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Abstract. Scatter diagrams have historically proved useful in the study of associative
relationships in ecology. Several important ecological questions involve correlations be-
tween variables resulting in polygonal shapes. Two examples that have received consid-
erable attention are patterns between prey size and predator size in animal populations and
the relationship between animal abundance and body size. Each istypically illustrated using
scatter diagrams with upper and lower boundaries of response variables often changing at
different rates with changes in the independent variables. Despite recent statistical contri-
butions that have stimulated an interest in characterizing the limits of avariable, aconsensus
on an appropriate methodology to quantify the boundaries of scatter diagrams has not yet
been achieved. We tested regression techniques based on least squares and least absolute
values models using several independent data sets on prey length and predator length for
piscivorous fishes and compared estimated slopes for consistency. Our results indicated
that least squares regression techniques were particularly sensitive to outlying y values and
irregularities in the distribution of observations, and that they frequently produced incon-
sistent estimates of slope for upper and lower bounds. In contrast, quantile regression
techniques based on least absolute values models appeared robust to outlying y values and
sparseness within data sets, while providing consistent estimates of upper and lower bound
slopes. Moreover, the use of quantile regression eliminated the need for an excess of
arbitrary decision-making on the part of the investigator. We recommend quantile regression
as an improvement to currently available techniques used to examine potential ecological
relationships dependent upon quantitative information on the boundaries of polygonal re-
|ationships.

Key words: animal abundance-size relationships; prey—predator size relationships; quantile re-
gression; regression techniques; scatter diagrams.

INTRODUCTION

The ability to make quantitative predictions based
on the interdependence of two variables is a central
theme in ecology. When examining bivariate data, scat-
ter diagrams illustrate associative relationships and
provide agraphical representation of variation and have
historically proven useful for exploring a diversity of
ecological phenomena spanning several disciplines
(Beverton 1962, Begon and Mortimer 1986, Lawton
1989). However, potentially useful information obtain-
able from the edges of scatter diagrams is often ne-
glected. The frequent disregard for determining quan-
titatively the magnitude of the boundaries of the re-
lationship between two variables stems from a lack of
consensus on an appropriate statistical method and the
tendency for ecologists to focus primarily on average
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relationships. Recently, however, there has been a
growing interest among ecologists in addressing bio-
logical questions involving the limits or extremesin a
variable. For example, Gaines and Denny (1993) pres-
ent an alternative body of statistics to test hypotheses
regarding extreme values of probability distributions.
In spite of recent statistical contributions and an aware-
ness of the potential ecological utility contained in
knowledge on the limits of a variable, techniques to
evaluate the edges of scatter diagrams and understand
more completely the information they provide have re-
ceived little attention (but see Maller et al. 1983, Black-
burn et al. 1992).

Many important ecological questions deal specifi-
cally with two interdependent variables that exhibit po-
lygonal relationships. Two examples have been es-
pecially prominent in the literature: patterns in body
size between prey and predators and the relationship
between animal abundance and body size. Both rela-
tionships center around large scale patterns in animal
assemblages and can incorporate broad taxonomic
ranges. Typically, least squares regression applications
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Fic. 1. Examples of typically observed patterns illus-
trating the relationship between (a and b) predator size and
prey size, and (c and d) abundance and body size for animal

have been used to provide quantitative estimates of
central tendency for various data sets collected to ex-
amine these associations, whereas the boundaries of
the relationships are predominately estimated by eye
(but see Blackburn et al. 1992).

When examining predator—prey interactions, scatter
diagrams have been used to link prey and predator body
size and to illustrate ontogenetic patterns in prey size
use for a variety of predator taxa (Schoener and Gor-
man 1968, Paine 1976, Vezina 1985, Cohen et al.
1993). For animal taxa, regression analyses normally
indicate an increase in mean prey size with predator
size. However, mean prey size does not usually increase
proportionately with predator size and substantial vari-
ability exists in most cases (Cohen et al. 1993). Dis-
proportionate increases in prey size with increasing
predator size can lead to avariety of polygonal patterns
of prey size and predator size (Fig. 1a and 1b). Simi-
larly, numerous studies of various taxa and size ranges
have used scatter diagrams to characterize the rela-
tionship between animal abundance and body size (Pe-
ters and Wassenberg 1983, Juanes 1986, Nee et al.
1991, Blackburn and Gaston 1994, Ebenman et al.
1995). Typically, animal abundance declines with in-
creasing body size, although investigations to date re-
veal several asymmetric distribution patterns resulting
in polygonal shapes (Lawton 1989) (Fig. 1c and d).

The observed patterns between prey and predator
body sizes and animal abundance and body size suggest
that the upper and lower limits of these relationships
may often change at different rates. The existence of
various ecological patterns with disparate edges war-
rants separate examination of upper and lower bounds;
however, a refined technique to accomplish these goals
is not in widespread use. Simply defining the bound-
aries using the observed extremes in the data is un-
satisfactory because there are commonly a limited
number of observations near the edges, often making
them indiscernible by eye alone. Moreover, the pres-
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ence of outlying values may result in considerable vari-
ation around the true edge. Based on the considerable
interest directed at understanding these and other eco-
logical relationships and the fact that hypothesistesting
requires measures of variance coupled with parameter
estimates, it is evident that a consensus on an appro-
priate statistical technique used to estimate the edges
of scatter diagrams is needed.

In this paper we extend a least squares (LS) regres-
sion technique originally described by Blackburn et al.
(1992) to estimate slopes of lower as well as upper
bounds of scatter diagrams. We apply several versions
of this LS regression technique and compare results for
consistency. We also describe and apply a quantile re-
gression technique based on a least absolute values
model. Comparisons are made between the two re-
gression techniquesfor validity of slope estimates. Prey
size—predator size data for piscivorous fishes are used
to test the appropriateness of each regression technique.
It will be shown, however, that the described techniques
are widely applicable to other types of data and may
prove valuable when examining a variety of ecological
questions.

METHODS
Data sets

To identify the strengths and weaknesses of two re-
gression techniques in estimating the slopes of the up-
per and lower bounds of scatter diagrams, we selected
six independent data sets from a larger body of data
illustrating the relationship between the body sizes of
predators and prey. Observations within each data set
consisted of individual piscivorous fish predators and
individual prey and their respective body lengths for a
specific predator population. A diverse group of fish
predators was chosen with individual species repre-
senting freshwater habitats (tigerfish Hydrocynus brev-
is), marine pelagic environments (bluefish Pomatomus
saltatrix), as well as benthic (winter skate Raja ocel-
lata) and demersal (red hake Urophycis chuss; white
hake Urophycis tenuis; and European hake Merluccius
merluccius) marine habitats. The six data sets used in
these analyses were selected to provide sufficient vari-
ation among species assemblages as to the numbers of
observations contained in the data set (e.g., red hake
n = 59, winter skate n = 701), the presence or absence
of extreme values in the y direction (e.g., winter skate
and the three hakes), and the irregularity or sparseness
present in the data set (e.g., bluefish and European
hake). We postulated that variation in the characteris-
tics present across data sets would be necessary to pro-
vide an appropriate setting in which to compare results
of regression techniques for consistency.

Each data set was initially tested for a significant
relationship between predator length and prey length
using both ordinary least squares regression analysis
and a quantile regression technique estimating the me-
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TaBLE 1. Description of the four versions of the least squares regression technique.

Methods of data partitioning

Observations used to fit
least squares regressions

Equal numbers
of observations

Equal increments of
the independent variable
(predator length in mm)

Minimum or maximum y
value paired with corre-
sponding x value

Minimum or maximum y
value paired with median
or midpoint x value

Nixy) INCuy)

N (medxy) INCmigxy)

dian (i.e., 50th quantile). Each data set exhibited ahigh-
ly significant positive slope for each regression (P <
0.0001), with the exception of the red hake data set
(LS P = 0.135; quantile regression P = 0.155). To
confirm the existence of polygonal relationships be-
tween the body sizes of predators and prey examined
in this study, each data set was then tested for heter-
oscedastic distribution of errors using two tests based
on methods used by Terrell et al. (1996). In each test,
residuals generated from a LS regression through all
observations were used as the dependent variable with
predator length as the independent variable in an or-
dinary LS regression (Glejser 1969, Harvey 1976). For
each test, a significant, positive estimate of the slope
would be evidence of heteroscedastic error distribution.
For the six data sets, eleven of twelve tests (two tests
per data set) produced significant, positive estimates of
slope (exception was test 1 for red hake; P = 0.20).
These results indicate significant heteroscedastic dis-
tribution of errors within each data set (with the ex-
ception of red hake), with varianceincreasing asafunc-
tion of predator size. The distribution patterns con-
tained in these data sets are commonly observed when
examining prey size—predator size relationships of pi-
scivorous fishes, with maximum prey size increasing
with predator size while minimum prey size remains
relatively constant. Therefore, we expected lower
bound slope estimates to be modest or statistically in-
significant for each data set.

Least squares regression technique

Blackburn et al. (1992) introduced a LS regression
technique to estimate the slopes of the upper bounds
of animal abundance vs. body size scatter plots. Ob-
servations were grouped into a number of equal (n)
size classes and the uppermost points within each size
class were used to fit a LS regression model estimating
the slope of the upper bound. The authors concluded
that this approach was adequate for estimating the
slopes of the boundaries of polygonal relationships.

Four versions of the LS regression technique were
applied (Table 1). Versions differed in the methods ap-
plied to partition the data into a number of equal size
classes and in the choice of x and y values used to
estimate the regression slope. Data were either sepa-

rated into size classes containing an equal number of
observations or divided into size classes representing
equal increments of the independent variable (predator
length measured in millimeters). LS regression slopes
were then estimated by pairing the minimum or max-
imum prey length (y) with either its corresponding
predator length (x) or with the median or midpoint
predator length (X) within each size class. Regressions
were weighted by the number of observations within
each size class for versions with size classes repre-
senting equal increments of the independent variable.
The four versions of the LS regression technique were
applied to the six data sets. Estimates of upper and
lower bound slope were tested for homogeneity (Sokal
and Rohlf 1995) across different versionsfor each pred-
ator—prey assemblage.

The question of how many size classes to use during
application of the LS regression technique has been
previously addressed (Blackburn et al. 1992). Based
on repeated analysis of simulated data, Blackburn et
al. (1992) found that estimates of upper bound slope
converged toward the mean regression slope with in-
creasing number of size classes and became highly
variable when too few size classes were used. They
suggested that between six and fifteen size classes was
adequate. We choseto divide datainto eight size classes
for all analyses, regardless of the methods of data par-
titioning. To examine the effect of size class number
on estimates of L Sregression slope, we partitioned data
from four predator—prey assemblages into size classes
containing an equal number of observations and esti-
mated regression slopes using the minimum y value
paired with its corresponding x value within each size
class (asinversion N,)). Estimates of upper and lower
bound slope were generated using a range of size class
numbers between 10 and 50 and observed trends ex-
amined. To increase the overall diversity of predators
examined in this study, the data sets used to analyze
the influence of size class number on slope estimates
consisted of predator—prey body length information for
four species of piscivorous fish separate from the six
species used in the slope comparison analyses. The
predator group is diverse and includes a freshwater
piscivore (walleye Sizostedion vitreum), a predatory
reef species (coral trout Plectropomus leopardus), a
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marine, demersal piscivore (Atlantic cod Gadus mor-
hua) and an elasmobranch (spiny dogfish Squalus acan-
thias).

Quantile regression technique

A quantile regression technique (StataCorp. 1995)
based on least absolute values regression was applied
to the same six predator—prey data sets. In least ab-
solute values regression, the regression model is fit by
minimizing the sum of the absolute values of the re-
siduals (Harris 1950, Bloomfield and Steiger 1980,
Rousseeuw and Leroy 1987) rather than the sum of the
squares of the residuals as in ordinary LS regression
models. Regression models based on least absolute val -
ues criteria are resistant to extreme outlying values in
the y direction (Narula and Wellington 1982, Rous-
seeuw and Leroy 1987) to the extent that model fit is
unaffected by changes in y values so long as the signs
of the residuals are maintained (Bloomfield and Steiger
1983). Moreover, regression models that minimize the
sum of absolute deviations are particularly appropriate
for estimating nonparametric measures of location
(e.g., medians, quantiles) (Koenker and Bassett 1978).

The quantile-based regression technique used in this
study estimates quantiles of the dependent variable
ranging from O to 100, conditional on the values of the
independent variable (StataCorp. 1995). Quantile re-
gression estimates are obtained through minimization
of the following quantity:

Z ’yi - 2 B

h;

where h; is a multiplier equal to the chosen quantile
value (i.e., 0.50 for the median) if the residual between
the absolute value symbols is positive or one minus
the chosen quantile value if otherwise. A method of
Koenker and Bassett (1982) and Rogers (1993) is gen-
erally used to estimate the variance—covariance matrix
of the coefficients and generate estimates of regression
coefficient standard errors. However, this method tends
to underestimate standard errors for data sets with het-
eroscedastic error distributions (Rogers 1992). There-
fore, for this study, a bootstrap resampling procedure
provided by Gould (1992) was employed to estimate
standard errors of quantile regression coefficients.
When the bootstrap resampling procedure is used, only
estimates of standard error and significance levels are
affected, with estimates of quantile regression coeffi-
cients remaining unchanged. Twenty replications were
used for each application of the quantile regression
technique, as this has been shown to be sufficient for
cases of heteroscedastic error distributions (StataCorp.
1995).

Unlike the LS regression technique, no data parti-
tioning is necessary when applying the quantile re-
gression technique; quantile regression models are fit
to the original unmodified data. Therefore choices re-
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garding number of size classes, methods of data par-
titioning, and appropriate x and y values used to fit the
regression model are eliminated. However, the decision
as to which quantiles best represent the boundaries of
the data is an arbitrary one and must be made by the
investigator. For this reason, we examined upper and
lower bound slope estimates generated by the quantile
regression technique using three different pairs of
quantiles to represent the edges of the data; the 10th
and 90th quantiles, the 5th and 95th quantiles, and the
1st and 99th quantiles. Estimates of lower bound (1st,
5th, and 10th quantiles) and upper bound (90th, 95th,
and 99th quantiles) slope were then tested for homo-
geneity for each predator—prey assemblage. Estimates
of slopes generated by the quantile regression tech-
nique were then tested for homogeneity against esti-
mates of slopes generated by the LS regression tech-
nique.

REsULTS
Least squares regression technique

Results of application of the L S regression procedure
were highly variable across versions within each data
set (Table 2). Significant slope estimates for the bound-
aries of the data often were not detected for data sets
with significant mean relationships. Moreover, versions
that produced significant estimates of lower bound
slope did not always generate a significant estimate of
upper bound slope, although the mean relationships
within the data sets were significantly positive.

All four versions yielded nonsignificant slope esti-
mates for minimum prey length consumed by tigerfish,
whereas each version produced significant estimates of
upper bound slope that did not differ from one another
(Fz 113 = 0.050; P > 0.75) (Fig. 2a). No significant
regressions were generated by any version for either
minimum or maximum prey length consumed by winter
skate (Fig. 2b). The relationship between minimum
prey size and bluefish size was significant for all but
Version Neq.xy), Whereas slope estimates for maximum
prey size consumed were significant for all but version
Inc,, (Fig. 2c). Significant estimates of lower bound
slope for bluefish were indistinguishable from one an-
other (F, 205) = 0.039; P > 0.75), however, significant
differences were detected among estimates of upper
bound slope (F, ,s = 5.416; P < 0.005), with esti-
mates generated by versions Niyeq.xy) @nd INCiq.4) bEIiNg
different (post hoc slope comparisons). Two of the four
versions produced significant estimates of lower bound
slope for European hake that were statistically similar
(Fu, 611y = 0.003; P > 0.75), whereas only one version
produced a significant estimate of upper bound slope
(Fig. 2d). No significant estimates of upper bound slope
and two significant estimates of lower bound slope that
were not statistically different (F,s;, = 0.015; P >
0.75) were generated for red hake (Fig. 2e). Similarly,
for white hake, no significant estimates of upper bound
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TaBLE 2. Upper and lower bound slope estimates (+ s,) for the six piscivores described in the text. The four versions are
based on modifications made by the authors to the central philosophy of the least squares regression technique described

by Blackburn et al. (1992).

Version
Species Nixy) N(medxy) Inc.y, INCmiaxy) Data source
Tigerfish (n = 115)
Lower bound Lewis (1974)

NS NS
Upper bound 0.230 + 0.054** 0.232 + 0.050**

Winter skate (n = 701)

Lower bound NS NS

Upper bound NS NS
Bluefish (n = 297)

Lower bound 0.106 + 0.036* NS

Upper bound 0.596 + 0.044***  (0.843 = 0.119***

European hake (n = 613)

Lower bound NS NS

Upper bound NS 0.646 + 0.250*
Red hake (n = 59)

Lower bound NS NS

Upper bound NS NS
White hake (n = 101)

Lower bound NS NS

Upper bound NS NS

NS NS
0.253 = 0.059** 0.251 = 0.055**

NS NS
NS NS

NMFS (NEFSC)

0.097 + 0.026* 0.108 + 0.026**
NS 0.351 + 0.132*

Juanes and Con-
over (1995)

0.101 = 0.040* 0.098 + 0.039*
NS NS

Guichet (1995)

0.251 + 0.084* 0.236 = 0.087* NMFS (NEFSC)

NS NS
NS 0.111 = 0.045*  NMFS (NEFSC)
NS NS

Notes: *P < 0.05; **P < 0.01; ***P < 0.001; ns indicates P > 0.05. NMFS (NEFSC) = National Marine Fisheries

Service (Northeast Fisheries Science Center).

slope and only one significant estimate of lower bound
slope were produced (Fig. 2f).

LS regression estimates of upper and lower bound
slope did not significantly increase or decrease with
increasing number of size classes for four predator—
prey assemblages with the exception of a significant
increase in estimates of lower bound slope for Atlantic
cod (Fg 135 = 3.453; P < 0.025); however, obvious
trends were evident for each species (Fig. 3). Estimates
of upper bound slope showed a decreasing pattern,
whereas estimates of lower bound slope tended to in-
crease with increasing numbers of size classes, with
each set of slopes showing convergence toward the
mean regression slope. Further, probability values of
the regression coefficients decreased with increasing
number of size classes across species, especially for
estimates of lower bound slope (Table 3).

Quantile regression technique

Estimates of slope produced by the quantile regres-
sion technique using the two less extreme sets of quan-
tiles (10th and 90th quantiles; and 5th and 95th quan-
tiles) corresponded closely with only two of twelve
comparisons yielding statistically significant differ-
ences. Differences were detected, however, between es-
timates of slope for the 10th/90th and 5th/95th quan-
tiles and estimates of slope for the 1st/99th quantiles
(i.e., the most extreme quantiles) (Table 4).

For tigerfish, estimates of slope for each of the three
quantiles used to represent lower bounds were not sig-
nificant, whereas each of the three quantiles repre-
senting upper bounds produced significant estimates of
slope that were statistically indistinguishable (F, 113 =
0.587; P > 0.50) (Fig. 44d). Significant estimates of

slope were produced only for the two less extreme sets
of quantiles for winter skate (Fig. 4b). Slope estimates
were not statistically different between lower bound
quantiles (F, s09p = 1.111; P > 0.25) or upper bound
quantiles (F, ¢00y = 0.057; P > 0.75). Bluefish results
for estimates of lower bound slope were similar to re-
sults for LS versions, with each quantile yielding sig-
nificant estimates that did not differ from one another
(F2, 245 = 0.555; P > 0.50) (Fig. 4c). Estimates of upper
bound slope for bluefish generated by each quantile
were significant and were not statistically different
from each other (F, 5 = 0.189; P > 0.75) (Fig. 4c).
Results of quantile regression applications to the Eu-
ropean hake data set yielded a significant estimate of
lower bound slope only for the 10th quantile, whereas
estimates of upper bound slope were significant for
each quantile with no statistically detectable differ-
ences (F 611y = 1.922; P > 0.10) (Fig. 4d). Only one
significant slope estimate was generated for the red
hake data set (90th quantile) (Fig. 4e). For the white
hake data set, estimates of upper bound slope were
significant for each quantile with statistically detect-
able differences between them (Fq = 7.654; P <
0.001; post hoc slope comparisons indicate differences
between the slope estimate for the 99th quantile and
the other two estimates) (Fig. 4f). No significant es-
timates of lower bound slope were generated for white
hake.

Across technique slope comparisons

Statistical differences were not detected between es-
timates of upper bound slope for tigerfish across both
regression techniques (F 113 = 0.425; P > 0.75). Sim-
ilarly, estimates of lower bound slope for bluefish were
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FiG. 2. Plots of piscine prey length vs. predator length for (a) tigerfish, (b) winter skate, (c) bluefish, (d) European hake,
(e) red hake, and (f) white hake, illustrating estimates of upper and lower bound slope generated by the LS regression
technique. All significant slope estimates are shown for each predator—prey assemblage (e.g., panel b shows no lines because
no significant LS slope estimates were generated for the boundaries of the winter skate data set). Each version of the LS
regression technique is illustrated using different regression line configurations: solid line, N, dotted line, Ny, dashed
line, Inc,,, dashed/dotted line, INCyg.xy)-
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Fic. 3. Plots of upper and lower bound slope estimates (*s,) vs. the number of size classes for (a) walleye, (b) Atlantic
cod, (c) spiny dogdfish, and (d) coral trout. Significant heteroscedasticity of error distributions was detected within each data
set. Symbols represent significant slope estimates only. Dashed lines represent slope estimates from mean LS regressions.

Number of size classes

® upper bound slope
v lower bound slope

TaBLE 3. Probability values of regression coefficients generated by the LS regression tech-
nique using an increasing number of size classes for four piscivorous fish predators.

S,Nfé Walleye Atlantic cod Spiny dogfish Coral trout
classes lower  upper lower  upper lower upper lower upper

10 0.188 0 0.197 0 0.601 0.008 0.100 0.007

20 0.001 0 0.017 0 0.303 0 0.006 0

30 0 0 0.003 0 0.133 0 0.001 0

40 0 0 0 0 0.078 0 0.007 0

50 NA NA 0 0 0.062 0 0.002 0

Note: A zero value indicates P < 0.001. Numbers of size classes listed are approximate.
Variation from these numbers was necessary to ensure equal numbers of observations within
each size class. NA = insufficient data available to estimate slopes. Walleye data from Nielsen
(1980); Atlantic cod and spiny dogfish data from NMFS (NEFSC); coral trout data from
Kingsford (1992).
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TABLE 4. Slope estimates (* s,) generated by the quantile regression technique using three
different sets of quantiles to represent upper and lower bounds for the same six species listed

in Table 2.

Quantile

Species

10th/90th

5th/95th

1st/99th

Tigerfish (n = 115)
Lower bound
Upper bound

NS
0.231 = 0.070**

Winter skate (n = 701)

Lower bound
Upper bound
Bluefish (n = 297)
Lower bound
Upper bound

0.0

7 017***
0.10

8 = 0.

9 = 0.015***
0.088 = 0.018***
0.538 = 0.035***

European hake (n = 613)

Lower bound

Upper bound
Red hake (n = 59)

Lower bound

0.121 = 0.024***
0.350 = 0.026***

NS
0.600 = 0.256*

NS
0.292 *= 0.084**

0.101 = 0.020***
0.589 = 0.039***

NS
0.400 = 0.028***

NS
NS

NS
0.337 = 0.050***

NS
NS

0.120 = 0.026***
0.584 = 0.099***

NS
0.947 = 0.412*

NS
NS

Upper bound
White hake (n = 101)
Lower bound

NS
Upper bound 0.727 *= 0.103***

NS NS
0.844 *= 0.281** 2.476 = 0.534***

Notes: *P < 0.05; **P < 0.01; ***P < 0.001; ns indicates P > 0.05.

statistically similar across regression techniques
(Fi, 205 = 0.174; P > 0.75). Significant differences
were detected between estimates of upper bound slope
for bluefish across regression techniques (F 5 =
3.221; P < 0.01); however, post hoc tests indicated that
these were due to differences stated earlier between
versions Nineixy and INCyigxy Of the LS regression
technique. Estimates of lower and upper bound slope
for European hake were not significantly different
across regression techniques (lower bound F g1 =
0.127; P > 0.75) (upper bound F; &1 = 1.279; P >
0.25).

DiscussioN

Ontogenetic increases in prey size range have been
observed for several predator taxa (Sabelis 1992, Ar-
nold 1993, Bremigan and Stein 1994). The inclusion
of larger prey sizes combined with the retention of
small prey itemsin the diet lead to polygonal predator
size—prey size relationships with notable scaling dif-
ferences between lower and upper bounds. Polygonal
patterns of a similar nature are frequently observed
when examining the relationship between animal abun-
dance and body size (Damuth 1981, Lawton 1989, Cur-
rie 1993). Lawton (1989) implies that questions re-
garding the overall distribution shape may potentially
provide more information than average relationships,
whereas Maurer and Brown (1988) suggest that defin-
ing the constraints of upper and lower bounds of po-
lygonal relationships should be afocus of future macro-
ecological research. However, because an uncompli-
cated statistical technique providing unbiased param-
eter estimates and a measure of error has not been
widely accepted or implemented, hypotheses con-

cerned with the potential relationships found in the
edges of scatter diagrams have often been ignored.
Thomson et al. (1996) propose several potential sta-
tistical methodologies to analyze asymmetric distri-
butions, but suggest that more research be directed at
the testing and development of new or previously es-
tablished techniques.

Least squares regression technique

In this study, within species comparisons made
across applications of different versions of the LS re-
gression technique yielded a high degree of variability
among slope estimates of upper and lower bounds (Ta-
ble 2). Although only one of five comparisons between
significant L S slope estimates produced statistically de-
tectable differences, results were generally inconsis-
tent. One or more LS regression versions often pro-
duced significant estimates of upper or lower bound
slope, whereas the remaining versions failed to detect
a significant relationship between minimum or maxi-
mum prey length and predator length. Moreover, LS
regression versions that produced significant estimates
of lower bound slope frequently failed to produce sig-
nificant estimates of upper bound slope for the same
data set, which isin direct contrast to our expectations.
As stated above, we expected lower bound slopes to
be modest or not significant with upper bound slopes
increasing at a much faster rate based on the positive
mean rel ationships within each data set and the patterns
typically observed when examining the feeding ecol-
ogy of piscivorous fishes.

We observed a declining trend in estimates of upper
bound slope as the number of size classes increased.
A slight increasein estimates of lower bound slope was
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Fic. 4. Plots of piscine prey length vs. predator length for (@) tigerfish, (b) winter skate, (c) bluefish, (d) European hake,
(e) red hake, and (f) white hake, illustrating estimates of upper and lower bound slope generated by the quantile regression
technique. All significant slope estimates are shown for each predator—prey assemblage. Each quantile estimated by the
quantile regression technique is illustrated using different regression line configurations: solid line, 10th and 90th quantiles;
dashed line, 5th and 95th quantiles; dotted line, 1st and 99th quantiles.

also evident across data sets. Our results indicate that
estimates of both upper and lower bound slope con-
verge toward the mean regression slope as the number
of size classes increases, which is in agreement with
the findings of Blackburn et al. (1992). In addition,

probability values of significance tests tended to de-
crease as the number of size classes increased. Based
onregression principles (Draper and Smith 1981), these
results would be expected. When applying the L S tech-
nique, more observations are used to estimate the
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slopes of upper and lower bounds as size class number
increases (Blackburn et al. 1992). The number of size
classes is ultimately limited to the number of obser-
vations in the data set and any regression generated
with this maximum number of size classesis simply a
regression through all observations, or the mean re-
gression. Hence, the estimate of aregression slope gen-
erated from data partitioned into size classes will ap-
proach the estimate of the mean regression slope as
size class number increases. Further, as the number of
observations used to estimate the regression increases,
the amount of variation explained by the regression
model should increase. Therefore, increasing sample
size would be expected to generate lower probability
values for significance tests, as seen here.

The results of this study indicate that estimates of
LS regression slopes may depend upon four factors
which are subject to arbitrary decision-making by the
investigator. Thefirst isthe method of data partitioning,
which because of the uneven distribution of observa-
tions in some data sets (i.e., bluefish, European hake,
and white hake) affected both regression significance
levels and values of slope estimates. Second is the de-
cision of which x-y pairsto use in fitting the regression
model. This decision may have only a minor influence
on results as slope estimates generated by N versions
of the LS regression technique were more similar to
each other than those generated by Inc versions and
vice versa. The third factor involves the number of size
classes used. Our results suggest that as the number of
size classes increases, estimates of upper and lower
bound slope will converge toward the mean regression
slope. Hence, decisions regarding size class number
may considerably affect regression coefficient values
and consequently, conclusions drawn from those val-
ues. The fourth factor involves the diagnosis of outliers
(Barnett and Lewis 1994) (especially in they direction)
and the decision to include or remove them from the
regression model. The extreme y values contained in
the winter skate data set and the three hake data sets
appeared to have considerable effects on significance
levels and values of slope estimates generated by each
version of the LS regression technique. Therefore, de-
cisions concerning outliers could prove critical in es-
timation of upper and lower bounds of scatter diagrams
when employing this technique. When estimating the
edges of a scatter diagram with no significant mean or
median relationship (i.e., the red hake data set), the LS
regression technique was consistent across different
versions. No significant estimates of upper bound slope
were produced, whereas two versions did generate sig-
nificant estimates of lower bound slope. Bivariate scat-
ter diagrams should not, however, be discarded if mean
or median relationships are not evident, as their edges
may still provide information on the limitations im-
posed by one variable on another (Thomson et al.
1996). In the case of the red hake data set, the edges
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do not appear to contain any additional information
and no clear patterns are present in the existing data.

Quantile regression technique

Regression techniques involving quantiles enjoy a
long statistical history within the larger body of re-
gression techniques using absolute deviations which
have been successfully employed in various areas of
research outside of ecology (Mudrov et al. 1968, Blatt-
berg and Sargent 1971, Taylor 1974). They are a gen-
eralization of median regression, a technique of fitting
best medians using minimization of sums of absolute
deviations first suggested by Boscovich in 1757 and
later developed by Laplace (Stuart and Ord 1991).
Bloomfield and Steiger (1980) and Koenker and
D’ Orey (1987) detail the problem of minimizing a sum
of absolute deviations as a linear programming prob-
lem, which makes application of quantile regression
techniques possible on modern personal computers.

The quantile regression technique applied here pro-
duced results that were markedly more consistent than
those produced by the LS technique (Table 4). There
were no appreciable differences between slope esti-
mates generated when using either the 10th and 90th
quantiles or the 5th and 95th quantiles, despite the fact
that they are different quantiles estimating lines
through different regions of the data, so that one would
expect slight differences in equations. There were,
however, significant differences between results pro-
duced when using these two sets of quantiles and re-
sults generated when using the 1st and 99th quantiles.
Slope estimates for 99th quantile upper bounds were
generally either not significant statistically or were
much larger than estimates produced for less extreme
quantiles (i.e., 90th and 95th) coupled with large error
terms. When using the 90th or 95th quantiles to rep-
resent upper bounds, the quantile regression technique
was insensitive to data set characteristics such as the
presence of outlying y values (e.g., winter skate, Eu-
ropean hake, and white hake data sets) or uneven dis-
tribution of observations (e.g., bluefish, European hake,
and white hake data sets). However, the presence of
outlying y values appeared to have a significant effect
on estimates of slope for 99th quantile upper bounds.
As with the LS regression technique, quantile regres-
sion did not detect significant slopes for the edges of
a scatter diagram with no underlying mean or median
relationship (i.e., the scatter diagram for red hake).

The only decision exposed to the subjectivity of the
investigator when applying the quantile regression
technique is the choice of quantiles used to represent
upper and lower bounds. Recent efforts directed at the
estimation of quantile regression coefficient standard
errors suggest that extreme quantiles may not be de-
pendable in many situations, especially when data are
limited. Rogers (1992) suggests that n > 5/q or n >
5/(1 — q) to ensure reliable estimates of variance for
quantile regression coefficients. Our results indicate
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that a more conservative approach may be appropriate,
such as n > 10/q or n > 10/(1 — q). This paper was
focused on the estimation of slopes of the boundaries
of scatter diagrams; however, the quantile regression
technique will estimate quantiles with values between
0 and 100. For the purposes of examining the internal
structure of a scatter plot, Thomson et al. (1996) present
a partitioned regression technique that consecutively
subdivides the point cloud using major-axis regression.
The potential drawback of the partitioned regression
technique is that a sufficient number of observations
is needed to allow for an adequate number of divisions.
With the exception of extreme quantiles, the quantile
regression technique is not constrained by datarequire-
ments of this sort and may be better suited for illus-
trating scatter diagram structure. In general, quantile
choice will be dependent upon available ecological in-
formation, the amount of data collected, and the nature
of the research question.

Treatment of more complex relationships

In this paper, the application of both regression tech-
nigues was done with the assumption that the edges of
the scatter diagrams used were inherently linear and
that predator length (i.e., the independent variable) was
measured without error. The quantile regression tech-
nique should be proficient in dealing with curvilinear
edges of scatter diagrams as nonlinear (e.g., logarith-
mic) transformations of data do not bias coefficient
estimates of quantile regression (Bassett 1992). How-
ever, coefficient estimates from LS regression tech-
nique applications to log-transformed data do not re-
main unbiased after back transformation (Beauchamp
and Olsen 1973). Although the quantile regression
methodology as we present it is free of consideration
of measurement errors in the independent variables,
this mimics the long rich history of classical least
squares regression. During the last decade, however,
there has been a burst of interest in errors-in-variables
regression for least squares, and recently these results
are being generalized to other fitting criteria. However,
the limited results available for regression using ab-
solute deviations prevent a thorough application of
them here.

Further ecological relationships

In addition to relationships between prey and pred-
ator sizes and animal abundance and body size, quantile
regression techniques should prove valuable in several
other areas of ecological research. Recently, the limi-
tations in standing stock of fishes imposed by various
habitat variables were assessed using quantile regres-
sion (Terrell et al. 1996). However, there are many
ecological relationships for which the boundaries are
often ignored. For example, much attention hasfocused
on relationships between abundance and distribution of
both plant and animal species (Brown 1984, Gotelli
and Simberloff 1987, Gaston 1988, Gaston and Lawton

FREDERICK S. SCHARF ET AL.

Ecology, Vol. 79, No. 2

1988). One potential question may be how the number
of inhabited locations limits the maximum abundance
within locations or vice versa. Currie (1991) illustrates
the relationship between energy and species richness
using scatter diagrams. It is evident that minimum and
maximum values of species richness may change at
different rates over the full range of energy values and
that it may be useful to identify each separately (i.e.,
how does annual potential evapotranspiration constrain
minimum and maximum species richness?). Another
example is the relationship between the number of
predator and prey species able to coexist in a given
ecological system (Jeffries and Lawton 1985). In ad-
dition to examining average ratios of predatorsto prey,
one might ask how the number of prey species limits
the maximum number of predator species in a given
area. Other areas of ecology that have utilized scatter
diagrams and hence may benefit from a further ex-
amination of the boundaries of the association include
relationships between productivity and soil character-
istics in forest ecosystems (O'Neill and DeAngelis
1981), the relationship between animal production and
respiration (Humphreys 1979), the dependence of net
primary production in terrestrial vegetation upon the
length of the growing season (Lieth 1975), and how
nest size may physically constrain reproductive success
of egg guarding male fishes (Torricelli et al. 1993).

Conclusions

The LS and quantile regression techniques examined
in this paper are each capable of estimating the bound-
aries of scatter diagrams. However, LS approaches as
presented here are burdened with several arbitrary de-
cisions regarding data partitioning and numbers of size
classes prior to application of regression techniques.
These decisions can significantly affect regression es-
timates of scatter diagram edges. Moreover, LS ap-
proaches define the boundaries using the literal ex-
tremes in the data, which often consist of only alimited
number of observations. The relative sparseness of data
near scatter diagram edges coupled with the potential
presence of outlying values may often cause LS re-
gression estimates to differ considerably from the true
scatter diagrams edges.

In contrast, quantile regression procedures based on
least absolute values models eliminate the need for an
excess of arbitrary decisions. The choice of a quantile
to best represent the edges of a scatter diagram is sub-
jective and will depend on each particular data set.
However, we have provided a rather conservative rule
relating the number of observations contained in adata
set to an appropriate quantile. The rule should make
quantile choice decisions less subjective and help avoid
estimation of extreme quantiles with insufficient data.

Our results indicate that quantile regression tech-
niques are robust with respect to extreme outlying y
values and sparseness contained within data sets rel-
ative to regression procedures based on LS models.
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Although limitations exist, they clearly represent an
improvement over currently available techniques used
to estimate quantitatively the edges of bivariate scatter
diagrams. Thomson et al. (1996) note that communi-
cation of the results of descriptive ecological studies
would be improved by commonly accepted statistical
methodologies to deal with asymmetric distributions.
The results obtained in this study will hopefully stim-
ulate further research to achieve this goal.
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