bind
|Register::|registerServer::|params3* NamingContextExt::

bind::n:NameComponent
|Register::|registerServer::|params3* NamingContextExt::

bind::obj:CORBA.Object
|Configure Naming
|Configure::|configureServer Naming::|list
|Configure::|configureServer::|params2* Naming::|list::s:String
|Configure::|configureServer Naming::|lookup
|Configure::|configureServer::|params2* Naming::|lookup::s:String
|Configure::|configureServer Naming::|unbind
|Configure::|configureServer::|params2* Naming::|unbind::s:String
|Configure::|configureServer::|params2* Naming::|unbind::obj:Remote
|Configure::|configureServer Naming::|rebind
|Configure::|configureServer::|params2* Naming::|rebind::s:String
|initializeService initializeORB

|configureServer manageNameComponent

|registerServer registerServer

In general, items in the target pattern can be grouped into three sets.

One set represents the primary business logic of the application, one set rep-

resents platform-specific items and the third set is the relationships defined be-

tween the first two sets of model elements. In this example, source.|Server

and source.|ServiceInterface.|operation(|params*) represent the primary

130

business logic of the money transfer service application. |Configure,

|initialize, |Register, |IDLInterfacePOA and |IDLInterfaceOperations

represent CORBA-specific items.

131

Chapter 6

Pilot Studies: Transforming
Distributed Transaction Models

This chapter presents two additional pilot studies to illustrate the application of

the transformation algorithm to a platform independent transaction class model.

The first pilot study uses the transformation language to transform a platform

independent transaction class model into a CORBA transaction class model. The

second pilot study uses the transformation language to transform the platform

independent transaction class model into a Jini transaction class model. The

transformation context is illustrated by the activity diagram shown in Figure 4.1.

6.1 Pilot Study 3: Transforming Transaction

Class Model to CORBA Class Model

This section illustrates the transformation of a platform-independent server trans-

action class model into a CORBA transaction class model.

6.1.1 Overview of CORBA Transaction Service

A transaction is an indivisible collection of operations between servers and clients

that remain atomic even if some clients and servers fail. An atomic operation is

an operation that is free of interference from concurrent operations performed by

132

other threads in a system. Transactions are required to manifest the ‘ACID’ prop-

erties [1]. While different middleware may provide different transaction models,

a generic transaction model that captures the essence of distributed transactions

can be specified at the PIM level. The generic model can then be transformed

based on the specific protocols for each middleware.

CORBA provides a transaction service that supports five types of application

objects: transactional clients, transactional objects, transactional servers, recov-

erable objects and recoverable servers.

A transactional client is an application that creates a transaction and invokes

operations on one or more transactional objects. An object that has some behav-

ior that is invoked in the scope of a transaction is called a transactional object.

A transactional server contains one of more transactional objects. Not all trans-

actional objects need support transactional behavior. To support transactional

behavior, an object must participate in the CORBA transaction protocols. Typ-

ically, objects participate in these protocols only if it manages persistent data.

Transactional objects that directly manage persistent data are called recoverable

objects. Recoverable objects participate in the transaction completion protocol by

creating and registering resource objects with the transaction service. A resource

object is one that implements the CORBA Resource interface. The transaction

service manages the two phase commit protocol for all registered resources. A

recoverable server contains one or more recoverable objects.

The CORBA transaction service provides interfaces to support distributed

transactions. These interfaces include: Current, Control, TransactionFactory,

Coordinator, RecoveryCoordinator, Terminator and Resource. The Current in-

terface provides the primary protocol through which clients and servers interact

with the transaction service. New transactions can be created using either the

133

Current interface or the TransactionFactory interface. Clients and servers can

explicit propagate a transaction context using the Control interface. The Coordi-

nator, RecoveryCoordinator and Terminator interfaces are used by participants in

a transaction to manage the transaction. The RecoveryCoordinator is a coordi-

nator that is used to manage the transaction recovery process while a Terminator

object is used to end transactions.

The CORBA Object Request Broker (ORB) maintains a transaction context

for each ORB-aware thread. The transaction context associated with an ORB-

aware thread is null if there is no associated transaction, or it refers to a specific

transaction. The transaction context is passed implicitly to each object that im-

plements the Resource interface, however the transaction context may also be

passed explicitly to transactional objects as a parameter of a transactional oper-

ation.

6.1.2 Source Class Pattern

The source class pattern for the generic distributed transactions is shown in Figure

6.1. The diagram has two class templates (TransClient and Participant, and

one interface template (ParticipantInterface).

• The TransClient class template represents the set of classes that initiate

the transaction. The TransClient performs one or more operations for the

transaction.

• Participant represents the set of classes that provide some service re-

quired by transaction clients. These services are represented by the

ServiceInterface.

• ServiceInterface represents a service provided by a participants in a trans-

action.

134

|usesInterface

|d.lower>=1
|c.lower>=0

|d

|c

|requests_participant

|Participant

|TransClient

|Operation(|params*)

|ServiceInterface

|transOperation(|Tid:|type, |params1*)

|decision(|decision:Boolean)

|providesInterface

Figure 6.1: Source Class Pattern for Distributed Transactions.

TransClient has an operation template named Operation representing op-

erations that initiate transactional behavior. The decision operation represents

functionality that records the outcome of a transaction. A transaction may be

either committed or aborted. The processCommit and processAbort operations

are carried out by the TransClient when a transaction is committed or aborted

respectively.

ServiceInterface has an operation template named transOperation rep-

resenting the Participant operations that are transactional. The instantiation

of the Operation template makes the instantiations of transOperation transac-

tional. For every instance of transOperation there should be a corresponding

instantiation of do |transOperation. For example, if the transOperation tem-

plate in Participant is instantiated with a name op1, then do |transOperation

must be instantiated as do op1. The processCommit and processAbort oper-

135

ations are carried out by the Participant when a transaction is committed or

aborted respectively.

6.1.3 Specify Model Transformations

|handles_participant

|a.lower>=1

|d.lower>=1
|c.lower>=0

|m.lower>=1

StatusActive

StatusMarkedRollback

StatusPrepared

StatusUnknown

StatusNoTransaction

StatusPreparing

StatusCommitting

StatusRollingBack

StatusRolledBack

StatusComitted

rollback()

commit(x:Boolean)

Terminator

commit()

rollback()

commit_one_phase()

forget()

prepare():Vote

Resource

source.|TransClient
|a

|d

|c

|requests_participant

|a
|manages_clientTrans

<<enumeration>>

source.|Participant

source.|ServiceInterface

resolve_initial_references(|s:String):Object

ORB

narrow(|obj:Object):Current

Coordinator
Control

get_coordinator():Coordinator

get_terminator():Terminator

get_control():Control

VoteCommit

VoteRollback

VoteReadOnly

<<enumeration>>

Vote

Status

register_resource}
(|r:Object):RecoveryCoordinator

Current

commit(x:Boolean)

rollback()

get_status():Status

set_timeout(|time:Integer)

begin()

CurrentHelper

source.|ServiceInterface.|transOperation(|params1*)
{name=do_|transOperation}

|m

Figure 6.2: CORBA Class Diagram Transaction Transformation Schema.

The mappings to transform the source transaction class model into a target

CORBA class model is specified as a transformation schema as shown in Figure

6.2. The transformation schema has the features described below:

1. CORBA requires all participants in a transaction to implement its Resource

interface. This is represented as a transformation schema realization depen-

dency between the source.|Participant transformation schema class and

the Resource transformation schema interface.

136

2. CORBA provides a number of features to collectively perform the role of a

transaction manager. These features are represented in the transformation

schema by: ORB, CurrentHelper, Current, Control, Coordinator and

Terminator.

3. Source.|TransClient, source.|Participant and

source.|ServiceInterface represent model elements copied from

the source model.

6.1.4 Source Class Model and Binding Specification

decision(dec:Boolean)

withdraw(amount:float)

Account

deposit(amount:float)

deposit(acc:String, amount:float)

withdraw(acc:String, amount:float)

AccountInterface

*1

manages

AccountManager

providesAccess
*

1..*

moneyTransfer(acc:String, acc:String, amount:float)

MoneyTransferService

Figure 6.3: A Money Transfer Service Class Diagram.

Figure 6.3 shows a source class model of a money transfer service application.

The model consists of three classes: AccountManager, MoneyTransferService

and Account, and one interface: AccountInterface. Accounts are managed by

AccountManager objects. The AccountManager class provides AccountInterface

while the Account class has withdraw and deposit operations for the withdrawal

of money from client accounts and deposit of money into client accounts respec-

tively. The MoneyTransferService class has the moneyTransfer operation for

transferring money between two accounts and the lookup operation for locating

account manager objects. The binding specification for this source model is shown

137

in Table 6.1.

Table 6.1: Bindings for Money Transfer Transaction Source Model.

Aspect element name Model element name

|TransClient MoneyTransferService
|TransClient::|Operation MoneyTransferService::moneyTranfer
|Operation::|params* moneyTranfer::acc1:String,

acc2:String, amount:Integer
|TransClient::|decision MoneyTransferService::decision
|decision::|decision moneyTranfer::decision:dec
|Participant AccountManager
|do transOperation::Tid:|type,
|params1*

do withdraw::Tid:String,acc:String,
amount:float

|do transOperation::Tid:|type,
|params1*

do deposit::Tid:String,acc:String,
amount:float

|type String
|ServiceInterface AccountInterface
|ServiceInterface::|transOperation AccountInterface::withdraw
|transOperation::Tid:|type, |params1* withdraw::Tid:String,acc:String,

amount:float
|ServiceInterface::|transOperation AccountInterface::deposit
|transOperation::Tid:|type, |params1* deposit::Tid:String,acc:String,

amount:float
|requests participant requests participant
|c *
|d 1..*

6.1.5 Process Transformation Directives

The transformation schema has three connected components. The first in-

cludes the source.|TransClient transformation schema class and model ele-

ments connected to it. The other two are the enumeration templates: Status

and Vote. Since there are three connected components, the loop in the

processAllConnectedComponents operation in the class model transformation

algorithm will be executed three times. A new component is created for each

138

iteration of the while loop and model elements in one component are processed

and added to this new component. The composite model elements in the first

connected component are processed as follows:

1. The source.|TransClient is the first composite transformation schema

model element processed. The |TransClient class template is bound to

the MoneyTransferService class, therefore, the source.|TransClient di-

rective results in the MoneyTransferService class being copied and added

to the new component.

2. The ORB transformation schema class is processed. Processing re-

sults in a new class with the name ORB being created. The

resolve initial references(s:String):Object) transformation

schema operation results in a new operation being created and added

to the new class. The new class is then inserted into the new component.

3. The CurrentHelper transformation schema class is processed. Processing

results in a new class with the name CurrentHelper being created. The

narrow(obj:Object):Current transformation schema operation results in

a new operation being created and added to the new class. The new class

is then inserted into the new component.

4. The Current transformation schema class is processed resulting in a new

class with the name Current being created. The transformation schema

operations in Current result in new operations being created and added to

the new class. The new class is then inserted into the new component.

5. The Control transformation schema class is the next item processed.

This item results in a new class with the name Control being cre-

ated. Two new operations: get coordinator():Coordinator and

139

get terminator():Terminator are created and added to the new class.

The class is then inserted into the new component.

6. The Coordinator transformation schema class is the next item

processed. This item results in a new class with the name

Coordinator being created. A new operation: register resource

(|r:Object):RecoveryCoordinator is created and added to the new class

and the class is inserted into the new component.

7. The Terminator transformation schema class is the next item processed.

This item results in a new class with the name Terminator being created.

Two new operations: commit(x:Boolean) and rollback() are created and

added to the new Terminator class. The class is then inserted into the new

component.

8. The source.|Participant is the next composite transformation schema

model element processed. Processing results in the AccountManager class

from the source model being copied and added to the new component.

The deposit and withdraw operations in AccountInterface are bound to

the |transOperation operation template in |ServiceInterface. As a

result, the source.|ServiceInterface.|transOperation(|Tid:|type,

|params1*){name=do |transOperation} directive results in two

new operations: do deposit(acc:String, amount:float) and

do withdraw(acc:String, amount:float) being added to the new

AccountManager class. The new class is then inserted into the new

component.

9. The Resource transformation schema interface is processed resulting in a

new interface with the name Resource being created. Five new operations:

140

prepare():Vote, commit(), rollback(), commit one phase() and forget

are created and inserted into the new Resource interface. The interface is

then inserted into the new component.

10. The source.|ServiceInterface is the next composite transforma-

tion schema model element processed. Processing results in the

AccountInterface from the source model being copied and added to the

new component.

The first component is added to the target model and the other two connected

components are processed as follows:

1. The Status transformation schema enumeration results in an enumer-

ation being created with the name Status and the following enumera-

tion literals: StatusCommitted, StatusRolledBack, StatusActive,

StatusMarkedRollback, StatusPrepared, StstusUnknown,

StatusNoTransaction, StatusPreparing, StatusCommiting and

StatusRollingBack. The enumeration is then adeed to a new component

and the new component is added to the target model.

2. The Vote transformation schema enumeration results in an enumeration

being created with the name Vote and the following enumeration literals:

VoteCommit, VoteRollback and VoteReadOnly. The enumeration is then

adeed to a new component and the new component is added to the target

model.

All relationships in the transformation schema are also processed. Finally, the

Account class and the manages association are copied to the target model. The

CORBA transaction target class model that results when all the transformation

directives are processed is shown in Figure 6.4.

141

manages

get_terminator}():Terminator

get_coordinator():Coordinator

Control

MoneyTransferService

acc2:String,amount:float)
decision(decision:Boolean)

moneyTransfer(acc1:String,

AccountInterface

deposit(Tid:String,acc:String,amount:float)
withdraw(Tid:String,acc:String,amount:float)

commit(x:Boolean)
rollback()

Terminator

CurrentHelper

narrow(obj:CORBA.Object):Current

ORB

resolve_initial_references(s:String):CORBA.Object

<<enumeration>>
Status

AccountManager

register_resource(r:CORBA.Object)

Coordinator

VoteCommit

VoteRollback

VoteReadOnly

<<enumeration>>
Vote

Resource

prepare():Vote
commit()
rollback()
commit_one_phase}()
forget()

Account

deposit(amount:float)

withdraw(amount:float)

handles_participants

1..* manages_clientTrans

1..*

*

1..* requests_participant

commit(x:Boolean)

rollback()

get_status():Status

begin()

set_timeout(time:Integer)

get_control():Control

Current

StatusComitted
StatusRolledBack
StatusActive
StatusMarkedRollback
StatusPrepared
StatusUnknown
StatusNoTransaction
StatusPreparing
StatusCommitting
StatusRollingBack

do_deposit(Tid:String,acc:String,amount:float)
do_withdraw(Tid:String,acc:String,amount:float)

1..*

Figure 6.4: Target CORBA Transaction Class Model.

6.2 Pilot Study 4: Transforming Transaction

Class Model to Jini Class Model

This section uses the model-to-model transformation technique to transform the

platform independent source model shown in Figure 6.3 into a Jini transaction

class model. The source pattern for the transformation is shown in Figure 6.1 and

the binding specification for the source model is shown in Table 6.1.

6.2.1 Overview of Jini Transaction Service

In Jini, a distributed transaction model has three main parts: a Transaction

Manager, Transactional Clients and Participants. The Jini transaction

manager is specified as a TransactionManager interface. The interface supports

distributed transactions and manages the two-phase commit protocol for all par-

142

ticipats that have joined a transaction. The interface has the following operations:

• The operations void abort(long id) and void abort(long id, long

waitFor), are used by clients and participants to request that a transaction

be aborted. The second operation waits for all participants to be notified

of the decision. The TimeoutExpiredException is thrown if the transac-

tion manager is unable to notify all participants of the decision before the

specified waitFor timeout expires.

• The void commit(long id) and void commit(long id, long waitFor)

operations are used by clients and participants to request that a transac-

tion be committed. The second operation waits for all participants to be

notified of the decision. The TimeoutExpiredException is thrown if the

transaction manager is unable to notify all participants of the decision be-

fore the specified waitFor timeout expires. However, in cases where the

waitFor timeout expires before the transaction manager reaches a decision,

the TimeoutExpiredException is not thrown until the transaction manager

reaches a decision.

• The TransactionManager.Created create(long lease) operation is

used to create a new top-level transaction. Jini also provides a Transac-

tionFactory interface for creating transactions.

• The getState(long id) operation returns the current state of the given

transaction. The value returned can be any one of ABORTED, ACTIVE,

COMMITTED, NOTCHANGED, PREPARED or VOTING. These returned values are

of integer type.

• Clients and participants use the join(long id, TransactionParticipant

part, long crashCount) operation to inform the TransactionManager of

143

their desire to become participants in a transaction, i.e to ’join’ the trans-

action.

A transactional client is an application that creates a transaction and

invokes operations on one or more services participating in the transaction. A

transactional client initiates a transaction by asking the Jini Lookup service if

a transaction manager is available. If one is available, the client creates a ob-

ject reference to the transaction manager and a new transaction by invoking the

create operation of the TransactionManager or TransactionFactory class. The

create operation returns a TransactionManager.Created object consisting of an

identifier for the transaction tid and a Lease object. The client then joins the

transaction by invoking the TransactionManager’s join() operation, passing the

transaction identifier as an argument. Typically, the client will then perform one

or more transactional operations associated with one or more transaction partic-

ipants.

Objects become participants in a transaction by implementing the Jini

TransactionParticipant interface and joining the transaction. The Trans-

actionParticipant interface has four operations: prepare, commit, abort

and prepareAndCommit. Each operation has the same signature opera-

tion(TransactionManager mgr, Long transactionID). The prepare, commit and

abort operations are used by the transaction manager to determine, if a partici-

pant is ready to commit resources, to inform a participant that it should commit

its resources and to inform a participant that it should abort its resources respec-

tively. When all but one participant have been asked to prepare its resources,

the prepareAndCommit operation is used to inform the last participant to both

prepare and commit its resources. A participant is either a client or a proxy for

a service. A service proxy is an application that known the location of the actual

144

service. Clients invoke operations on the proxy which in tern directs all requests

to the actual service.

6.2.2 Specify Model Transformations

source.|TransClient |ServiceWrapper

|a.lower>=1

|d.lower>=1
|c.lower>=0

|m.lower>=1

|manages_clientTrans

|a

|requests_participant

|d

|c

|m

1

|handles_participants

|a

|b

|featureOp(|fId:|FidType)

|JiniFeature

TransactionManager

CrashCountException, RemoteException}

{exception UnknownTransactionException, CannotJoinException,

{exception LeaseDeniedException, RemoteException}

{exception UnknownTransactionException, RemoteException}
prepareAndCommi(mngr:TransactionManager, id:long):Integer

{exception UnknownTransactionException, RemoteException}
abort(mngr:TransactionManager, id:long)

{exception UnknownTransactionException, RemoteException}
commi(mngr:TransactionManager, id:long)

{exception UnknownTransactionException, RemoteException}
prepare(mngr:TransactionManager, id:long):Integer

TransactionParticipant

{exception UnknownTransactionException, CannotJoinException,

CannotCommitException, RemoteException}

CannotCommitException,TimeoutExpiredException,RemoteException}
commit(id:long, waitFor:long){exception UnknownTransactionException,

commit(id:long){exception UnknownTransactionException,

getState(id:long):Integer

join(id:long, part:TransactionParticipant, crashCount:long)

create(lease:long):Created

CannotAbortException, RemoteException}
abort(id:long){exception UnknownTransactionException,

abort(id:long, waitFor:long){exception UnknownTransactionException,
CannotAbortException,TimeoutExpiredException,RemoteException}

1

source.|Service.|transOperation()
{name=do_|transOperation}

source.|Participant

source.|ServiceInterface

Figure 6.5: Jini Class Diagram Transaction Transformation Schema.

The mappings to transform the source transaction aspect class model into a

Jini model is specified as a transformation schema as shown in Figure 6.5. The

|JiniFeature transformation schema class represents Jini features other than the

Jini transaction manager, that are used to support distributed transactions, for

example features of the Jini event service.

6.2.3 Process Transformation Directives

The transformation schema has a single connected component. The composite

model elements in the connected component are processed as follows:

145

• The source.|TransClient transformation schema class is the first

composite transformation schema model element processed. The

|TransClient class template is bound to the MoneyTransferService

class. The source.|TransClient directive is processed resulting in the

MoneyTransferService class being copied and added to the new compo-

nent.

• The |ServiceWrapper transformation schema class is the next item

processed. This item results in a new class with the name |ServiceWrapper

being created and inserted into the new component.

• The |JiniFeature transformation schema class is the next item processed.

This item results in a new class template with the name |JiniFeature being

created. The |featureOp(|id:|IdType) directive results in a new operation

template being created and inserted into the new |JiniFeature class template.

The new class template is inserted into the new component.

• The source.|Participant is the next composite transformation schema

model element processed. Processing results in the AccountManager class

from the source model being copied and added to the new component.

The deposit and withdraw operations in AccountInterface are bound to

the |transOperation operation template in |ServiceInterface. As a

result, the source.|ServiceInterface.|transOperation(|Tid:|type,

|params1*){name=do |transOperation} directive results in two

new operations: do deposit(acc:String, amount:float) and

do withdraw(acc:String, amount:float) being added to the new

AccountManager class. The new class is then inserted into the new

component.

146

• The TransactionParticipant transformation schema interface is processed

resulting in a new interface with the name TransactionParticipant being

created. The new directives in TransactionParticipant results in the

following operations being added to the new interface:

– prepare}(mngr:TransactionManager, id:long):Integer{

exception UnknownTransactionException, RemoteExcpetion}.

– commit(mngr:TransactionManager, id:long){exception

UnknownTransactionException, RemoteExcpetion}.

– abort(mngr:TransactionManager, id:long){exception

UnknownTransactionException, RemoteExcpetion}.

– prepareAndCommit(mngr:TransactionManager,

id:long){exception UnknownTransactionException,

RemoteExcpetion}.

• The TransactionManager transformation schema class is processed result-

ing in a new class with the name TransactionManager being created. The

new directives in TransactionManager results in the following operations

being added to the new class:

– create(lease:long):Created{exception LeaseDeniedException,

RemoteExcpetion}. The operation is inserted into the newly created

TransactionManager class.

– join(lease:long, part:TransactionParticipant,

crashCount:long):Created{exception

UnknownTransactionException, CannotJoinException,

CrashCountException, RemoteExcpetion}.

147

– getState(id:long):Integer{exception

UnknownTransactionException, RemoteExcpetion}.

– commit(id:long):Integer{exception

UnknownTransactionException, CannotCommitException,

RemoteExcpetion}.

– commit(id:long, waitfor:long):Integer{exception

UnknownTransactionException, CannotCommitException,

TimeoutExpiredException, RemoteExcpetion}.

– abort(id:long):Integer{exception

UnknownTransactionException, CannotAbortException,

RemoteExcpetion}.

– abort(id:long, waitfor:long):Integer{exception

UnknownTransactionException, CannotAbortException,

TimeoutExpiredException, RemoteExcpetion}.

• The source.|ServiceInterface is the next composite transforma-

tion schema model element processed. Processing results in the

AccountInterface from the source model being copied and added to the

new component.

All relationships in the transformation schema are also processed and the

Account class and the manages association are copied to the target model. The

resulting target Jini transaction class model is shown in Figure 6.6.

6.3 Discussion

A target class pattern for the model-to-model transformation of distributed trans-

action class models is shown in Figure 6.7. The target pattern includes the fol-

148

1

|ServiceWrapperMoneyTransferService

acc2:String,amount:float)
decision(decision:Boolean)

moneyTransfer(acc1:String,

AccountManager

do_deposit(Tid:String,acc:String,amount:float)
do_withdraw(Tid:String,acc:String,amount:float)

AccountInterface

deposit(Tid:String,acc:String,amount:float)
withdraw(Tid:String,acc:String,amount:float)

Account

deposit(amount:float)
withdraw(amount:float)

1

|a

|b

|featureOp(|fId:|FidType)

|JiniFeature

TransactionManager

CrashCountException, RemoteException}

{exception UnknownTransactionException, CannotJoinException,

{exception LeaseDeniedException, RemoteException}

{exception UnknownTransactionException, RemoteException}
prepareAndCommi(mngr:TransactionManager, id:long):Integer

{exception UnknownTransactionException, RemoteException}
abort(mngr:TransactionManager, id:long)

{exception UnknownTransactionException, RemoteException}
commi(mngr:TransactionManager, id:long)

{exception UnknownTransactionException, RemoteException}
prepare(mngr:TransactionManager, id:long):Integer

TransactionParticipant

{exception UnknownTransactionException, CannotJoinException,

CannotCommitException, RemoteException}

CannotCommitException,TimeoutExpiredException,RemoteException}
commit(id:long, waitFor:long){exception UnknownTransactionException,

commit(id:long){exception UnknownTransactionException,

getState(id:long):Integer

join(id:long, part:TransactionParticipant, crashCount:long)

create(lease:long):Created

CannotAbortException, RemoteException}
abort(id:long){exception UnknownTransactionException,

abort(id:long, waitFor:long){exception UnknownTransactionException,
CannotAbortException,TimeoutExpiredException,RemoteException}

1
1..*

*

1..* 1..*

handles_participants 1

manages_clientTrans

requests_participant

manages.*

Figure 6.6: Target Jini Transaction Class Model.

lowing model elements:

• The source.|Transclient, source.|Participant and

source.|ServiceInterface represent model elements defined in the

source pattern.

• |TransactionManager represents a protocol for managing distributed trans-

actions. The |create, |join, |commit, and |abort operation templates rep-

resent operations used for creating a transaction, registering to become a

participant in a transaction, committing a transaction and aborting a trans-

action respectively. The |getTransState operation template returns the

state of a transaction as specified by the |State enumeration template. A

transaction may be in a number of different states for example, a trans-

action may be in a |COMMITTED or |ABORTED state which indicate that the

transaction has been committed or aborted respectively.

149

|getTransState(|tid:TidType):|State

|ParticipantInterface

|a.lower>=1

|d.lower>=1
|c.lower>=0

|m.lower>=1

|YES

|NO

<<enumeration>>
|CommitVal

|State
<<enumeration>>

|COMMITTED
|ABORTED
|NODECISION

|manages_clientTrans

|a

|requests_participant

|d

|c

source.|Participant

source.|ServiceInterface

source.|TransClient

|handles_participants|m

*

source.|ServiceInterface.|transOperation()
{name=do_|transOperation}

|TransFeature

|featureOp(|fId:|FidType)

1

*

1

|a

|commit(|tid:TidType)

|abort(|tid:TidType)

|prepare():|CommitVal

|create():|TidType
|join(|tid:TidType)
|commit(|tid:TidType)
|abort(|tid:TidType)

|TransactionManager

Figure 6.7: Target Pattern for Distributed Transactions.

• ParticipantInterface represents the protocol through which a transaction

manager communicates with Participant instances.

• The CommitVal enumeration template represents values returned by in-

stances of the canCommit operation template to indicate the decision of

a participant in a transaction to commit (‘YES’) or abort (‘NO’) a transac-

tion.

• |TransFeature represents any other platform-specific transactional feature

other than a transaction manager or a participant interface.

The process of establishing conformance of the target model to this target

pattern involves determining that there is a target model element that plays the

150

role (or conforms) of each model element in the target pattern.

Items in the target pattern can be grouped into sets. TransClient,

Participant, ServiceInterface and |request participant represent the

business logic of the application. In contrast, |TransactionManager,

|ParticipantInterface, |TransFeature, |CommitVal and |State represent

platform-specific items. Model elements in the CORBA target model shown in

Figure 6.4 are bound to target pattern model elements as follows:

• TransClient, Participant, ServiceInterface and

|request participant are bound as described in Table 6.1.

• The other model elements are bound as shown in Table 6.2.

Model elements in the Jini target model shown in Figure 6.6 are bound to

target pattern model elements as follows:

• TransClient, Participant, ServiceInterface and

|request participant are bound as described in Table 6.1.

• The other model elements are bound as shown in Table 6.3.

The binding specifications would be used in determining the conformance of

the target model to the target pattern.

151

Table 6.2: Target CORBA Binding Specification.

Target Pattern Element Target Model Element

|TransactionManager Current, CurrentHelper, Con-
trol, Coordinator, Terminator

|TransactionManager::|create CurrentHelper::narrow
|TransactionManager::|join Coordinator::register resource
|TransactionManager::|commit Current::commit
|TransactionManager::|commit Terminator::commit
|TransactionManager::|abort Current::rollback
|TransactionManager::|abort Terminator::rollback
|TransactionManager::|getTransState Current::get status
|ParticipantInterface Resource
|ParticipantInterface::|prepare Resource::prepare
|ParticipantInterface::|commit Resource::commit
|ParticipantInterface::|abort Resource::rollback
|State Status
|State::|COMMITTED Status::StatusCommitted
|State::|ABORTED Status::StatusRolledBack
|State::|NODECISION Status::StatusUnknown
|CommitVal Vote
|CommitVal::|YES Vote::VoteCommit
|CommitVal::|NO Vote::VoteRollback
|manages clientTrans manages clientTrans
|handles participants handles participants

|TransFeature ORB

|TransFeature::|featureOp ORB:: re-
solve initial references

|a 1..*
|m 1..*

152

Table 6.3: Target Jini Binding Specification.

Target Pattern Element Target Model Element

|TransactionManager TransactionManager
|TransactionManager::|create TransactionManager::create
|TransactionManager::|join TransactionManager::join
|TransactionManager::|commit TransactionManager::commit
|TransactionManager::|abort TransactionManager::abort
|TransactionManager::|getTransState TransactionManager::getState
|ParticipantInterface Resource
|ParticipantInterface::|prepare TransactionParticipant::prepare
|ParticipantInterface::|commit TransactionParticipant::commit
|ParticipantInterface::|abort TransactionParticipant::rollback
|State Status
|State::|COMMITTED Integer
|State::|ABORTED Integer
|State::|NODECISION Integer
|CommitVal Integer
|CommitVal::|YES Integer
|CommitVal::|NO Integer
|manages clientTrans manages clientTrans
|handles participants handles participants

|a 1..*
|m 1..*

153

Chapter 7

Conclusion and Future Work

A technique for transforming class models has been presented. The technique

includes a graphical model transformation language and a notation for specify-

ing transformations. A transformation model is called a transformation schema.

Transformation schemas contain imperative statements called directives that stip-

ulate how a source model is obtained from a target model. A source model is

transformed into a target model by processing the directives in the transforma-

tion schema using a transformation algorithm. A grammar for the language,

a transformation algorithm and a transformation metamodel were developed to

support class diagram transformation.

Specifying transformations at the level currently supported by QVT can be

tedious because QVT transformation specifications are expressed as fine-grained

object (an instance of a metamodel class) models. The new language leverages

the UML class model syntax to specify transformations. This raises the level

of abstraction at which transformations are specified above level of instances of

metamodel classes. In the new language a transformation specification is a trans-

formation schema that consists of one or more directives. Each transformation

schema (and each directive) implicitly refers to one or more objects. For example,

a transformation schema with one operation directive describes one object for the

154

associated class, one object for the associated operation, one object for the result

type of the associated operation, and two objects for each associated parameter

(one for the parameter, one for its type). As such, each transformation schema

defines a relationship among a set of objects and is therefore at a higher level of

abstraction than instances of metamodel classes.

The transformation technique was illustrated by transforming platform-

independent transaction and distribution class models into CORBA and Jini

transaction and distribution class models respectively.

7.1 Lessons Learned

The first two pilot studies (presented in Chapter 5) applied the transformation al-

gorithm to the transformation of a platform independent distribution class model

into a CORBA distribution class model and a Jini distribution class model. Sep-

arate transformation schemas were created for the CORBA transformation and

the Jini transformation. The two pilot studies presented in Chapter 6 applied

the transformation algorithm to the transformation of a platform independent

transaction class model into a CORBA transaction class model and a Jini trans-

action class model. Separate transformation schemas were created for each of

these transformations as well.

For all four pilot studies, a need for new directives was not encountered as the

transformation directives currently defined were sufficient to specify the transfor-

mations.

While a need for new directives was not encountered, a number of scenarios

arose that may require the extension of the syntax of one or more of the current

transformation directives. These extensions are anticipated to provide modelers

with alternate ways of specifying transformations. For example, consider

155

the following scenario: a modeler wants to specify that a copy of each

class bound to |ClassA should be present in the target model, with

the attributes from the class eliminated.

Using the current notation, the goal of the modeler is realized by: (1) copying

the attributes and operations using a source directive in the name-directive com-

partment of a transformation schema class, and (2) eliminating the class attributes

using one or more exclude directives in the attribute-directive compartment of the

transformation schema class. One exclude directive is required for each attribute

template in |ClassA.

Since all the class attributes are to be excluded, it may be convenient to

extend the syntax of the exclude directive to allow a modeler the ability to use a

single exclude directive to eliminate all the class attributes. This may be possible

using a notation such as: exclude All , which would stipulate the exclusion of

all class attributes associated with the transformation schema attribute-directive

compartment in which the directive is specified. The use of extended forms of the

current transformation directives is the subject of future research.

7.2 Future Work

The model transformation research presented in this dissertation may be extended

in several ways.

1. Extending the transformation language to behavioral models such as se-

quence diagrams. Different diagram types (e.g. class diagrams, sequence

diagrams) are used to describe different views of the same application and

as such these views need to be consistent. Extending the research to include

other diagram types such as sequence diagrams, should also include how the

consistency of different diagram types can be effected.

156

2. Examining how target patterns may be generated from source patterns and

transformation schemas.

3. Examining extensions to the current transformation directives.

4. Examining how transformation schemas may be generated from source and

target patterns, for example, QVT source and target patterns.

5. Examining the use of aspect contracts for the run time validation of condi-

tions and properties necessary for the proper application of a transformation.

6. Applying the transformation technique to other software features.

7. Defining mappings between QVT and new language.

The transformation language presented in this dissertation facilitates the spec-

ification of model transformations at a higher level of abstraction than object di-

agrams. More work, however, needs to be done to extend the research beyond

UML class models and to create tool support to automate the model transforma-

tion process.

157

REFERENCES

[1] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Sys-
tems Concepts and Design (3rd Ed.). International Computer Science Series.
Addison-Wesley/Pearson Education, USA, 2001.

[2] K. Czarnecki and S. Helsen. Classification of Model Transformation Ap-
proaches. In Proc. Workshop on Generative Techniques in the Context of
Model-Driven Architecture,OOPSLA’03, Anaheim, California, USA, October
2003.

[3] eclipse.org. Eclipse - an open development platform. URL http://eclipse.

org/.

[4] W. Keith Edwards. Core Jini (2nd Ed.). Java Series. Prentice Hall, USA,
2001.

[5] Robert France, James M. Bieman, and Ray Trask. Extending the UML to
Support Evolution Management. In Proceedings of the IEEE International
Conference on Software Maintenance (ICSM.01), Florence, ITALY, 2001.

[6] Robert France, Sudipto Ghosh, Eunjee Song, and Dae-Kyoo Kim. A Meta-
modeling Approach to Pattern-based Model Refactoring. IEEE Software Spe-
cial Issue on Model-Driven Development, 20(5):52–58, September 2003.

[7] Robert France, Dae-Kyoo Kim, Sudipto Ghosh, and Eunjee Song. A UML-
Based Pattern Specification Technique. IEEE Transactions on Software En-
gineering, 30(3):193–206, March 2004.

[8] Robert France, Dae-Kyoo Kim, and Eunjee Song. Patterns as precise char-
acterizations of designs. Technical Report TR-02-101, Computer Science De-
partment, Colorado State University, Fort Collins, Colorado, 2002.

[9] Robert France, Dae-Kyoo Kim, Eunjee Song, and S. Ghosh. Using roles to
characterize model families. In Proceedings of the Tenth OOPSLA Workshop
on Behavioral Semantics: Back to the Basics, Tampa, Florida, USA, October
2001.

158

[10] Robert B. France and James M. Bieman. Multi-view software evolution: A
UML-based framework for evolving object-oriented software. In ICSM, pages
386–, 2001.

[11] Jack Greenfield and Keith Short. Models, Frameworks and Tools. Wiley
Publishing, Inc., Chapter 7: Generating Implementations, 2003.

[12] Reaz Hoque. CORBA for real programmers. IDG Books, USA, 1998.

[13] Frederic Jouault and Ivan Kurtev. Transforming Models with ATL. In Proc.
Model Transformations in Practice Workshop at Models 2005, Montego Bay,
Jamaica, October 2005.

[14] Sheena Judson, Doris Carver, and Robert France. A MetaModeling Approach
to Model Refactoring. In submitted to UML 2003, San Francisco, California,
USA, 2003.

[15] Audris Kalnins, Janis Barzdins, and Edgars Celms. Basics of Model Transfor-
mation Language MOLA. In Proc. Workshop on Model Driven Development
(WMDD 2004) at ECOOP 2004, Oslo, Norway, June 2004.

[16] Audris Kalnins, Janis Barzdins, and Edgars Celms. Model Transformation
Language MOLA. Presentation made at Model-Driven Architecture: Foun-
dations and Applications (MDAFA) 2004, June 2004.

[17] Audris Kalnins, Janis Barzdins, and Edgars Celms. Model Transformation
Language MOLA. In Proc. of Model-Driven Architecture: Foundations and
Applications (MDAFA) 2004, Linkoping, Norway, June 2004.

[18] Audris Kalnins, Edgars Celms, and Agris Sostaks. Model Transformation
Approach Based on MOLA. In Proc. Model Transformations in Practice
Workshop at Models 2005, Montego Bay, Jamaica, October 2005.

[19] Dae-Kyoo Kim. A Meta-Modeling Approach To Specifying Patterns, Ph.D.
Dissertation, Department of Computer Science, Colorado State University.
2004.

[20] Dae-Kyoo Kim, Robert France, and Sudipto Ghosh. A UML-based language
for specifying domain-specific patterns. Journal of Visual Languages and
Compuiting, 15:265–289, January 2004.

[21] Dae-Kyoo Kim, Robert France, Sudipto Ghosh, and Eunjee Song. A Role-
Based Metamodeling Approach to Specifying Design Patterns. In 27th An-
nual International Computer Software and Applications Conference, COMP-
SAC 2003, Dallas, USA, November 2003.

159

[22] Michael Lawley and Jim Steel. Practical Declarative Model Transformation
With Tefkat. In Proc. Model Transformations in Practice Workshop at Mod-
els 2005, Montego Bay, Jamaica, October 2005.

[23] Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transformation.
Electronic Notes In Theoretical Computer Science, 152:125 – 142, 2006.

[24] Object Managent Group (OMG). MOF 2.0 Query/Views/Transformations
Final Adopted Specification (ptc/05-11-01).

[25] Object Managent Group (OMG). MOF 2.0 Query/Views/Transformations
Final Adopted Specification (ptc/05-11-01) Figure 7.10.

[26] Object Managent Group (OMG). MOF 2.0 Query/Views/Transformations
Final Adopted Specification (ptc/05-11-01) Figure 7.8.

[27] Object Managent Group (OMG). Revised submission for MOF 2.0
Query/Views/Transformations RFP (ad/2002-04-10), QVT-Merge Group
1.8, OMG document ad/2004-10-04.

[28] OMG Adopted Specification ptc/03-10-04. The Meta Object Facility (MOF)
Core Specification. Version 2.0, OMG, http://www.omg.org.

[29] Karlis Podnieks. Mda: Correctness of model transformations. which models
are schemas? Frontiers in Artificial Intelligence and Applications, Selected
papers from 6th International Baltic Conference on Databases and Informa-
tion Systems, 118:185–197, 2005.

[30] Y. R. Reddy, S. Ghosh, R. B. France, G. Straw, J.M. Bieman, N. McEachen,
E. Song, and G. Georg. Directives for composing aspect-oriented design class
models. Transactions on Aspect-Oriented Software Development 1, 3880:75–
105, Febraury 2006.

[31] Richard Soley. MDA, An Introduction. URL http://omg.org/mda/

presentations.htm/, 2002.

[32] Douglas C. Schmidt, Aniruddha Gokhale, Balachandran Natarajan, Sandeep
Neema, Ted Bapty, Jeff Parsons, Andrey Nechipurenko, Jeff Gray, and Nan-
bor Wang. CoSMIC: A MDA tool for Component Middleware-based Distrib-
uted Real-time and Embedded Applications. In Proc. OOPSLA Workshop
on Generative Techniques for Model- Driven Architecture, Seattle, WA USA,
November 2002.

[33] Bran Selic. The pragmatics of model-driven development. IEEE Softw.,
20(5):19–25, 2003.

160

[34] S. Sendall, G. Perrouin, N. Guelfi, and O. Biberstein. Supporting Model-to-
Model Transformations: The VMT Approach. In Proc. Workshop on Model
Driven Architecture: Foundations and Applications. Proceedings published in
Technical Report TR-CTIT-03-27, University of Twente, 2003.

[35] Shane Sendall. Source Element Selection In Model Transformation. In UML
03 Workshop in Software Model Engineering (WiSME). Proceedings to be
published in Technical Report, University of Bremen, San Francisco, USA,
2003.

[36] Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart
and soul of model-driven software development. IEEE Software, Special Issue
on Model Driven Software Development, 20(5):42–45, 2003.

[37] Raul Silaghi, F. Fondement, and Alfred Strohmeier. Towards an MDA-
Oriented UML Profile for Distribution. In Proceedings of the 8th IEEE
International Enterprise Distributed Object Computing Conference, EDOC,
Monterey, CA, USA, September 2004.

[38] Sun Microsystems. Jini Technology Architectural Overview. URL:
http://wwws.sun.com/software/jini/whitepapers/architecture.html, January
1999.

[39] Sun Microsystems. Jini Network Technology: An Executive Overview. URL:
http://wwws.sun.com/software/jini/, 2001.

[40] The Object Management Group. CORBA IDL Language Mappings Specifi-
cations. URL http://omg.org/corba/, 2004.

[41] The Object Management Group. The Common Object Request Broker Ar-
chitecture CORBA/IIOP 2.6. URL http://omg.org/corba/, 2004.

[42] The Object Management Group. MDA Success Stories. URL http://www.

omg.org/mda/products-success.htm/, 2006.

[43] The Object Management Group. The Model Driven Architecture. URL
http://www.omg.org/mda/, 2006.

[44] The Object Management Group (OMG). The MDA Technical Architecture
ormsc/01-07-01. URL http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01,
2001.

[45] The Object Management Group (OMG). MDA Guide Version 1.0. URL
http://www.omg.org/mda/, 2003.

161

[46] The Object Management Group (OMG). Unified Modeling Lan-
guage: Superstructure. Version 2.0, Final Adopted Specification, OMG,
http://www.omg.org, August 2003.

[47] The Object Management Group (OMG). The OMG Web Page. URL
http://omg.org/, 2006.

[48] The Software Engineering and Systems Software Group at Freie Universitt
Berlin and Xtradyne Technologies AG. JacORB: The free Java implemen-
tation of the OMG’s CORBA standard. URL http://jacorb.inf.fu-berlin.de/,
2006.

[49] TRISKELL. The KerMeta Project Home Page. URL
http://www.kermeta.org, 2005.

[50] TRISKELL. The KerMeta Manual. URL http://www.kermeta.org, 2006.

[51] Jim Waldo. Alive and Well: Jini Technology Today. IEEE Computer,
33(6):107–109, June 2000.

[52] Jos Warmer and Anneke Kleppe. The Object Constraint Language Second
Edition: Getting Your Models Ready For MDA. Addison-Wesley.

162

