Animal Complexity and Body Plans

- 34 different phyla of multicellular animals
- About 100 phyla generated during “Cambrian explosion”
- Animal body plans well-defined and established early in evolutionary history
- Many animals share a common architecture

Organization of Animal Complexity

- Unicellular organisms
 - Protozoa = single-celled organisms
 - Not classified as Animals, but “animal-like”
 - High levels of organization within the cell
 - Perform all basic functions of life
- Multicellular organisms
 - Metazoa = multi-celled organisms
 - True animals
 - Cells organized into larger units, individual cells cannot survive alone

Organization of Animal Complexity

Grades or Levels of Organization

Unicellular (Protozoans)
1. Protoplasmic
 - All functions occur within cell

Multicellular (Metazoans)
2. Cellular
 - Group of cells with different functions
3. Tissue
 - Aggregation of similar cells into layers
4. Organ
 - Organization of tissues into organs
5. System
 - Organs working together to perform function
Body size

Complex organization promotes evolution of large body size

Some advantages of large body size

- Able to tolerate environmental variation
- Predator avoidance
 - Morphology
 - Behavior
- Food acquisition
- Metabolically efficient
 - Absolute energy demands higher for large animals but,
 - RELATIVE energy demands (per unit body weight) are LOWER
Organization of Animal Complexity

Body size

- Disadvantages of large body size

Problem: surface area increases, but at a slower rate than body volume
- Surface area $> a (body \text{ length})^2$
- Volume $> a (body \text{ length})^3$

Why is it a problem?
- Physiological processes of nutrient, gas, and waste exchange often occur across surfaces

Solutions:
1. Folds in body surface
2. Development of internal transport systems

Body Plans

- Number of animal body plans is limited

Basic characteristics that have evolved

- Multicellular organization
- Symmetry
- Body cavity
- True coelom
- Segmentation
- Cephalization

1st Major Variation in Body Plan

Sponges (Ph. Porifera) contain no germ layers or organs

All other animals possess true tissues
Animal Symmetry

Correspondence in size or shape on two sides of a plane

1. Radial
 - Cnidarians, Ctenophores, some sponges, and sea urchins
 - Usually sessile, free-floating animals
 - Can interact with environment from all sides
2. Bilateral
 - Major evolutionary advance
 - Well suited for forward movement
Grouped by type of body cavity or coelom

- **Acoelomates** = No body cavity
- **Pseudocoelomates** = body cavity but not a true coelom
- **Eucoelomates** = true coelom
Why is the evolution of a body cavity important?

- Tube-within-a-tube allows greater flexibility
- Space for organs
- Exposes more cells to surface exchange

What are the differences?

1. Acoelomates
 - No body cavity – space filled with parenchyma

2. Pseudocoelomates
 - Have body cavity but not a true coelom since it’s not derived from mesoderm

3. Eucelomates
 - Possess true coelom that is derived from mesoderm

Two main types of cell cleavage:

- **Radial Holoblastic Cleavage**
 - Sea star: isolecithal egg

- **Spiral Holoblastic Cleavage**
 - Nematode worm: isolecithal egg

Generalized sequence of development:

- Blastula
- Gastrula
- Complete gut tube
- Metamorphic larva
- Common adult form
Two major body plans:

1) Deuterostome (“2nd mouth”) animals
 - Radial cleavage
 - Blastopore becomes anus
 - Echinoderms, Hemichordates, and Chordates
 - All are true eucoelomates

2) Protostome (“1st mouth”) animals
 - Spiral cleavage
 - Blastopore becomes mouth
 - Includes acelomates, pseudocoelomates, and eucoelomates
 - Two major subgroups: Ecdysozoa and Lophotrochozoa