Animal Complexity and Body Plans

- 34 different phyla of multicellular animals
- About 100 phyla generated during "Cambrian explosion"
- Animal body plans well-defined and established early in evolutionary history
- Many animals share a common architecture

Organization of Animal Complexity

- Unicellular organisms
 - Protozoa = single-celled organisms
 - Not classified as Animals, but "animal-like"
 - High levels of organization within the cell
 - Perform all basic functions of life
- Multicellular organisms
 - Metazoa = multi-celled organisms
 - True animals
 - Cells organized into larger units, individual cells cannot survive alone

BIO 202 - 2012 Scharf

BIO 202 - 2012 Scharf

Organization of Animal Complexity

Grades or Levels of Organization

- Unicellular (Protozoans)
- 1. Protoplasmic
 - All functions occur within cell
- Multicellular (Metazoans)
- 2. Cellular
 - Group of cells with different functions
- 3. Tissue
 - Aggregation of similar cells into layers
- 4. Organ
 - Organization of tissues into organs
- 5. System
 - Organs working together to perform function
 BIO 202 2012 Scharf

Organization of Animal Complexity

Body size

Disadvantages of large body size

Problem: surface area increases, but at a slower rate than body volume

- Surface area > as (body length)²
- Volume > as (body length)³

Why is it a problem?
 ▶ Physiological processes of nutrient, gas, and waste exchange often occur across surfaces

Solutions:

- 1. Folds in body surface
- 2. Development of internal transport systems

BIO 202 - 2012 Scharf

BIO 202 - 2012 Schar

Animal Symmetry

Correspondence in size or shape on two sides of a plane

- 1. Radial
 - > Cnidarians, Ctenophores, some sponges, and sea urchins
 - Usually sessile, free floating animals
 - > Can interact with environment from all sides
- 2. Bilateral
 - Major evolutionary advance
 - > Well suited for forward movement

BIO 202 - 2012 Scharl

Why is the evolution of a body cavity important?

- * Tube-within-a-tube allows greater flexibility
- Space for organs
- Exposes more cells to surface exchange

What are the differences?

1. Acoelomates

```
    No body cavity – space filled with parenchyma
```

- 2. Pseudocoelomates
 - Have body cavity but not a true coelom since it's not derived from mesoderm
- 3. Eucoelomates
 - Possess true coelom that is derived from mesoderm

BIO 202 - 2012 Scharf

Body plans

Two major body plans:

- 1) Deuterostome ("2nd mouth") animals > Radial cleavage > Blastopore becomes anus

 - ۶
 - Echinoderms, Hemichordates, and Chordates
 - ≻ All are true eucoelomates

2) Protostome ("1st mouth") animals

- Spiral cleavage
 Blastopore becomes mouth
- Includes acoelomates, pseudocoelomates, and eucoelomates ۶
- Two major subgroups: Ecdysozoa and Lophotrochozoa

BIO 202 - 2012 Scharf

