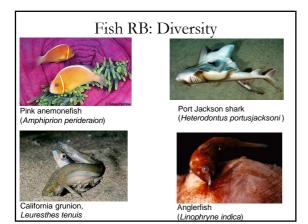


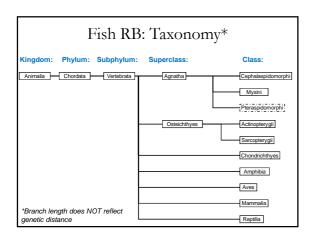
Outline

- I. Introduction
- II. Diversity of Reproductive Biology in Fishes
- III. Organizing Diversity: Breeding Systems
- IV. Fisheries Reproductive Biology

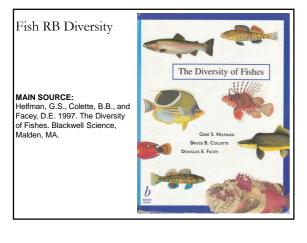
-Major ideas -The Nitty Gritty -Methodologies



Defining some terms


- fish reproductive biology
 - biology
 - physiology
 - ecology

Defining some terms


- Fish reproductive biology
- Fisheries reproductive biology



 _
_
 _
_
 _
 _

4

Superclass Agnatha

- Class Myxini (hagfishes) - RB poorly understood
 - Apparently gonochoristic
 - External fertilization
 - Few, large, unique, demersal eggs
 - Eggs incubate for about 2 months

Class Chondrichthyes

- · Subclass Elasmobranchii (sharks, skates, and rays)
 - RB fairly diverse within group - Typically late maturity (sharks, 6-18 years)
 - Gonochoristic
 - Sexual dimorphism
 - · Males with claspers, females without
 - Dentition and skin thickness due to spawning behavior
 - Internal fertilization
 - Shark gestation period averages 9-12 mo.

Class Chondrichthyes

- Subclass Elasmobranchii (sharks, skates, and rays)
 - 40% of elasmobranchs, including all skates, are oviparous (egg laying). Eggs fairly large with hard outer case attach to substrate.
 - 70% of sharks and all rays bear live young
 - · Ovoviviparity- embryos in uterus with yolk sacs
 - Oophagy embryos feed on eggs in uterus Embryophagy- embryos feed on other embryos!!!

 - Placental viviparity embryos in uterus with yolk sacs, which then attach to uterine wall to form a yolk sac placenta

Class Chondrichthyes

- Subclass Holocephali (chimaeras)
 - RB poorly understood
 - Gonochoristic
 - Separate anal and urogenital openings
 - Sexual dimorphism
 - Males with pair of claspers • Sometimes a 3rd clasper (tentaculum)
 - on the head!
 - Internal fertilization
 - Lay relatively large leathery eggs

Superclass Osteichthyes

- Class Sarcopterygii (lobe-finned fishes)
 - Subclass Coelacanthimorpha (Coelacanths; 1 species)
 - RB poorly understood · Gonochoristic
 - · Male may be able to use cloaca as copulatory organ

 - Internal fertilization
 - · Viviparous, lecithotrophic, live-bearers
 - Few (5-26) large (8.5-9cm) eggs Clutch weight up to 12% of mother's weight
 - Gestation may be >1 year

Superclass Osteichthyes Class Sarcopterygii (lobe-finned fishes) Subclass Dipnoi (lungfishes; 5 species) Gonochoristic Oviparous South American species - lays eggs in burrows guarded by males

- Sexual dimorphic- nest-guarding males help oxygenate eggs in burrows using vascularized fin filaments
- Australian species
 - pair spawn
 - Deposit 50-100 eggs per spawn
 - No nest guarding
 - No larval stage

Superclass Osteichthyes

Class Actinopterygii – Subclass Chondrostei

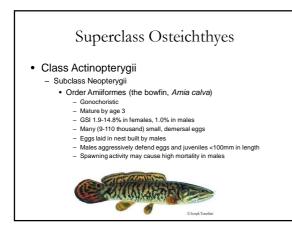
Order Acipenseriformes

- Acipenseridae (sturgeons)
 - » Gonochoristic
 - » Late maturity (5-30yrs)
 - » Spawn every 3 to 5 years» Oviparous
 - » GSI up to 25%
 - » Many small demersal eggs

Superclass Osteichthyes

Class Actinopterygii

Subclass ChondrosteiOrder Acipenseriformes


Polyodontidae (paddlefishes)

- » Gonochoristic» Late maturity (7-12yrs)
- » Females mature later
- » Oviparous
- » Large GSI
- » Many small demersal eggs on gravel bottoms

Superclass Osteichthyes • Class Actinopterygii • Subclass Chondrostei • Order Polypterformets (bichirs and reedfish). • Rapordy documented • Bonchoristie • Males conchoristie • Males dimorphism of anal fins • Male uses anal fins to improve freilization rate during spawning then scatters eggs by thrashing with tail • Demersal eggs adhere to substrate • Demersal eggs adhere to substrate

Superclass Osteichthyes				
Class Actinopterygii Subclass Neopterygii Infractass Teleostei 39 Orders Albuitornes Aluegodiformes Aluegodiformes Belontormes Belontormes Characiformes Characiformes Characiformes Coportionationes Coprindontilormes Eloptornes Eloptornes Gastionestidornes Gastorostelformes Gastorostelformes Gastorostelformes Lampridiformes				

Teleost RB

- Contains most major fisheries species
- Most studied group
- · Probably best studied separately RB hugely diverse!
- How do we organize this diversity?

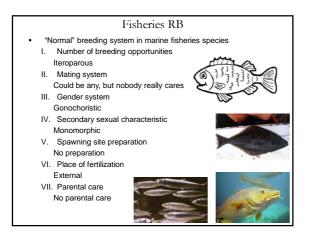
Fish breeding systems (Wootton, 1990)

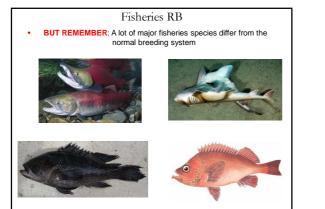
- I. Number of breeding opportunities
 - A. Semelparous spawn once and die
 - B. Iteroparous spawn multiple times
- II. Mating system
 - A. Promiscuous both sexes have multiple partners
 - B. Polygamous one or the other sex has multiple partners
- C. Monogamous members of the opposite sex maintain pairs III. Gender system
 - A. Gonochoristic separate sexes fixed at maturation
 - B. Hermaphroditic sex may change after maturation
 - 1. Simultaneous- both sexes in one individual
 - 2. Sequential start as one sex then change to other sex

 - C. Parthenogenetic egg development without fertilization

Fish breeding systems (Wootton, 1990)

- IV. Secondary sexual characteristics
 - A. Monomorphic both sexes look the same externally
- B. Dimorphic sexes look different externally (at least sometimes)
 V. Spawning site preparation
- A. No preparation e.g. broadcast spawning
- B. Site prepared e.g. nest building
- VI. Place of fertilization
 - A. External outside the body
 - B. Internal inside the body (i.e. reproductive tract)
 - C. Buccal inside the mouth (e.g. some cichlids)

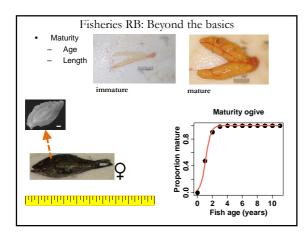

Fish breeding systems (Wootton, 1990)

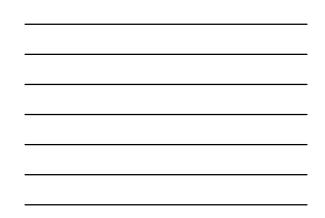

VII. Parental care

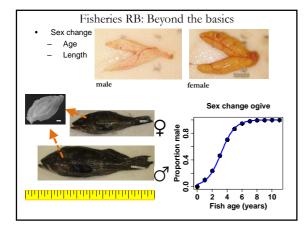
- A. No parental care
- B. Male parental care
- C. Female parental care
- D. Biparental care both parents give care
 E. Juvenile helpers older siblings give care

Fisheries RB

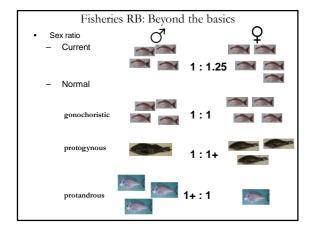
- How do we deal with all of this in fisheries science?
- Much of the above can be considered basic RB
 - Largely qualitative
 - Many aspects are critical
- When a new fishery begins, there may be a scramble for basic RB
- For major established fisheries species...
- basic RB is usually well understood
- breeding systems are often similar (more on that in a moment)
- more advanced details are usually not
- spatial and temporal variation complicates matters
- much of the current work is on advanced RB
- much of the needed information is very quantitative

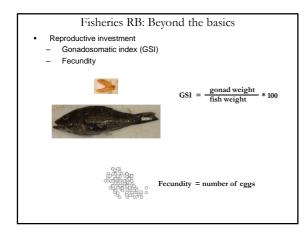




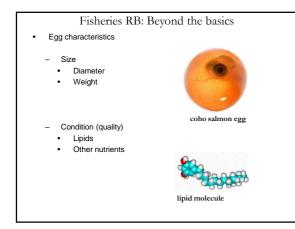

Fisheries RB: Beyond the basics

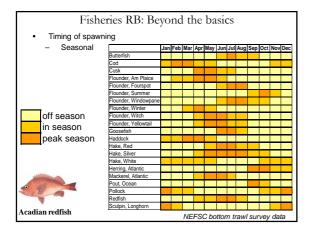
Major topic is fisheries reproductive biology

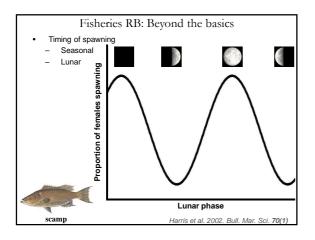

- Maturity
- Sex change
- . Sex ratio
- Reproductive investment .
- Egg characteristics
- Timing of spawning
- . Spawning movements
- Spawning locations
- . Variation in the above traits

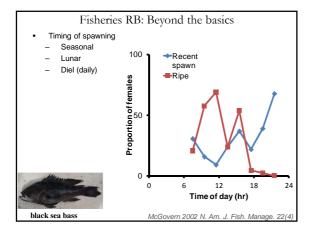


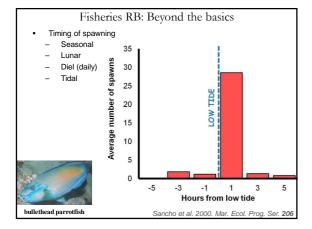


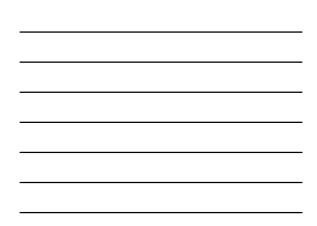


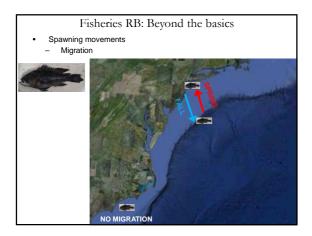


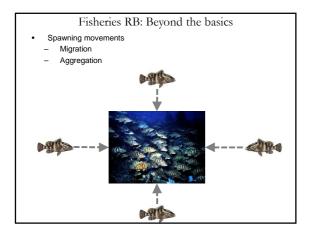


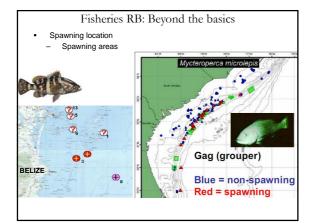


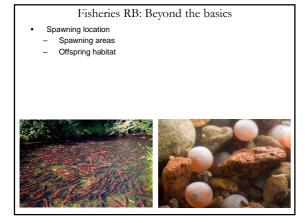


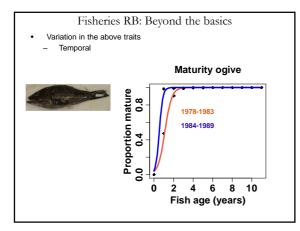


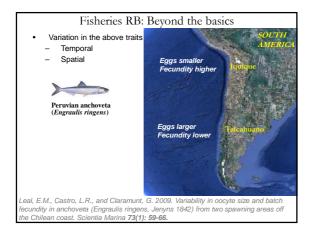


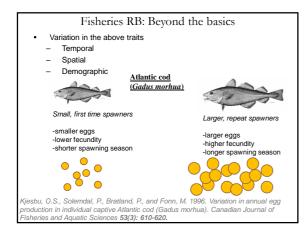


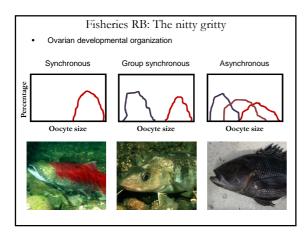


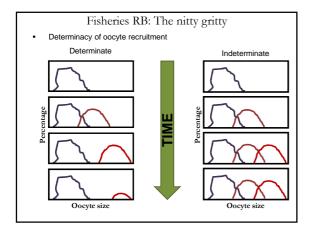




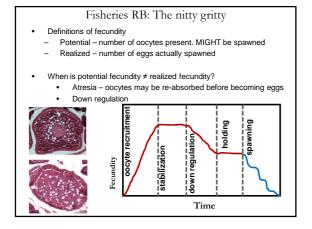







Fisheries RB: The nitty gritty

- HOT topics in fisheries reproductive biology
- Spawning pattern
- Ovarian developmental organization
- Determinacy of oocyte recruitment
- Definitions of fecundity


Fisheries RB: The nitty gritty • Spawning pattern Total spawning Batch spawning Ø Ø Ø Ø All eggs are spawned at once Eggs are spawned in batches over time

