Cohort models

- VPA
- · Gulland's method
- Pope's method
- Multispecies VPA
- Sections 7.5 and 7.6 in text

Cohort models

- Trace the decline in abundance of groups of fish of similar age (cohorts) as they age and pass through the fishery
- Use the decline in cohort abundance to determine mortality rates
- 'Re-creates' past population size and agestructure
- Very popular since the early 1970's, used extensively today for assessments.

Cohort models

- Originally used to estimate historical population size
- Now used to estimate F, current abundance, and recruitment
- First developed by Derzhavin (1922) with his work on sturgeon

Virtual Population Analysis

- Fry (1949) applied Derzhavin's model and coined the term 'virtual population' for the historical population size, but assumed no M
- Ricker, Beverton & Holt, and Paloheimo incorporated M, and estimated F as a function of effort and q
- Murphy (1965) used a non-linear version of Baranov's catch equation to estimate F at early ages and worked forward

Virtual Population Analysis

- Gulland (1965) started with an F for oldest age group and worked backwards
- > This estimate of F known as 'Terminal F'
- Moving backwards, estimates of F tend to converge toward true value
- Moving forward (Murphy), estimates tend to diverge from true value

Cohort models

How they work:

- The size of a cohort when it first enters the fishery can be approximated by summing catches of that cohort across all of the years it is in fishery
- The sum of the catches is the population size that must have been present to generate the observed catches
- This 'historical population size' is known as the virtual population

Virtual Population Analysis
methodology
Start with familiar exponential decay equation:
$$N_{t+1} = N_t e^{-(F+M)}$$
 (7.7)

Virtual Population Analysis methodology Start with familiar exponential decay equation:

$$N_{t+1} = N_t e^{-(F+M)}$$
(7.7)

and Baranov's catch equation:

$$C_{t} = \frac{F_{t}}{F_{t} + M} N_{t} (1 - e^{-(F_{t} + M)})$$
(7.8)

Virtual Population Analysis methodology

 $\underline{First \ step}$: calculate the 'terminal' abundance by re-arranging catch equation 7.8 to give N_t

$$N_t = \frac{C_t}{(F_t / Z_t)(1 - e^{-Z_t})}$$
(7.9)

*** This is when we need an estimate of terminal F

Virtual Population Analysis:
methodology
$$2^{nd}$$
 step:
substitute a re-arranged decay equation
into our catch equation to obtain F_{t-1} $N_{t+1} = N_t e^{-(F+M)}$
rearranged into:
 $N_t = N_{t+1} e^{(F+M)}$ (7.7)

Virtual Population Analysis:
methodology
2nd step: substitute a re-arranged decay equation
7.12 into catch equation 7.8 to obtain
$$F_t$$

 $N_t = N_{t+1}e^{(F+M)}$ (7.12)
Substitute this for N_t below:
 $C_t = \frac{F_t}{F_t + M}N_t(1 - e^{-(F_t + M)})$ (7.8)

Virtual Population Analysis: methodology

 2^{nd} step: substitute a re-arranged decay equation 7.12 into catch equation 7.8 to obtain F_{t-1}

We end up with:

$$C_{t} = \frac{F_{t}}{F_{t} + M} N_{t+1} (e^{(F_{t} + M)} - 1)$$
(7.11)

Virtual Population Analysis:
methodology
$$\underline{3^{rd} Step}$$
: calculate Nt by inserting Ft from step
2 into re-arranged decay equation 7.12 $N_t = N_{t+1} e^{(F_t + M)}$ (7.12)• Repeat steps 2 and 3 to work backwards
through time

Virtual Population Analysis: example For Age 3: C₃ = 80, F_{terminal} = 0.6, M = 0.2 <u>Step 1</u>: calculate N₃ $N_3 = \frac{C_3}{(F_3/Z_3)(1 - e^{-Z_3})}$ (7.9) $N_3 = \frac{80}{(0.6/0.8)(1 - e^{-0.8})} = 194$

Virtual Population Analysis:
example
For Age 2:
$$C_2 = 90$$
, $N_3 = 194$
Step 2: calculate F_2
 $C_2 = \frac{F_2}{F_2 + M} N_3(e^{(F_2 + M)} - 1)$ (7.11)
 $90 = \frac{F_2}{F_2 + 0.2} 194(e^{(F_2 + 0.2)} - 1)$
 $F_2 = 0.349$

Virtual Population Analysis: example For Age 2: N₃ = 194, F₂=0.349 Step 3: calculate N₂ $N_2 = N_3 e^{(F_2+M)}$ (7.12) $N_2 = 194 e^{(0.349+0.2)} = 335$ * Repeat to obtain F and N for age 1

Virtual Population Analysis: Pope's approximation for VPA

- Non-linear cohort analysis is cumbersome
- Pope (1972) proposed a step function that approximates the non-linear form
- Assumes that all fish caught exactly halfway through time period (1 year)
- Using this method, first calculate N, then F

Number of fish alive just before fishing = number alive at start of year - reduction due to half M

$$N_{t+0.5} = N_t e^{-M/2}$$
 7.13

$$N_{t+0.5} = N_t e^{-M/2}$$
 7.13

Then all fishing occurs instantaneously

$$N_{t+0.5} = N_t e^{-M/2} - C_t \quad {}^{7.14}$$

Virtual Population Analysis: Pope's approximation for VPA

Remaining fish suffer half M leaving number of fish alive at the end of year equal to:

$$N_{t+1} = (N_t e^{-M/2} - C_t) e^{-M/2}$$
 7.15

Virtual Population Analysis: Pope's method:example

- Pope's approximation gives nearly identical result to VPA
- Method gets around iterative calculation for F
- Works best when Z < 1.0
- Can also be length-based when species cannot be aged (see 7.5.2)

Cohort models

Data requirements:

- Catch-at-age data for a long time period (8-10 years) for most fish
- Also need an estimate of natural mortality rate (M)
- Need to estimate 'terminal F' or terminal N

Virtual Population Analysis: assumptions

- No fish alive at some age
 -Cohorts must have all passed thru fishery
- M is known, constant, and not very large -Oldest cohorts?

-Best when M < F and F/Z=0.5-1

- > Terminal F -source of bias and model sensitivity, 'tuning'
- > No error in catch/age data -Oldest cohorts? ; bycatch, discards
- > No net immigration or emmigration

Virtual Population Analysis: alternatives: Multispecies (Chap 8)

• Multispecies

- Surplus production (temporal, spatial)

Virtual Population Analysis: alternatives: Multispecies (Chap 8)

- Multispecies
 - Surplus production (temporal, spatial)
 - Multispecies YPR

Virtual Population Analysis: alternatives: Multispecies (Chap 8)

- Multispecies
 - Surplus production (temporal, spatial)
 - MS YPR – MSVPA

Virtual Population Analysis: alternatives: Multispecies (Chap 8)

- Multispecies
 - Surplus production (temporal, spatial)
 - MS YPR
 - MSVPA
- Ecosystem
 - Ecopath
 - Ecosim

Virtual Population Analysis: Pope's approximation for VPA Remaining fish suffer M leaving number of fish alive at the end of year equal to:

$$N_{t+1} = (N_t e^{-M/2} - C_t) e^{-M/2}$$
 7.15

Re-arrange to solve for N_t

$$N_{t} = (N_{t+1}e^{M/2} + C_{t})e^{M/2}$$

$$N_{t} = N_{t+1}e^{M} + C_{t}e^{M/2}$$
7.16

Virtual Population Analysis:

Pope's method:example (Box 7.4) <u>Step 1</u>: identical to VPA. Find N_3 from catch equation (7.9), after estimating M and terminal F

$$N_3 = 194$$

Virtual Population Analysis:
Pope's method:example (Box 7.4)
• Step 1: identical to VPA. Find N₃ from catch
equation (7.9) after estimating M and
terminal F

$$N_3 = 194$$

Step 2: substitute N₃ into 7.16 as N_{t+1}
 $N_1 = (N_1 e^{M/2} + C_2)e^{M/2}$

$$N_2 = (N_3 e^{-1} + C_2)e^{-1}$$
$$N_2 = (194e^{0.2/2} + 90)e^{0.2/2} = 336$$

Virtual Population Analysis:
Pope's method:example
Step 3: solve for F₂ from re-arranged
exponential decay equation (7.7):

$$N_{t+1} = N_t e^{-(F_t+M)}$$

 $F_t = \ln \left\lfloor \frac{N_t}{N_{t+1}} \right\rfloor - M$
 $F_2 = \ln \left\lfloor \frac{N_2}{N_3} \right\rfloor - M = \ln \left\lfloor \frac{336}{194} \right\rfloor - 0.2 = 0.349$

Alternative cohort models: Statistical Catch-at-age

- Based on underlying population growth model (compare model predictions to observed data)
- Catch-at-age data are analyzed one cohort at a time, i.e....
- parameter estimates for one cohort are independent of estimates for others
 - Age-specific and year-specific F (separable)
 - Complex computationally (non-linear regression)