

2009

Software Ninjas

[IMPLEMENTATION AND
TESTING REPORT]
By Wesley Williams, Trey Bland, Jacob Boniface, and Kyle Snell

April 27, 2009 [IMPLEMENTATION AND TESTING REPORT]

2 CSC 450 Software Engineering | Software Ninjas

TEAM MEMBERS
Wesley Williams

Project Manager

Software Ninjas

waw5709@uncw.edu

Herbert “Trey” Bland

Chief Requirements Engineer

Software Ninjas

hcb8412@uncw.edu

Jacob Boniface

Chief Designer

Software Ninjas

jab5968@uncw.edu

Kyle Snell

Quality Assurance Engineer

Software Ninjas

krs6900@uncw.edu

mailto:waw5709@uncw.edu
mailto:hcb8412@uncw.edu
mailto:jab5968@uncw.edu
mailto:krs6900@uncw.edu

[IMPLEMENTATION AND TESTING REPORT] April 27, 2009

Software Ninjas | Restaurant Management Software 3

TABLE OF CONTENTS

Introduction

 Purpose of report 5

 Problem description 5

 Scope and objectives 5

 Success criteria 5

 Software functions 6

Software project plan 7

Requirements analysis models 10

Design models 17

 Design constraints 17

 Architectural design 17

 Architectural styles 17

 Architectural description 17

 Subsystem description 18

 Subsystem design 18

 Class diagrams 19

 Sequence diagrams 20

 State diagrams 23

April 27, 2009 [IMPLEMENTATION AND TESTING REPORT]

4 CSC 450 Software Engineering | Software Ninjas

Implementation and Testing 25

 Functions Implemented 25

 User interface 26

 Test plan 31

 Responsibilities 32

 Major problems 33

 Tools 33

 Data dictionary 34

[IMPLEMENTATION AND TESTING REPORT] April 27, 2009

Software Ninjas | Restaurant Management Software 5

INTRODUCTION

PROBLEM DESCRIPTION

Restaurant management can be a daunting task. Management software in restaurants tends to be barely usable

with features that seem geared towards tracking money and profits rather than being easy and intuitive to use.

Another problem that tends to plague some restaurant management systems is weak or non-existent security. In

many systems, some of the needed functionality is only available to the manager, so employees are granted access

to the manager-level functions which could potentially spell trouble for the managers. Perhaps it is the designer’s

lack of domain knowledge, or the lack of user involvement in the design process. Our goal is create restaurant

software that is easy to navigate and use and still has the security and features expected from quality restaurant

management software.

This report provides a view of how the design will unfold. We begin with an outline of the restaurant management

system functions. We then move into the software project plan and the requirements models from the previous

report. Next, we cover architecture of the system and sub-systems. Included are class, activity, state, and

sequence diagrams that show what our software is supposed to do and when it does it. Then we move into

implementation with real screenshots of the running software. Finally we introduce test cases and testing

practices.

SCOPE AND OBJECTIVES

It is our main objective is to create software that is usable, intuitive, simple, and functions well consistently. Our

chief concern is that our software be user friendly which means making menus effortlessly navigable and grouping

UI components in a manner that makes them easy to find. Giving each employee the appropriate level of access to

the required components is also imperative for usability and security. Are main focus in this particular software

endeavor is create a single working “point of management” system that acts as both a terminal for taking orders

and a terminal for generating reports and making changes to employees or items on the menu.

The software is responsible for a host of functions. Our software must be able to add employees, edit their

information, and remove employees from the employee database. Menu items must be added, edited, and

deleted from the menu item database. Items that can be ordered must be able to be added and removed from an

order. All employees must be able to clock in and clock out. Servers must be able to do what all employees do as

well as take orders. Managers should be able to do what all employees do and be able to edit item and employee

information and generate reports. Reports that should be generated include sales reports showing sales by food

category and the total sales from the start of the day. Orders should also be stored in the database to be used to

calculate total sales. For a complete look at desired functionality see page six.

SUCCESS CRITERIA

Our software will be successful if we can create system that addresses each stakeholder’s concerns. The software

must be secure, reliable, and above all usable. It is will also be a great success if we continue to meet the

deadlines for deliverables. Ultimately, success will depend on how well our team succeeds during usability testing.

April 27, 2009 [IMPLEMENTATION AND TESTING REPORT]

6 CSC 450 Software Engineering | Software Ninjas

SOFTWARE FUNCTIONS

1. Employee functions

1.1. clock in

1.2. clock out

2. Server functions

2.1. employee functions

2.2. take orders

2.2.1. select order from list of existing orders

2.2.2. add items to existing order

2.2.3. remove items from existing order

2.2.4. create new order

2.2.5. close order

2.2.6. add tip to order

2.2.7. add tax to order (automatic)

2.2.8. total price of order (automatic)

3. Manager functions

3.1. employee functions

3.2. server functions

3.3. manage employees

3.3.1. add an employee

3.3.2. remove an employee

3.3.3. edit an employee

3.3.3.1. change name

3.3.3.2. change address

3.3.3.3. change phone

3.3.3.4. change wages

3.3.3.5. edit clock in/out times

3.4. manage menu items

3.4.1. add new menu item

3.4.2. remove menu item

3.4.3. edit menu item

3.4.3.1. change item name

3.4.3.2. change item price

3.4.4. change tax (all menu items)

3.5. generate reports

3.5.1. generate sales report

3.5.1.1. calculate sales for each category of item (entrée, drink, dessert, and appetizer)

3.5.1.2. calculate total sales

3.5.2. generate labor report

3.5.2.1. calculate labor costs

3.5.2.2. calculate labor to sales ratio

3.5.3. generate “clocked in” report

[IMPLEMENTATION AND TESTING REPORT] April 27, 2009

Software Ninjas | Restaurant Management Software 7

RESOURCE LIST

Table 1: List of Resources

The hardware resources are the physical components such as the actual point of sale computer and monitor along

with any equipment needed for programming and testing. The human resources are the programmers, testers,

and technical writers. Software resources are all the required software needed in order to generate code and

charts and graphs that illustrate the progress of the work. Many of these resources will be provided free of charge.

In an effort to simulate real world cost considerations in software engineering, we have researched several

vendors to determine the typical price for the indicated resources. These prices are given in the table above.

type name description availability price

hardware computers To write the code high $500

 software Pre-made code to run special hardware
components

medium $25

 Card reader
devices

To read debit/credit cards and employee
IDs

high $50

human programmers To write the code for the system medium $1,000 per
week

 manager To oversee the creation and installation of
software

low $2,500 per
week

 Employee ID
cards

Hold information about employees high $5 per card

software Window Visio To write diagrams to plan out work
schedules

high $30

 eclipse To write java code high $0

 C sharp To write C++ code high $0

 Windows XP For main interface to make the code in high $300

April 27, 2009 [IMPLEMENTATION AND TESTING REPORT]

8 CSC 450 Software Engineering | Software Ninjas

RESOURCE ESTIMATION

The resource requirements for this project are minimal. Computers and software development tools are provided

for development at the University. The project is designed so that a team a four can accomplish the goals within

the two months allotted. Since several of the programmers have had domain experience in restaurant and point

of sale operations, there is no need to hire or interrogate a domain expert. To implement the system, only a

computer with Windows installed and a magnetic card reader is required. More computers and readers may be

required for larger restaurants. The design of the database and user interface will take the most time and will

require diligence on the part of the programmers to ensure all work is completed and meets the requirements.

Responsibility Matrix

Task Herbert Kyle Jacob Wesley

Database
 Design Tables X
 Design Queries X
 Coding for Database X

Clock In/Out System X

Sales System
 Accept Payment X
 Taking Orders X
 Modify Orders X
 Canceling Orders X

Reporting System
 Sales Reports X
 Labor Report X
 Inventory Report X

Configuring Data
 Edit/add Employee X
 Edit/Add Product X
 Edit Time Clock Entry X

Table 2: Responsibility Matrix

[IMPLEMENTATION AND TESTING REPORT] April 27, 2009

Software Ninjas | Restaurant Management Software 9

RISK PLAN

Risk Prob. Impact Priority Actions

Losing a project member 2 9 10 Make sure every team member has updated
copies of work done by all team members.

Hardware breaking down 4 2 10 Make sure every team member has updated
copies of work done by all team members.

Task takes longer than
expected

3 3 2 Trey will be free for helping other members
once the initial setup of the database is
complete.

Table 3: Risk Assessment

PERFORMANCE ISSUES

There are several performance issues that may arise with this project. There will be many users logged in to the

system at any time. If there are too many users on the system there may be both network issues and data

integrity issues. We will need to guarantee exclusive access to data to make sure it is not accessed by another part

of the software while being changed. We must also be sure to remove any exclusive lock on the stored data when

other users require access to that data.

MANAGEMENT AND TECHNICAL CONSTRAINTS

The team is compromised of a group of individuals with diverse programming and technical backgrounds. Most

have experience programming in JAVA and .NET, so there are really very little constraints with expertise. Most

team members have a good grasp on the problem domain as many of them have worked in the restaurant industry

at some point in their lives.

Management is partially done via electronic means such as email and phone calls since many of the members have

different and often conflicting schedules. Each member holds the others accountable for the portion of work that

was assigned to them. The project manager schedules dates and times for meetings and organizes and assigns

tasks to team members. The main challenge will be communication, so the project manager will have to

communicate with team members on a near daily basis.

PROJECT MONITORING AND CONTROL MECHANISMS

To monitor status of the project at all times, electronic communication through email is necessary. Team

members are to update the other members with their portion of the work so that a consistent picture of the

software is available to all members. This ensures that the reports that are delivered depict an accurate snapshot

of the project at that time. Furthermore, the project manager schedules one meeting per week for face-to-face

communication and to verify the status of each task assigned to a member of the team. This is the time where a

team member can offer insight into task assigned to other members.

April 27, 2009 [IMPLEMENTATION AND TESTING REPORT]

10 CSC 450 Software Engineering | Software Ninjas

WORK BREAKDOWN STRUCTURE

1. Project Management

a. Monitor progress

i. Schedule meetings

ii. Peer evaluations

b. Estimate resources

i. Determine sources needed

ii. Check availability

c. Assess risks

i. Indentify risks

ii. Prepare contingencies

d. Evaluate results

i. Check to make sure everyone understands the requirements

ii. Identify weak areas and help strengthen them

2. Requirements

a. Analyzing Functional Requirements

i. Taking orders

ii. Keeping order history

iii. Tracking employees sales

iv. Generating sales reports

v. Tracking employee hours

b. Analyzing Non-functional requirements

i. Ease of use

ii. Security

3. System Design

a. User Interface Design

i. Logging on/off

ii. Clocking in/out

iii. Ordering food

iv. Accepting payment

v. Printing reports

vi. Configuring menu items

vii. Editing employee data

viii. Installing the software

ix. Removing the software

b. Database Design

i. Creating table of employees

ii. Creating table of orders

iii. Creating table of items

iv. Interfacing with UI

4. Testing/Debugging

5. Deployment

[IMPLEMENTATION AND TESTING REPORT] April 27, 2009

Software Ninjas | Restaurant Management Software 11

Restaurant

Management

System Project

Project

Management
Requirements System Design Testing/Debugging Deployment

Monitor Progress

Estimate

Resources

Asses Risks

Evaluate Results

Analyze

Functional

Requirements

Analyze non-

functional

requirements

User Interface

Database

Work Breakdown Structure

(The First 2 Layers)

Figure 1: Work Breakdown Chart

April 27, 2009 [IMPLEMENTATION AND TESTING REPORT]

12 CSC 450 Software Engineering | Software Ninjas

Design

Database

Clock In/ Clock

Out

Sales Section

Manager

Section

Sales Report

Section

1 Week

1 Week

3 Weeks

2 Weeks

Managers

Report Section

2 Weeks2 Weeks

Estimate

Resources /

Assess Risks

3 Weeks

GANTT CHART

Table 4: Gantt chart

ID Task Name Start Finish Duration

Jan 2009 Feb 2009 Mar 2009 Apr 2009

1/4 1/11 1/18 1/25 2/1 2/8 2/15 2/22 3/1 3/8 3/15 3/22 3/29 4/5 4/12 4/19

1 1.4w1/15/20091/7/2009
Group Formation and Project Selection

Report Due

2 3.4w2/9/20091/16/2009Requirements Engineering Report Due

4 7w3/27/20092/9/2009Software Design Report Due

10 6.2w4/27/20093/16/2009
Software Implementation and Testing

Report Due

9 3.2w4/27/20094/6/2009Testing

6 2.8w3/24/20093/5/2009Prototyping

7 2.2w3/30/20093/16/2009Implement Sales

8 1.2w3/23/20093/16/2009Implement Manager Functions

3

5 1.2w3/9/20093/2/2009Create Program Database

3.4w3/3/20092/9/2009Create Use Cases and Models

PERT CHART

Figure: Pert Chart

[IMPLEMENTATION AND TESTING REPORT] April 27, 2009

Software Ninjas | Restaurant Management Software 13

Log In

Clock In/Clock Out Menu

Prompt for UserID

Prompt for Password

Main Menu

[Invalid ID]

[Valid ID]

Update Timesheet Database

[Rejected]

[Accepted]

Prompt for ID

Prompt for Password

[Invalid ID]

[Valid ID]

[Rejected]

[Accepted]

[Clock In

Button Clicked]

[Log In

Button

Clicked]
Exit Program

[Exit Button Clicked]

A

ACTIVITY DIAGRAMS

Figure: Activity Diagram 1

April 27, 2009 [IMPLEMENTATION AND TESTING REPORT]

14 CSC 450 Software Engineering | Software Ninjas

Internal Menu (A) Exit

[Exit Button Clicked]

Sales Menu

[Sales

Button

Clicked]

[Administrative

Button Clicked]

[If useraccountlevel >=1]

[Else]
[Else]

[If useraccountlevel >=2]

[Return

Button

Clicked]

[Begin Sale]

Item Rung Up/UI Updated

Complete Sale

Update Order/Item Database

[Finish

Sale]

[Add

Another

Item]

A

B

Figure: Activity Diagram 2

[IMPLEMENTATION AND TESTING REPORT] April 27, 2009

Software Ninjas | Restaurant Management Software 15

Administrative Menu

Reports Menu Sales Management Employee Management

[Reports

Button

Clicked]

[Employee

Management

Button Clicked]

[Sales

Management

Button

Clicked]

Generate Labor Report

Generate Inventory Report
Generate Sales Report

[Sales

Report

Clicked]

[Inventory

Report Clicked]

[Labor

Report

Clicked]

[Return

Button

Clicked]

[Return

Button

Clicked]

[Return

Button

Clicked]

Edit Employee

Save Employee Database Changes

Add/Remove Employee

Edit Inventory

Save Inventory/Sales Database Changes

[Changes

Made]

[Add/

Remove]

[Edit

]

B

Figure: Activity Diagram 3

April 27, 2009 [IMPLEMENTATION AND TESTING REPORT]

16 CSC 450 Software Engineering | Software Ninjas

System

Manager

Server

Employee

Clock In

Clock out

Sign In

Access Database

«uses»

Add Order
Add Item

Edit Order

«uses»
«uses»

Remove Item

«extends»

«extends»

«extends»

Add Employee

Remove Employee

Edit Employee
Manage Employee

Manage Inventory

Add Item to

Inventory

Remove Item from

Inventory

Edit Item in

Inventory

«uses»

«uses»

Database Admin

USE CASE DIAGRAM

Figure: Use case diagram

[IMPLEMENTATION AND TESTING REPORT] April 27, 2009

Software Ninjas | Restaurant Management Software 17

DESIGN MODELS

DESIGN CONSTRAINTS

There are several design constraints that must be addressed. The software will be designed to run in a Windows

environment. In order for the user interface to be a simple and navigable, we will be limiting the amount of

submenus and components on the graphical user interface. One of our goals is also security so we must

accommodate user ids and/or passwords. We are limited on time, so we have decided not to include the

inventory functions which represent a marginal difference from our plans during the requirements phase.

ARCHITECTURAL DESIGN

The architectural styles that suit this project are the three-tiered style and the shared-repository style. They

naturally lend themselves to situations calling for a central or underlying database of information. In this case, the

information is orders, employees, and menu items. This information has to be retrieved from the database by the

various subsystems, rearranged and formatted for output to the UI where it will be displayed in some fashion.

Below is one of the suggested architectures for this project, the thee-tier design. This particular design has a

hierarchal aspect where “ordering system” is an aggregate of the “cashing out” and “taking orders” subsystems.

This style is much more organized and is easy to follow.

Figure 2: Three Tier Architecture

April 27, 2009 [IMPLEMENTATION AND TESTING REPORT]

18 CSC 450 Software Engineering | Software Ninjas

The next architecture is the shared repository style where each subprogram has access to the database(s). In this

architecture, we lose the hierarchal capacity. This architecture is far simpler than the previous one. In this

example, the subsystems communicate with the database like they do in the other, but there is no sense of

ordering or hierarchy.

Figure 3: Shared Repository Architecture

SUBSYSTEMS

Each subsystem involves one of the primary functions of restaurant management. The clock in and clock out

subsystem is responsible for clocking in and clocking out employees as well as signing in employees to take orders

or manage the restaurant. The “taking orders” subsystem is responsible for creating new orders as well as adding

and removing menu items from an order. The “cashing out” subsystem will be responsible for accepting payment

and closing the order. The “editing employees” subsystem allows a user with manager privileges to add, remove,

or edit existing information about an employee. And finally the “editing items” subsystem will govern the adding,

removing, and editing of menu items. Class diagrams follow.

[IMPLEMENTATION AND TESTING REPORT] April 27, 2009

Software Ninjas | Restaurant Management Software 19

MainSystem

Clock

Compare

EmployeeUI
SignInUI

DatabaseManagement

OrderingUI

OrderManagement Manage

ManageUI

-Queries1

-Responds

1

-Queries1

-Responds1

-Queries1

-Responds1

-displays1

-updates1

-displays1

-updates1

-displays1

-updates1

-displays1

-updates1

-returnsBoolean1

-verifiesInput

1

1

-updateTime 1

-Instantiates

1 1

-Instantiates1 1

Figure 4: Class Diagram of Subsystems

-Items[] : Item

Order

-Name : string

-Price : double

Item

-Name : string

-Address : string

-Wage : double

-Phone : int

Employee

-hours : int

-minutes : int

-seconds : int

Clock

1..*

1

1

1..*

1 *

Figure 5: Class Diagram of objects

April 27, 2009 [IMPLEMENTATION AND TESTING REPORT]

20 CSC 450 Software Engineering | Software Ninjas

SEQUENCE DIAGRAMS

The edit Employee and edit Item functions were very simple design. First the user logs in to the management

menu then either selects an item or a employee and selects the edit button and proceeds to either the item or

employee edit menu. Then the user fills in whatever categories that are going to be changed and clicks OK or clicks

cancel to not make any changes at all (note: no change will be made if nothing is filled in). If changes are made

then the database for the item or employee is updated. The user will remain in the loop between the menus until

the user hits done which logs them out of the system.

alt

alt

Login Menu
Management

Menu

Employee

Database

Edit Employee

Menu

Login()

SelectEmployeeAddHitEditButton()

loop
[Done=false]

EnterChangesAndPressOK()

OK()

Done()

Login Menu
Management

Menu
Item DatabaseEdit Item Menu

Login()

SelectItemAndHitEditbutton()

loop [Done=false]

EnterChangesAndPressOK()

OK()

Done()

Cancel()

Cancel()
[Choice=cancel]

[Choice=enter]

[Choice=cancel]

[Choice=enter]

Figure 6: Edit employee (top) and edit item (bottom) sequence diagrams

[IMPLEMENTATION AND TESTING REPORT] April 27, 2009

Software Ninjas | Restaurant Management Software 21

To add and remove employees, the user logs in to the management menu, and in the case of removing an

item or employee, simply selecting an employee or item from the list on the screen and click the delete button

underneath the list. To add employees or item the user clicks add under the appropriate list, then the user is

prompted to enter data for the employee or item being added. The user keeps in this loop making these four

decisions until they select done which exits the loop and logs the user out.

Login Menu Item Database
Management

Menu

[Choice=removeitem]

[Choice=additem]

[Choice=removeemployee]

[Choice=addemployee]

[Choice!=done]loop

alt

Done()

TypeDataAndHitOK()

TypeDataAndHitOK()

SelectEmployeeAndHitOK()

SelectItemAndHitOK()

Login()

Employee

Database

Figure 7: Add/Remove Sequence Diagram

April 27, 2009 [IMPLEMENTATION AND TESTING REPORT]

22 CSC 450 Software Engineering | Software Ninjas

To take orders the user first logs into the Ordering System menu there once there the user selects from the lists

available what items are being order and clicks the add button under the specific list. If necessary the user can

select an item from the order list click the remove button below it to remove an item. When the user is finished

the user clicks the done button and to exit the loop. The user is logged off and the item and order databases are

updated.

Login Order Menu Order DatabaseOrder List

Done()

Login()

Items Database

Loop

Alt

HitDrinkAdd()

HitAppetizerAdd()

HitEntreesAdd()

HitDessertsAdd()

Remove()

[choice=Drink]

[choice=Appetizer]

[choice=Entrees]

[choice=Desserts]

[choice=remove]

UpdateOrderDatabase()

UpdateItemDatabase()

HitRemove()

Update()

Figure 8: Ordering System

[IMPLEMENTATION AND TESTING REPORT] April 27, 2009

Software Ninjas | Restaurant Management Software 23

STATE DIAGRAMS

Below are state diagrams for the overall software as well as for the subsystems.

Clock In / Out

Manager System

Ordering System

Report System

User [type == manager]

Button [value == exit]

User [type == server]

Button [value == exit]

Button [value == exit]

Button [value == exit]

Button [value ==

Ordering System]

Button [value ==

Report System]

Main State Diagram

Figure 9: Main State Diagram

April 27, 2009 [IMPLEMENTATION AND TESTING REPORT]

24 CSC 450 Software Engineering | Software Ninjas

A

Idle

Is A Valid Employee

Id [value == noEmployee]

B

Employee [type == manager]

Employee [type == server]

To Ordering_System

To Manager_System

Figure 10: Login System

Choose Table

Add Drinks

Add Appetizers

Add Entree

Add Desert

Ordering State Diagram

Button [value == next]

Button [value == next]

Button [value == next]

Button [value == next]

Button [value == add_next]

Button [value == add_next]

Button [value == add_next]

Button [value == add_next]

Figure 11: Ordering System state diagram

[IMPLEMENTATION AND TESTING REPORT] April 27, 2009

Software Ninjas | Restaurant Management Software 25

Load Employee Data

Mode [value == edit]

Enter Employee Data
Mode [value == new]

Save Employee Data

button [value == cancel]

button [value == ok]

mode wait

Figure 12: Add/Edit Employee State Diagram

IMPLEMENTATION

The implementation phase of the project has by far been the most challenging of the phases of this project. Many

hopes and dreams were shattered. Because of the significant time constraint, many functions that initially seemed

trivial to implement became very time consuming to implement. Much functionality has been left out either due

to time or to manpower as many project members had other projects during the same period of time. Below is a

list of functions that we intended to implement. The highlighted ones are the ones that were actually

implemented as of the time of this writing.

FUNCTIONS IMPLEMENTED (HIGHLIGTED)

1. Employee functions

1.1. clock in

1.2. clock out

1.3. sign in

1.4. sign out

2. Server functions

2.1. employee functions

2.2. take orders

2.2.1. select order from list of existing orders

2.2.2. add items to existing order

2.2.3. remove items from existing order

2.2.4. create new order

2.2.5. close order

2.2.6. add tip to order

2.2.7. add tax to order (automatic)

2.2.8. total price of order (automatic)

April 27, 2009 [IMPLEMENTATION AND TESTING REPORT]

26 CSC 450 Software Engineering | Software Ninjas

3. Manager functions

3.1. employee functions

3.2. server functions

3.3. manage employees

3.3.1. add an employee

3.3.2. remove an employee

3.3.3. edit an employee

3.3.3.1. change name

3.3.3.2. change id

3.3.3.3. change wages

3.3.3.4. edit clock in/out times

3.4. manage menu items

3.4.1. add new menu item

3.4.2. remove menu item

3.4.3. edit menu item

3.4.3.1. change item name

3.4.3.2. change item price

3.4.4. change tax (all menu items)

3.5. generate reports

3.5.1. generate sales report

3.5.1.1. calculate sales for each category of item (entrée, drink, dessert, and appetizer)

3.5.1.2. calculate total sales

3.5.2. generate labor report

3.5.2.1. calculate labor costs

3.5.2.2. calculate labor to sales ratio

3.5.3. generate “clocked in” report

Despite the many functions that were not implemented, much of the framework for the unimplemented functions

exists and can easily be added to in the future. The graphical user interface was by far the most time consuming

task of the entire project. Perhaps using a builder of some sort, would have proven more efficient.

USER INTERFACE DESIGN

Because of the nature of our project, an intuitive graphical user interface is required. Initially designed by Jacob

Boniface, the user interface design below is the JAVA Swing equivalent of the earlier design. There are a few

alterations that had to be made. The buttons on the far right side on each screen have been removed and put

onto a single menu accessible after login. On the first screen visible to the user we have removed all buttons

except the sign in button. The functionality that was originally on this particular screen has been moved to

subsequent menus and screens. In addition, we have added the clock functionality to every screen in the program

so that no matter which screen an employee is viewing, he or she will be able to keep track of time.

[IMPLEMENTATION AND TESTING REPORT] April 27, 2009

Software Ninjas | Restaurant Management Software 27

Figure 13: First user screen

The next screen is where the employee can choose which tasks he or she wants to do. Options that appear grayed

out are not available for the user that has logged in. Managers have all options, servers have all options except the

management button, and finally normal employee are only granted access to system to log in and log out. All

orders that are currently “owned” by this particular employee are listed in the list above the “add” and “edit”

buttons. Below are three screenshots that show this.

Figure 14: Employee Task Menu

April 27, 2009 [IMPLEMENTATION AND TESTING REPORT]

28 CSC 450 Software Engineering | Software Ninjas

Figure 15: Server Task Menu

Figure 16: Manager Task Menu

Management menu functions include the ability to add and remove employees as well as items. Although our

group did not implement report generation, report generation would be completed from the management menu.

Below are screenshots of the management menu and the various submenus for editing employees and items.

[IMPLEMENTATION AND TESTING REPORT] April 27, 2009

Software Ninjas | Restaurant Management Software 29

Figure 17: Ordering menu

Figure 18: Edit Employee

April 27, 2009 [IMPLEMENTATION AND TESTING REPORT]

30 CSC 450 Software Engineering | Software Ninjas

Figure 19: Edit Item Menu

Figure 20: Item Type Selection

The ordering screen allows a server or manager to create an order by selecting from four lists that represent the

four types of food: beverage, appetizer, entrée, or dessert. When the item is selected, pressing the add button

below the list adds the item to a fifth list which is the actual customer order. When the screen is exited, the

information is stored in the database. All the screens are periodically updated with the current contents of the

database. The figure below is the ordering screen.

[IMPLEMENTATION AND TESTING REPORT] April 27, 2009

Software Ninjas | Restaurant Management Software 31

Figure 21: Ordering Screen

TEST PLAN

The test plan for the Adios system can be summed up into our three major goals: reliability, security, and usability.

Reliability is the first of the goals. The software must be able to do the requested function and perform in a

predictable way. The second goal is security. The program must provide the correct functionality to the employee

authorized to execute those functions. Lastly, the third and most important goal is usability. We want to make

sure our product does more the simply work; we want it to be usable.

Reliability and security testing can be accommodated by merely constructing a few test cases and comparing what

the result should be versus what the result is. Usability testing, however, is completely different. Usability testing

would require some domain experts to use the software and perhaps even deploy the software in a restaurant

environment. Due to the time constraints of the project we were unable to perform any formal usability testing.

Test cases were created to test adding, deleting, and editing both items and employees. Specifically these test

cases make certain that employee and items are stored and retrieved from the database correctly. Test cases

were also generated to perform boundary testing on how many entries could be successfully added or updated. In

addition, test cases where created to verify the function of the compare class, which is used to validate input. The

table of test cases listed on the following page shows what kinds of tests were performed on the “add new

employee” function, the intended results, and the actual results.

April 27, 2009 [IMPLEMENTATION AND TESTING REPORT]

32 CSC 450 Software Engineering | Software Ninjas

Test Case # Description Intended result Actual result Completed by

1 Add new employee (0,
Devon, Simmonds, 12.35,
3245)

Employee(1, Devon,
Simmonds, 12.35, 3245)
MANAGER

Employee(1,
Devon, Simmonds,
12.35, 3245)
MANAGER

Wesley Williams

2 Add new employee (0,
John, Smith, 21.55, 1245)

Employee(2,John, Smith,
21.55, 1245)
SERVER

Employee(2,John,
Smith, 21.55, 1245)
SERVER

Wesley Williams

3 Add new employee (0,
Dan, Rather, 14.35, 378)

Employee(3, Dan, Rather,
14.35, 378) NORMAL

Employee(3, Dan,
Rather, 14.35, 378)
NORMAL

Wesley Williams

4 Add new employee(0, 45,
54, 23.12, 234)

Error Employee(0, 45,
54, 23.12, 234)
NORMAL

Wesley Williams

5 Add new employee(0,
Hugh, Laurie, -13.45, 546)

Error Error Wesley Williams

6 Add new employee(0,
William, Shatner, 27.68, -
1532)

Error Error Wesley Williams

7 Add new employee(0,
Hernan, Cortez, 5.68, 10)

Error Employee(0,
Hernan, Cortez,
5.68, 10)

Wesley Williams

As you can see, two of the test cases above did not pass. There are some bugs with the compare class that need to

be worked out. Namely, the compare class should be able to refuse any sales ID (the last argument in the method

signature) that is less than three digits and it should prevent a user from entering numbers as the only characters

in names. Further testing is required to verify complete operation. These bugs and bugs found in other tests would

need to be fixed and retested before release.

IMPLEMENTATION AND TESTING PHASE RESPONSIBILITES

Most of the coding was done in CIS 2004. This is a computer lab located in the Computer Information Systems

building at the University of North Carolina at Wilmington. The lab was the chosen place for meetings because

along with computers installed with the software we required, the room afforded us the opportunity to use the

white board for drawing diagrams and clarifying implementation details. Implementation and testing started in

early April and continued until April 26
th

. Below is a table of responsibilities. It includes what was done as well as

who completed it.

Task Herbert Kyle Jacob Wesley

UI

 Design X X X X

 Coding X

Database

 Table Design X X X X

 Query Design X

[IMPLEMENTATION AND TESTING REPORT] April 27, 2009

Software Ninjas | Restaurant Management Software 33

 Coding X

Program

 Sales System X X

 Management System X

 Logon System X

 Input Validation X X

Testing

 Testing Approach X X X X

 Test Cases X X

Presentation

 PowerPoint X

 Report X X X X

Table 5: Implementation responsibility matrix

IMPLEMENTATION & TESTING - MAJOR PROBLEMS

By far the biggest challenge encountered was time constraints. Implementation takes an extraordinary amount of

time and a large amount of coordination. Scheduling project meetings around every group member’s schedule has

been nearly impossible. Many of the group members were unable to devote the amount of focus that the

implementation stage required. Both the former and the latter problem may be more of an issue in the academic

environment where priorities of the different group members are skewed in a variety of directions. Another issue

that cropped up was knowledge of the JAVA programming language. At least two of the four group members were

unfamiliar with JAVA’s Swing API, which is JAVA’s primary user interface package. Again, this may not be as much

of an issue in software engineering outside the academic arena.

One of tools we found very useful, in situations where member responsibilities need to be hashed out, is the

responsibility matrix. It has really been the only tool that has allowed us to continue making progress. Everyone is

assigned a task, and everyone is held accountable for the completion of their assigned task. It also allows us to

track tasks that need to be done. The responsibility matrix has proven to be an invaluable tool in the software

engineering process

TOOLS

Tool Description

Computer MS Windows XP, 2 GB DDR2 RAM

Eclipse JAVA integrated development environment

GIMP Graphics design program

MS Word Word processor

Table 6: Tools Required in Implementation

April 27, 2009 [IMPLEMENTATION AND TESTING REPORT]

34 CSC 450 Software Engineering | Software Ninjas

DATA DICTIONARY

Clock in (out)
 To keep track of hours worked, an employee must clock in with an ID.
Item
Item is anything that is sold though the POS. Item attributes include name, id number, price and quantity. Any
item will also have a location that it prints when it is ordered and a category that it belongs to on the menu.
This will also include any ingredients that other products are made.
Item type
 An item type is an enumerated variable that holds string constants representing the different kinds of
items that can be ordered. For instance, a soda would be listed under the BEVERAGE item type, and mozzarella
would be listed under the APPETIZER item type.
Employee
 Employee is anyone that has access to the system. Employee attributes include id number, name,
address, phone number, current pay rate, password and level of authorization (for system security purpose
only)
Employee type
 An employee type is an enumerated variable that holds string constants representing the different
levels of employment within the restaurant. There are three possible strings, MANAGER, SERVER, and NORMAL.
Orders
An order is a collection of items. Order attributes include an id number, an employee that ordered the item and
the id of the item ordered. An order would be similar to a receipt grouping in a retail point-of-sale system.
Sign in (out)
 To receive the functionality granted to servers and managers, an authorized employee must sign in to
the system so that all transactions that occur are presented as being from said employee

