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INTRODUCTION

Prey selection by predators is an important mech-
anism structuring aquatic communities. Piscivorou
fishes are usually near the top of most aquatic trophic
webs and can have strong effects on prey morphology
(Brönmark & Miner 1992, Poleo et al. 1995), life history
(Rodd & Reznick 1997, Johnson & Belk 1999), and com-
munity structure (Hambright 1994). Removal or addi-
tion of piscivores in many systems leads to cascading
community effects (Carpenter & Kitchell 1993, Mittel-

bach et al. 1995, Jennings & Kaiser 1998). Direct and
indirect community effects are a result of consistent
prey type and size selectivities exhibited by most pisci-
vores (Juanes 1994, Ellis & Gibson 1995, 1997, Sogard
1997). For example, in temperate estuarine systems,
predators can change the prey fish species composition
in experimental predator treatments and also alter the
size distribution of some prey species compared to
predator-free controls (Wright et al. 1993). Similar ef-
fects have been observed in coral reef systems (Carr &
Hixon 1995, Beets 1997, Connell 1998). It is important
to understand the mechanisms underlying observed
prey selectivities in order to predict community changes
in response to variations in predator abundances.

Most piscivorous fishes undergo ontogenetic shifts in
diet (Werner & Gilliam 1984, Keast 1985, Mittelbach et
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al. 1988, Post et al. 1997). These shifts generally
progress from zooplankton to benthic macrofauna or
prey fishes with a concomitant increase in mean prey
size as predators grow (Scharf et al. 1998a). Primary
piscivores become piscivorous in the first few months
of life (Keast 1985). The timing of the shift to piscivory
depends on predator and prey phenologies and in-
variably results in an increase in predator growth rate
(Malmquist et al. 1992, Fitzhugh et al. 1996, Olson
1996). However, even the largest predators retain a
portion of non-fish prey in their diet (Chapman et al.
1989, Eggleston et al. 1998, Beaudoin et al. 1999). This
diet breadth has been attributed to the flexibility and
trophic adaptability of fish-feeding (Dill 1983, Gerking
1994). However, few studies exist that compare the
predation mechanics and the ecological consequences
of flexible feeding in piscivorous fishes.

Young-of-the-year (YOY) bluefish (Pomatomus salta-
trix) become piscivorous at about 40 mm total length
(TL) (Marks & Conover 1993). This feeding shift co-
incides with a habitat shift from offshore waters to
estuarine nursery areas where they feed on abundant
inshore fishes (Juanes et al. 1993, 1994, Juanes &
Conover 1995). Although primarily piscivorous, shrimp
(particularly the sand shrimp Crangon septemspinosa
and the grass shrimp Palaemonetes vulgaris) can be an
important part of the diet in mid-summer (Friedland et
al. 1988, Creaser & Perkins 1994, Juanes & Conover
1995, Buckel & Conover 1997). In years where shrimp
consumption is prevalent, growth tends to be reduced
(Friedland et al. 1988). Results of laboratory experi-
ments support this finding, as juvenile bluefish grow
faster feeding on fish prey than on crustacean prey
(Juanes & Conover 1994b). Recent work has shown
that size-based predation components (e.g. attack
success, handling times, prey profitability) can vary
substantially for different teleost prey types due to
prey-specific morphological and behavioural differ-
ences (Scharf et al. 1998b). However, rarely has preda-
tion by a primary piscivore on prey types as different
as shrimp and fishes been experimentally compared.

Here, we compare the feeding behaviour and forag-
ing components of bluefish feeding on fish and shrimp
prey. We also measure prey-size selectivity of YOY
bluefish feeding on shrimp, and selectivity between
shrimp and fish prey. In addition, we test our labora-
tory results in the field by examining the selectivity of
YOY bluefish on fish and shrimp prey in Great South
Bay (GSB), Long Island, New York.

MATERIALS AND METHODS

Laboratory experiments. We used Atlantic silver-
sides, Menidia menidia, as the fish prey and sand

shrimp Crangon septemspinosa as the shrimp prey.
Previous field work has shown that Pomatomus salta-
trix diets are dominated by silversides in various estu-
aries along the Atlantic coast (Grant 1962, McDermott
1983, Friedland et al. 1988, Juanes et al. 1994, Juanes
& Conover 1995) and that sand shrimp also constitute a
substantial portion of the stomach contents in some
months (Creaser & Perkins 1994, Juanes & Conover
1994a, 1995).

Bluefish, silversides, and shrimp were collected by
seining from GSB and were transported to the Flax
Pond Marine Laboratory (Old Field, New York), where
they were allowed to acclimate for 1 wk prior to use in
experiments. The experiments were conducted in 400 l
flow-through tanks (121 × 64 × 58 cm) with a Plexiglas
front window, kept under a constant light regime
(14 L:10 D) and at constant temperature (20 to 23°C).
Each tank was illuminated by two 200 W bulbs placed
overhead and providing diffuse light. Seawater was
filtered using a sand-filter and was therefore of low
turbidity.

Behavioural experiments were performed with
groups of 3 similarly-sized predators and multiple
prey. Bluefish were starved for 24 h between feeding
trials. Behaviours were recorded using a video camera
filming at 30 frames s–1 and positioned 1 m in front of
the tank. Prey were added to a transparent Plexiglas
container within the tank already containing bluefish
and allowed to acclimate. Trials began when the prey
container was removed, allowing bluefish access to the
prey, and ended when bluefish had filled their guts
and stopped feeding (usually 15 to 20 min).

We conducted 3 types of behavioural experiments.
The first set of experiments used similarly-sized fish
and shrimp prey separately to compare predation
components (e.g. handling times, capture success rates
and prey profitability), the second used 2 shrimp sizes
simultaneously to measure prey-size selectivity, and
the third used similarly-sized shrimp and fish prey
simultaneously to measure prey-type selectivity.

To measure predation components, we subdivided
bluefish into 2 size groups: small (90 to 120 mm (TL)
and large (130 to 160 mm TL). We used silversides and
shrimp prey of a similar size (20 to 40 mm TL, for shrimp
prey, measured from rostrum to tail). For these experi-
ments, we added 10 to 15 individual prey items of 1
prey type to the experimental tanks as described above.

The following parameters were measured from the
video analysis: handling time defined as the time to
bite into and swallow the prey, and attack success
defined as 0 if the prey escaped or was missed, or 1 if
the prey was ingested. Attack success within a trial
was calculated as the percent of attacks that were suc-
cessful. After testing for normality (Kolmogorov-Smir-
nov test) and for homogeneity of variances (Bartlett's
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test), ANOVAs were run on log10(x + 1)-transformed
mean handling times and percent attack success to
assess the effects of predator size and prey type.

Size-specific prey profitabilities (J s–1) were calcu-
lated as the ratio of energy content of a prey type to the
mean handling time of the predator-prey type combi-
nation. Prey energy content was determined for the
average prey size within a size class (i.e. 30 mm TL)
based on weights obtained from length-weight regres-
sions (Juanes & Conover 1994b), and prey-specific
caloric content (Steimle & Terranova 1985). We as-
sumed that encounter rates (and therefore search
times) and energetic costs of attack were independent
of prey size.

Prey-size selection experiments were conducted by
offering 3 groups of 3 similarly-sized bluefish (TL = 90
to 120 mm TL) mixtures of 15 small (20 to 40 mm TL)
and 15 large (50 to 70 mm TL) sand shrimp. Prey were
available for 24 h, after which all prey were removed
and noted. The experiment was repeated 14 times by
picking a new set of similarly-sized prey and adding
them to the predator tanks. To assess selectivity be-
tween fish and shrimp prey, we offered 2 groups of 3
bluefish (60 to 90 mm TL) a mixture of 12 silversides
and 12 shrimp of similar size (20 to 40 mm TL) and pro-
ceeded as above. Predator and prey sizes chosen were
based on size distributions in previous field collections
(see Juanes & Conover 1995) and therefore repre-
sented size combinations occurring naturally in the
environment.

Prey size- and type-selection data were analyzed
using a chi-square test to detect differences from a
random choice (Zar 1984).

Field collections and diet analysis. YOY bluefish
and their potential fish prey were collected with a 30 ×
2 m beach seine (6 mm mesh wings, 3 mm mesh bag)
on 4 dates in 1999 (June 30, July 8, July 22, August 5)
in GSB. All species were identified and enumerated
from the first seine haul; additional seine hauls were
conducted to obtain a larger sample size of bluefish.
We sampled at 5 sites within GSB that covered 50 km
east to west. The seine was set parallel to the beach at
a known distance offshore and the ends of the seine
brought to the beach. The area that the beach seine
swept was calculated using seine length, distance off-
shore, and the distance between the ends of the seine
at the beach. Potential shrimp prey were quantified
using a 1 m beam trawl which was hauled by hand for
a known distance.

Bluefish taken for stomach-content analysis were
wet-weighed (±0.1 g) and TL measured (±1.0 mm).
Stomachs were removed and preserved in 10% forma-
lin. Stomach contents were identified to the lowest
possible taxon, blotted dry, weighed (±0.01 g), and TL
measured. Frequency of occurrence (F) was calculated

as the number of stomachs in which a prey occurred
divided by the total number of stomachs containing
food. The weight of each prey type was divided by the
total weight of all prey types to calculate prey contri-
bution by weight (W).

The feeding selectivity of spring-spawned bluefish
was determined from the relative abundance of prey in
bluefish stomachs and the relative abundance of prey
in seine and beam trawl catches. Fish (primarily
Atlantic silverside; bay anchovy, Anchoa mitchilli, and
Atlantic menhaden, Brevoortia tyrannus) and shrimp
(sand shrimp and grass shrimp, Palaemonetes vulgaris)
prey categories were examined. A selectivity index
value was calculated for only those stations where diet
information from at least 3 spring-spawned bluefish
was available. Chesson‘s (1978) index was used to
determine bluefish prey selectivity at each station as:

where α i is the selectivity for prey type i, r i is the rela-
tive abundance of prey type i in bluefish stomachs, pi

is the relative abundance of prey type i in the environ-
ment, and m is the number of prey types available.
Values of α i were averaged for each date. Random
feeding occurs when mean α i = m–1; in our study, val-
ues of α i > 0.5 or α i < 0.5 represent ‘selection’ and
‘avoidance’ of prey, respectively. Random feeding was
tested by a Student‘s t-test to compare mean α i to 0.5
(Chesson 1983).

RESULTS

Lab experiments

Compared to consuming fish (Menidia menidia)
prey, ingesting shrimp (Crangon septemspinosa) prey
involved added manipulation and close inspection by
the predator (see Juanes & Conover 1994a for descrip-
tions of fish-prey consumption). Shrimp tended to
remain motionless on the tank bottom and would react
to bluefish attacks by jumping up and away. Once cap-
tured, shrimp prey were often spat out and re-ingested
before they could be swallowed. In contrast to the fre-
quent observations of partial prey consumption of fish
prey (Juanes & Conover 1994a, Scharf et al. 1997),
shrimp prey were always swallowed whole.

Attack success rates varied little across bluefish sizes
(all p > 0.05) but strongly across prey types within a
size class. Attacks on shrimp (~20 to 25%) were always
less successful than attacks on silversides (~60 to 65%)
(small bluefish: p = 0.0015, df = 1,12, t = 4.081; large
bluefish: p = 0.017, df = 1,9, t = 2.919) (Fig. 1A).
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We found no significant differences in mean han-
dling times on shrimp prey between bluefish size
classes (p = 0.1519, df = 1,36, t = 1.464), but significant
differences for fish prey handling times (p = 0.0222,
df = 1,110, t = 2.32). Comparison within bluefish size
classes revealed significant differences between prey
types. Bluefish feeding on shrimp prey always had sig-
nificantly higher handling times (~15 s) than when
feeding on fish prey (~5 s) (small bluefish: p = 0.0003,
df = 1,104, t = 3.748; large bluefish: p < 0.00001, df =
1,42, t = 6.76) (Fig. 1B).

Calculated profitabilities were higher for fish prey
than for shrimp prey (Fig. 2A) and shrimp profita-
bility declined to near 0 when attack success rates
were incorporated into the profitability calculations
(Fig. 2B).

Bluefish generally ate more smaller prey than
expected by chance (Table 1). When given a choice
between silversides and shrimp of similar sizes, blue-
fish exhibited a significant selection for silversides
(Table 2).
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Fig. 1. Pomatomus saltatrix. Predation components for 2 sizes
of bluefish feeding on similarly-sized silversides Menidia
menidia and sand shrimp (Crangon septemspinosa) in those
experiments where bluefish were offered 1 prey size at a 

time. Vertical bars: SE; numbers: sample sizes

Fig. 2. Pomatomus saltatrix. Prey profitability for 2 sizes of
bluefish feeding on similarly-sized silversides and sand
shrimp calculated as the ratio of mean prey energy content to
mean handling time from Fig. 1B (A) and weighted by attack 

success rate from Fig. 1A (B)

Trial No. Nos. eaten χ2

no. of days Small Large

1 14 152 60 39.92*
2 14 157 49 56.62*
3 14 162 66 40.42*
Total 42 471 175 135.63*

Table 1. Pomatomus saltatrix. Total numbers of prey eaten by
young-of-the-year bluefish (90 to 120 mm total length, TL)
when given a choice of equal numbers of small (20 to 40 mm
TL) and large (50 to 70 mm TL) sand shrimp (Crangon

septemspinosa). *Significant chi-squared values (p < 0.05)

Trial No. Nos. eaten χ2

no. of days Menidia Crangon

1 11 89 7 70.04*
2 7 64 6 48.06*
Total 18 153 13 118.07*

Table 2. Pomatomus saltatrix. Total numbers of prey eaten by
young-of-the-year bluefish (60 to 90 mm TL), when given a
choice of equal numbers of 2 prey types, silversides (Menidia
menidia) and sand shrimp (Crangon septemspinosa) of similar
sizes (20 to 40 mm TL). *Significant chi-squared values 

(p < 0.05)
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Field collections and diet analysis

The stomach contents of 79 YOY bluefish were
examined. Diet was dominated by teleost fish and
shrimp prey (Table 3, Fig. 3A). Fish prey included
Atlantic silversides, bay anchovy Anchoa mitchilli and
Atlantic menhaden, Brevoortia tyrannus while the only
shrimp prey taken was sand shrimp. Relative abun-

dance of shrimp was high in early summer but
declined as fish abundance increased (Fig. 3B)

Spring-spawned YOY bluefish selected positively
(α > 0.5) for fish over shrimp prey (t-test: mean α vs 0.5,
p < 0.05) on 3 out of 4 dates (Table 4, Fig. 4). Although
the mean selectivity for fish was greater than 0.5 on
July 8, 1999, there was no significant difference from
random feeding (Fig. 4; t-test: mean α vs 0.5, p = 0.390).

Fish and shrimp prey lengths were plotted as func-
tions of bluefish length (Fig. 5). There was no signifi-
cant difference between the slopes of these relation-
ships; however, there was a significant difference in
their intercepts (ANCOVA, slopes: p = 0.301, df = 1,62,
F = 1.09; intercepts: p < 0.0001, df = 1,63, F = 176.4),
with fish prey always being larger than shrimp prey
over the range of bluefish sizes examined.
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Fig. 3. Pomatomus saltatrix. Diet (proportion wet weight) of
bluefish (A) and mean relative abundance of fish and shrimp 

prey (B) as a function of date

Common name Scientific name June 30 July 8 July 22 Aug 5
F W F W F W F W

Atlantic silverside (YOY) Menidia menidia 0.38 0.32 0.51 0.46 0.32 0.53
Bay anchovy Anchoa mitchilli 0.24 0.19 0.33 0.35
Atlantic menhaden Brevoortia tyrannus 0.02 0.01 0.29 0.29 0.19 0.21 0.33 0.34
Unidentified fish remains 0.13 0.13 0.16 0.11 0.12 0.04 0.67 0.32
Sand shrimp Crangon septemspinosa 0.69 0.54 0.38 0.13 0.03 0.01
Sand worm Nereis virens 0.04 0.01 0.06 0.04

No. of bluefish 28 19 23 9
No. with prey 26 19 18 9
Mean bluefish total length (mm, SD) 95.4 (22.2) 121.1 (7.7) 153.3 (14.0) 163 (19.9)
Total length range (mm) 61–142 107–139 123–186 142–206
Mean bluefish weight (g, SD) 9.1 (6.3) 16.9 (3.26) 34.6 (11.4) 44.8 (17.7)
Weight range (g) 2.0–26.2 10.8–24.6 17.2-64.0 28.3–86.8

Table 3. Pomatomus saltatrix. Diet of spring-spawned young-of-the-year (YOY) bluefish captured during 1999 collections in
Great South Bay. Values are means of station values for a given date. F: frequency of occurrence; W: proportion wet weight

Fig. 4. Pomatomus saltatrix. Mean selectivity of bluefish on fish
and shrimp prey by date. Horizontal line represents random
feeding (0.5); Chesson’s index values >0.5 represent positive 

selection, values <0.5 negative selection. Vertical bars: SE
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DISCUSSION

Juvenile bluefish Pomatomus saltatrix, like other pri-
mary piscivorous fishes often consume other non-fish
prey, including zooplankton and macroinvertebrates
(Friedland et al. 1988, Creaser & Perkins 1994, Juanes
& Conover 1994a, 1995, Buckel et al. 1999). For exam-
ple, the diets of certain northern pike Esox lucius pop-
ulations can consist almost entirely of invertebrate

prey on a seasonal basis (Chapman et
al. 1989), and largemouth bass (Micro-
pterus salmoides) diets commonly
include large proportions of terrestrial
vertebrate prey (primarily amphibians;
Hodgson et al. 1997) and crayfish
(Hoyle & Keast 1987, Ward & Neumann
1998, Yako et al. 2000). Although most
piscivores feed on non-fish prey before
undergoing an ontogenetic diet shift to
piscivory (Mittelbach et al. 1988, Post
et al. 1997, St. John 1999), feeding on
non-piscine prey is not limited to only
smaller predators, but is frequently ob-
served in larger predators (Chapman et
al. 1989, Eggleston et al. 1998, Beau-
doin et al. 1999).

Our behavioural observations sug-
gest that shrimp prey are more difficult
to handle and ingest than fish prey,
resulting in much lower capture-suc-
cess rates, longer handling times, and,
as a consequence, lower profitabilities.
However, similar to the patterns ob-

served for bluefish (Juanes et al. 1994, Scharf et al.
1997) and other piscivores feeding on fish prey (Juanes
1994), small shrimp prey are selectively ingested over
larger shrimp prey both in the laboratory (this study)
and in the field (Juanes & Conover 1995). When com-
paring crayfish and fish prey in largemouth bass diets,
Hoyle & Keast (1987) also found that crayfish had the
highest handling times and lowest profitabilities and
that small prey sizes of both prey types were selec-
tively consumed in the field, although they did not
measure prey type selectivity.

Predator-prey interactions can be strongly deter-
mined by prey morphology and behaviour (Sih &
Moore 1990). The results of the laboratory prey-type
selection experiments show that YOY bluefish consis-
tently ingest more silversides than shrimp when given
a choice of similarly-sized individuals, as predicted by
their relative profitabilities. In the field, shrimp prey
ingested were considerably smaller than fish prey con-
sumed, perhaps due to smaller average shrimp sizes
(not measured in this study, but see field-size fre-
quency distributions in Juanes & Conover 1995). Prey-
specific evacuation rates do not differ for bluefish feed-
ing on silversides (Menidia menidia) and sand shrimp
(Crangon septemspinosa) (Juanes & Conover 1994b);
therefore, in contrast to other fish predators (Lankford
& Targett 1997) post-ingestion processes are appar-
ently not important determinants of prey choice in this
species. The relative vulnerability of these prey types
may instead be due to species-specific differences in
prey response and swimming behaviour. Silversides
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Date Site Fish Shrimp Selectivity Selectivity
(1999) density density on fish on shrimp

(# m–2) (# m–2) (α) (α)

June 30 Pine Neck 3.59 17.58 0.66 0.34
June 30 Fireplace Neck 0.47 14.88 0.81 0.19
June 30 Smith Point 2.95 1.31 0.76 0.24
July 8 Smith Point 4.37 14.29 0.93 0.07
July 8 Bayshore 0.28 0.52 1.0 0
July 8 Fireplace Neck 0.41 0.22 0.69 0.31
July 8 Pine Neck 1.59 0.36 0.18 0.82
July 22 Smith Point 1.03 5.57 1.0 0
July 22 Fireplace Neck 1.69 0.07 1.0 0
July 22 Bayshore 0.15 1.15 1.0 0
July 22 Pine Neck 0.42 0.13 0.65 0.35
August 5 Pine Neck 0.57 0.10 1.0 0
August 5 Smith Point 3.2 0.10 1.0 0
August 5 Fireplace Neck 2.7 0.03 1.0 0

Table 4. Mean density of fish (Atlantic silverside, Menidia menidia, bay
anchovy, Anchoa mitchilli, and clupeids) and shrimp (sand and grass shrimp,
Crangon septemspinosa and Palaemonetes vulgaris) prey types, and mean
Chesson’s selectivity (α) of young-of-the-year bluefish on these prey by date and
collection site during 1999 in Great South Bay. Random feeding occurs when
mean α = 0.5; values of α > 0.5 or < 0.5 represent ‘selection’ and ‘avoidance’ of 

prey, respectively. Mean selectivities for each date are shown in Fig. 4

Fig. 5. Pomatomus saltatrix. Prey total length versus bluefish
total length for fish and shrimp prey. ANCOVA found no
differences between slopes, but intercepts were significantly
different (slopes: F = 1.09, df = 1,62, p = 0.301; intercepts: F = 

176.4, df = 1,63, p < 0.0001)
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respond to attack by changing direction and increas-
ing speed while a shrimp's escape behaviour is usually
a burst of movement from a motionless position. The
escape response of a constantly swimming prey such
as a silverside may be less flexible than that of shrimp
because the direction of escape is largely determined
by its trajectory. By accelerating from a set position,
shrimp can move in a number of directions and thereby
incorporate unpredictable elements into their escape
response (see Arnott et al. 1998, 1999). The relative
immobility exhibited by shrimp in the presence of a
predator may also reduce detection, since many fish
predators are attracted to movement (Keenleyside
1979).

The increased handling times and lower success
rates associated with consuming shrimp must also be
reflected in additional foraging costs. Although these
costs were not directly measured, bluefish fed shrimp
prey display lower feeding and growth rates than those
fed silversides as prey (Juanes & Conover 1994b). In
addition, in a field study comparing growth and diet,
juvenile bluefish were heavier at length (i.e. had
higher condition factors) when fish, rather than
macroinvertebrates (primarily sand shrimp, the grass
shrimp Palaemonotes vulgaris, and the opossum
shrimp Neomysis americana) dominated their diets
(Friedland et al. 1988).

The diet of juvenile bluefish in 1999 was dominated
by Atlantic silversides, bay anchovy Anchoa mitchilli,
Atlantic menhaden Brevoortia tyrannus, and shrimp;
this diet is similar to that described for bluefish in
Great South Bay in past years (Juanes & Conover 1995)
and in other New York Bight estuaries (Friedland et al.
1988). The exception is the presence of Atlantic men-
haden in the diet, which has not been reported previ-
ously for this region but has been found to be a domi-
nant prey of YOY bluefish in other systems (Grant
1962, Hartman & Brandt 1995). We conclude that in
Great South Bay, the annual availability of Atlantic
menhaden may not be as consistent as the occurrence
of Atlantic silversides and bay anchovy.

The results of our field collections corroborate our
laboratory findings. We found significant positive
selection for fish prey and negative selection for
shrimp prey even though shrimp were often much
more abundant in field collections (an order of magni-
tude higher than fish prey on some dates). However,
the extent of fish and shrimp feeding does appear to be
correlated with their relative abundances. As shrimp
abundances declined and fish abundances increased,
consumption of shrimp decreased whereas fish con-
sumption increased. These observed selectivity pat-
terns suggest that relative consumption of different
prey types is ‘opportunistic’ and that the pattern of
selection is the result of passive processes. When given

the choice of 2 prey sizes (Juanes & Conover 1994a) or
2 fish species (Bell et al. 1999), bluefish have been
shown to attack them at equal rates, so that relative
capture success rates determine the probability of
ingestion. Silverside and shrimp prey are also prob-
ably attacked at similar rates. Thus, even when prey
abundances are similar, more fish than shrimp prey are
consumed because of the higher capture success on
fish prey. Similarly, when shrimp prey are very abun-
dant, more shrimp than fish prey are ingested, but
mean selectivity for shrimp prey remains low. Previous
work in the Hudson River estuary also showed that
YOY bluefish diets were a reflection of the relative
abundance of their prey species (Juanes et al. 1993).

The observed prey selectivities combined with the
patterns of prey abundance in the field may have
important implications for recruitment of YOY blue-
fish. Small bluefish entering estuaries early in the sea-
son are more likely to encounter and therefore ingest
more shrimp than fish prey, particularly if shrimp are
very abundant and small in size compared to available
fish prey. However, because differences in profitability
between fish and shrimp prey are smaller for smaller
bluefish (Fig. 2), and growth is reduced when piscivory
is delayed (Buckel et al. 1998), the continued ingestion
of shrimp prey could lead to lower growth (Friedland et
al. 1988, Juanes & Conover 1994b). We conclude that
the timing of bluefish entry into estuaries relative to
peaks in abundance of various prey could have a
strong effect on bluefish size at the end of the growing
season and therefore size-dependent survival.

Research on foraging theory has focused mainly on
the role of predator habitat and diet choice, while the
factors affecting encounter probabilities have received
comparatively less attention (Persson & Diehl 1990).
The results of this study agree with Sih & Moore’s
(1990) suggestion that in many cases prey behaviour
may be as important as predator choice in determining
predator diets. A re-analysis of a literature review in
Stephens & Krebs (1986) conducted by Sih & Moore
showed that, in general, when prey are mobile predic-
tions derived from optimal diet theory do not work as
well as when prey are less mobile. This conclusion
suggests that future studies of mobile predator/prey
systems (such as piscivorous fishes and their prey)
should include prey behaviours that influence capture
success and encounter rates and ultimately determine
predator selectivities.
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