Dynamic Pool models

- Yield-per-recruit

 Beverton-Holt
 Ricker
- SSB-per-recruit
- eggs-per-recruit
- Section 7.7 in text

Dynamic pool models

Primary difference from surplus production models:

- Dynamic pool models account for variable growth, mortality, and reproductive potential by age
- Currently used to examine reproduction and recruitment potential

Dynamic pool models

How they work:

- Consider explicitly how growth and mortality affect stock biomass and reproductive potential
- First, stock biomass is separated into agespecific components,
- The model then calculates effects of growth and mortality on each age-specific component,
- Last, all age-specific component effects are summed

- Examine trade-off between capturing many small fish early in their life vs. less larger fish later in life
- If F is set too high, many fish will be harvested before they have had a chance to grow to large body sizes
- This is termed 'growth overfishing'

Yield-per-recruit models

• If F is set too low, large fish will be captured but total yield will be low due to low numbers of fish harvested

Thus, age at harvest must be traded-off against harvest rate because growth and mortality vary with age differently

- Yield assumed to depend on growth, age at first capture and fishing mortality
- Effects of recruitment added later

Yield-per-recruit models

- Consider the biomass of a stock (N × average wgt) present at any time,
- The yield from that stock at a given time is the biomass (B) × the instantaneous fishing mortality rate (F)

So we have:

$$Y_t = F_t N_t W_t$$

$$Y_t = F_t N_t W_t$$

Over the course of a time period,

$$Y = \sum_{t_c}^{t_{\text{max}}} F_t N_t W_t$$

Where t_{c} and t_{max} are ages at first capture and maximum age respectively

Age	Wgt	N alive	Biomass (kg)	Catch (n)	Yield (kg
1	0.6	100	60	41	25
2	0.9	45	40	19	17
3	2.1	20	42	8	17
4	4.1	9	37	4	15
5	6.3	4	26	2	11
6	8.4	2	15	1	6
7	10.0	1	8	0.3	3
8	11.2	0.4	4	0.2	2
9	12.6	0.2	2	0.1	1
10	13.5	0.1	1	0.0	0
Sum			237		98
Sum/R			2.37		0.98

F	Y/R	B/R
0.0	0	21.46
0.1	1.12	12.94
0.2	1.36	8.27
0.3	1.32	5.60
0.4	1.2	4.00
0.5	1.08	3.01
0.6	0.98	2.37
0.7	0.89	1.93
0.8	0.83	1.63
0.9	0.77	1.42
1.0	0.73	1.26

Advantages:

- Both F and M are explicit in the model
- Increased biological realism
- Avoid having to address year-to-year variation in recruitment
- Can see effects of F and Age of Entry on age and size in the catch

Limitations/Assumptions:

- · Constant recruitment is assumed
- This assumes age-structure remains stable
- Ignore any temporal variation in F and M
- Stable environment
- No density-dependence in growth and mortality

Yield-per-recruit models

- Yield-per-Recruit is good for determining if 'growth overfishing' is occurring
- But, since the models assume constant recruitment, they can't detect 'recruitment overfishing'

This is when the fish population is fished so hard that an adequate number of recruits is not produced

Yield-per-recruit models

- In order to deal with the potential for 'recruitment overfishing':
- We need to incorporate stock-recruitment relationships
- Remember, our replacment line (SSB per R) is a function of F
 - High F = low SSB per R
 - Low F = high SSB per R

Reproductive Potential models

- Examine changes in other life parameters from effects of fishing mortality rate
- Yield may be fine, but stock could be overfished in terms of its ability to replenish itself
- These models examine effects of fishing on reproductive potential of remaining stock

Reproductive Potential models

Spawning Stock Biomass per Recruit (SSB/R)

- Examine stock biomass remaining after fishing and estimate fraction mature
- Sum contribution to SSB at each age
- Max SSB/R occurs at F = 0 (virgin population) and SSB/R evaluated in terms of fraction of Max
- SSB/R at each F results in replacement line with slope of R/SSB

Reproductive Potential models

Eggs per Recruit (EPR)

- Examine stock biomass remaining at each age, percent maturity, and fecundity
- Sum lifetime egg production at each age
- Max EPR occurs at F = 0 (virgin population) and EPR evaluated in terms of fraction of Max
- Often used to evaluate variable age-0 survival by altering the seed number of age-1 recruits
- Does increased age-0 survival offset higher F?