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Pioneering studies suggested that motor information in the cor-
tex is coded through the combined actions of large populations of
widely tuned neurons rather than by small numbers of highly
tuned neurons1. Several systems provide further evidence for this
‘distributed coding’ in brain function2,3. However, such investi-
gations used serial recordings of single neurons averaged over
repeated trials, and therefore could not demonstrate neuronal
population encoding of brain information on a single-trial basis.
Techniques for simultaneous (parallel) neuronal population
recording enables surprisingly rich encoding of information in
the brain using randomly sampled neuronal populations, espe-
cially in the somatosensory4–6 and limbic systems7.

We addressed these issues by simultaneously recording from
arrays of electrodes chronically implanted in the primary motor
(MI) cortex and ventrolateral (VL) thalamus in rats trained in a
forelimb movement task. We asked three questions. First, how
well can linear or nonlinear mathematical transformations of
neuronal population activity in the MI cortex and/or VL thala-
mus encode forelimb movement trajectories? Second, can these
‘motor codes’ be used to generate an online ‘neuronal popula-
tion function’ to control a robotic arm in real time with suffi-
cient accuracy to substitute for animal forelimb movement in the
trained motor task? Third, might training in this neurorobotic
mode (rewarding the neural activity itself) change or extinguish
the previously conditioned movement?

RESULTS
Rats were first trained to obtain a water reward by depressing a
spring-loaded lever to proportionally move a robot arm to a water
dropper (Fig. 1.). On release, water was transferred to the mouth
passively. Neuronal population recordings in this behavioral mode
(‘lever-movement/robot-arm’) were used to derive neuronal pop-
ulation functions that predicted forelimb movement. A multi-
channel electronic device then calculated, in real time, the inner

product of this neuronal population function (a 32-element
weight matrix) times integrated spiking activity of 32 simultane-
ously recorded neurons. The output was a single analog voltage
signal used to position the robot arm. Robot arm control could
be arbitrarily switched from the lever (actual forelimb movement)
to this brain-derived neuronal population signal.

Six rats were trained to control the robot arm by moving a
lever and were then surgically implanted with recording electrode
arrays (see Methods). After recovery, populations of 21–46 (mean,
33.2) single neurons were discriminated from these electrodes
during lever movement to control a robot arm; from rat 1, we
simultaneously recorded 46 neurons (32 in MI and 14 in VL; Fig.
2). The plot depicts averaged responses centered around onset
of forelimb extension of each neuron and of all MI or VL cells
over 44 trials. All but 5 neurons modulated firing over this task (
99% confidence level; Kolmogorov-Smirnov). In 6 MI-implant-
ed animals, 16–41 neurons (mean, 33.5) showed significant task
correlation.

Movement trials began from rest when the animal reached
for the lever using antebrachial (forearm) flexion followed by
brachial (arm) flexion and finally carpal (paw) extension. Just
above the lever, the forepaw flexed rapidly downward with ante-
brachial extension, touching the lever within a mean of 41 ms.
Continued extension pressed the lever to position the robot arm
toward a water drop. The antebrachium was then flexed to release
the lever, allowing the arm to return to the rat.

Analysis of repeated trials (using EMG and videos) revealed
a consistent sequence of forelimb movements. Peri-event his-
tograms and rank-ordered raster plots were used to characterize
each neuron’s primary motor correlate in terms of forelimb
movement elements during these trials. Rank-ordered rasters
were particularly effective in resolving the part of the observed
movement sequence best correlated with neuronal activity. Four
general categories of task-related neurons were observed (Fig. 3).

Real-time control of a robot arm
using simultaneously recorded
neurons in the motor cortex 
John K. Chapin1, Karen A. Moxon1, Ronald S. Markowitz1 and Miguel A. L. Nicolelis2

1 Department of Neurobiology and Anatomy, MCP Hahnemann School of Medicine, Philadelphia, Pennsylvania 19129, USA
2 Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA

Correspondence should be addressed to J.K.C. (chapinj@mcphu.edu)

To determine whether simultaneously recorded motor cortex neurons can be used for real-time
device control, rats were trained to position a robot arm to obtain water by pressing a lever.
Mathematical transformations, including neural networks, converted multineuron signals into ‘neu-
ronal population functions’ that accurately predicted lever trajectory. Next, these functions were
electronically converted into real-time signals for robot arm control. After switching to this ‘neuroro-
botic’ mode, 4 of 6 animals (those with >25 task-related neurons) routinely used these brain-derived
signals to position the robot arm and obtain water. With continued training in neurorobotic mode,
the animals’ lever movement diminished or stopped. These results suggest a possible means for
movement restoration in paralysis patients.

© 1999 Nature America Inc. • http://neurosci.nature.com
©

 1
99

9 
Na

tu
re

 A
m

er
ic

a 
In

c.
 • 

ht
tp

://
ne

ur
os

ci
.n

at
ur

e.
co

m



nature neuroscience  •  volume 2  no 7  •  july 1999 665

‘Pre-flexion’ neurons (13% of task related in MI; 43%
in VL) discharged before brachial flexion to initiate lever
reach; ‘flexion’ neurons (16% in MI; 21% in VL) dis-
charged mainly after the onset of antebrachial flexion;
‘pre-extension’ neurons (28% in MI; 15% in VL) were
best correlated with the pre-onset and onset of carpal
flexion initiating antebrachial extension before forepaw
placement on the lever, and ‘extension’ neurons (43%
in MI; 21% in VL) were correlated somewhat with antebrachial
extension onset and strongly with placement of the forepaw on
the lever. This last category corresponded closely with previous-
ly described ‘forepaw placing’ neurons in rat sensorimotor cor-
tex8. Both pre-extension and extension neurons began to
discharge 30–50 ms before forepaw contact. Most of these dis-
charged more strongly before touch than during movements
without contact. Moreover, the timing of these pretouch neural
response peaks corresponded to timing of sensory gating in neu-
rons in SI cortex9–12. These neurons also exhibited ‘motor’ activ-
ity comparable to the premovement discharges described in the
MI cortices of many species13–15 (Fig. 3b). The peri-event his-
tograms centering around triceps EMG onset in trials in which
the forepaw was momentarily held motionless on the lever before
pressing demonstrate that the combined activity of the pre-exten-
sion and extension neurons preceded detectable lever movement
by as much as 150 ms, and triceps muscle EMG by 100 ms.

Average amplitude of ensemble activity peaked in the period
before paw contact with the lever (Fig. 2). These peaks repre-
sented maximal discharge of the majority of sampled neurons
(74% in Fig. 2; 71% across all 6 animals) and were therefore pre-
sent in neuronal population (NP) ensemble averages. By selecting
neurons by peak pre-lever-movement amplitude, it was possible
to create neuronal population functions composed exclusively of
neurons (16–32) expressing this tuning function (Figs. 5 and 6).

Neuronal population coding in spatiotemporal domain
Because of the heterogeneity of firing characteristics in these neu-
ronal ensembles, distinct cross-neuron discharge patterns were
associated with each phase of forelimb movement. Indeed, mul-
tivariate analysis of variance (MANOVA) yielded significant dif-
ferences between multineuron discharge patterns measured across
the four movements in Fig. 2 (F141,2828 = 12.3, p < 10–9 for this
case, and p < 10–6 for the other animals). Thus conventional sta-
tistical approaches such as discriminant function analysis

(DFA)6–7,21 could be used to mathematically transform popula-
tion data into ‘neuronal population functions’ that predicted
each movement on a per-trial basis (82% overall accuracy).
Though DFA-defined linear neuronal-population functions gen-
erally predicted movement direction (flexion versus extension),
they were less able to predict exact timing or displacement. This
resulted from the neurons’ tendency to phasically discharge
before onset of movements best associated with their activity,
suggesting that temporal in addition to spatial mathematical
transformations in the domains may better predict movement
from neural activity preceding the movement.

A two- stage process was developed. First, principal compo-
nents analysis (PCA) was used to decompose the multineuronal
covariance in the NP into a small number of uncorrelated com-
ponents5,16,17. As all neurons showed activity before lever move-
ment, the first principal component depicted peaks of NP activity
preceding lever movement more accurately than the NP ensem-
ble average in all animals. Simple thresholding (T) of this NP
function predicted all lever movements in this experiment, and
87% of lever movements in all animals (Fig. 4b).

Next, artificial neural networks (ANNs) using dynamic back-
propagation learning to store temporal information in recur-
rent connections accurately predicted the lever movement (Fig.
4d, r = 0.86) by temporally transforming such NP information.
Limiting input to this ANN to the first principal component was
sufficient; the second and third components did not improve
prediction as measured by the mean-squared error loss func-
tion. Analysis of 44 transformations suggested that the ANN
used distinct temporal features of the NP signal to predict lever-
movement timing and magnitude. Lever movement was pre-
dicted by a steeply sloping pre-lever-movement peak (3 in Fig.
4b). The remarkably selective ANN also did not respond to activ-
ity patterns lacking the distinctive shape of this peak (for exam-
ple, at 1 and 2 in Fig. 4b). Similarly, termination of lever
movement was correctly predicted within a mean 64 ms by a
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Fig. 1. Experimental protocol. (a) ‘Lever-movement/robot-
arm’ mode: rats were trained to press a lever (b) for a water
reward; displacement was electronically translated to pro-
portionally move a robot arm (c) from rest position through
a slot in barrier (d) to a water dropper (e). The robot
arm/water drop moved passively to the rest position (to the
rat). (f) ‘Neuronal-population-function/robot-arm’ mode:
Rats were chronically implanted with multi-electrode
recording arrays in the MI cortex and VL thalamus, yielding
simultaneous recordings of up to 46 discriminated single
neurons. (g) Superimposed waveforms of 24 such neurons.
(h) Sample spike trains of two neurons (N1, N2) over 2.0 s.
(i) Neuronal-population (NP) function extracting the first
principal component of a 32-neuron population. (j) Switch to
determine input source (lever movement or NP function) for
controlling robot-arm position. In experiments, rats typically
began moving the lever. The input was then switched to the
NP function, allowing the animal to obtain water through
direct neural control of the robot arm.

a

b

c

d e
f

g

h

i

j

© 1999 Nature America Inc. • http://neurosci.nature.com
©

 1
99

9 
Na

tu
re

 A
m

er
ic

a 
In

c.
 • 

ht
tp

://
ne

ur
os

ci
.n

at
ur

e.
co

m



666 nature neuroscience  •  volume 2  no 7  •  july 1999

articles

distinctively sharp drop in NP activity (4 in Fig. 4b). Similar NP
properties were found in the other five animals in which MI/VL
forelimb neurons were recorded.

Further analysis of such ANNs suggested that they ‘learned’
to make such predictions by encoding distinct temporal response
functions into their recurrent circuitry. For example, one trained
ANN responded to a single test impulse that peaked with
300-ms latency and subsequently decayed over 1s (inset
above Fig. 4d). This output timing was remarkably similar
to the temporal correlation between the pre-lever-movement
peak and the lever movement (Fig. 5b). Overall, these find-
ings suggest that movement-related information may be
more completely specified by spatiotemporal functions than
by purely spatial functions.

Pre-lever-movement peak encodes lever movement
The strength and specificity of this tight relationship between
pre-lever-movement NP activity peaks and lever movements
was further demonstrated in rank-ordered raster plots and
correlation analyses (Fig. 5). In trials in which the pre-lever-
movement peak was small (Fig. 5a, top), the initial pressing
movement was insufficient, requiring additional lever pres-
sure to obtain water. Lever movement was sufficient to posi-
tion the robot arm under the water dropper within 500 ms
only in trials in which the pre-lever-movement peak was
large (Fig. 5a, bottom).

Time-shifted cross-correlation analysis of the same data
(Fig. 5b) showed that the NP predicted lever displacement
over the 200–500 ms following onset of lever movement
(correlation peak labeled 1; rmax = 0.76; p < 0.001). By com-
parison, NP activity following lever movement was nega-
tively or not correlated with lever movement (2). Moreover,
the trough at 3 and peak at 4 both indicate prediction of NP
activity by previous movement. This reversal from a prospec-
tive (‘motor’) to a retrospective (‘sensory’) mode was asso-
ciated with the transition from pressing to release of the lever,
when the animal allowed the spring-loaded lever to push the
forelimb upward.

Similar temporal correlations were also found in NPs
containing only MI cortical neurons (rmax = 0.79; rmax = 0.65
across the 6 animals) and significantly though more weakly,
in NP activity of VL thalamic neurons (mean rmax = 0.44, p <

0.001). Finally, these peaks before lever movement were corre-
lated with extensor (triceps) muscle EMG activity (mean rmax =
0.64 in 2 animals), beginning a mean 26 ms before onset of lever
movement and continuing for 100–400 ms. As the lever was
spring loaded, the NP activity in MI and VL preceding lever
movement was correlated both with the force13,18–20 and the tra-

Fig. 2. Color-coded peri-event population response plot
shows activity of 46 simultaneously recorded neurons in the
MI cortex and VL thalamus of rat 1, averaged around the
onsets of 44 pressing movements. Individual neurons (MI, 32;
VL, 14) are numbered on the y-axis. Time (x-axis) is mea-
sured from lever movement. Colors depict instantaneous
neuronal firing rates (25-ms bins), standardized for each neu-
rons’ peri-event histogram by subtracting the mean and
dividing by the standard deviation (s.d.). White, vertical lines
indicate mean and black horizontal arrows the ranges of
movement onset. Average times of onset of flexion (‘Flex’),
extension (‘Extens’), ‘Touch-press’, ‘Position’ and ‘Release’
are indicated by labels above the plot. The blue lines across
the MI and VL population-response plots represent ensem-
ble averages of the population activity in these regions over
44 trials. The ‘pre-LM peak’ immediately precedes onset of
lever movement.

Fig. 3. Categories of recorded neurons. (a) Rank-ordered peri-event rasters and
histograms centered around onset of antebrachial flexion demonstrate motor cor-
relates of four neuron types. ‘Pre-flexion’ neurons discharged before flexion
through antebrachial flexion, abruptly terminating on carpal flexion and ante-
brachial extension. ‘Flexion’ neurons discharged from antebrachial flexion through
antebrachial extension. ‘Pre-extension’ neurons discharged phasically up to 50 ms
before carpal flexion. ‘Extension’ neurons discharged phasically and then tonically
during antebrachial extension in reach-to-touch movements. Vertical scales show
instantaneous average firing rate. (b) Premovement neural activity during 10 trials
(in rat 3); rat started lever-press with paw on bar but did not reach. Trials are aver-
aged around the onset of triceps EMG activity. ‘Triceps’, muscle EMG; ‘NPF’, NP
activity of 28 MI cortical neurons over the same 10 trials. Mean NP activity led
EMG onset by 63 ms; bar movement (white arrow) lagged by 33–66 ms.
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jectory (timing and magnitude) of lever movement. Moreover,
NP activity preceding lever movement was slightly better corre-
lated with lever displacement than velocity of lever movement
(measured over 100 ms time bins). The same NP activity pre-
ceding lever movement and, after conversion to instantaneous
velocities, lever displacement in Fig. 5b were used to obtain a
time-shifted correlogram (Fig. 5c). By comparison with Fig. 5b
(where rmax = 0.76), the maximum correlation between the activ-
ity peak preceding and velocity after lever movement is highly
significant, but slightly smaller (1 in Fig. 5c; rmax = 0.51; p <
0.001), and is limited to the 200 ms following onset of lever move-
ment. Similar results were found in the other animals, yielding
a mean rmax = 0.47 for velocity versus 0.65 for displacement. These
findings may also suggest that movement velocity measured
200–500 ms after onset was more significantly correlated than
that measured in the 0–100 ms immediately following movement
onset with the activity peak before lever movement. This sug-
gests a complex relationship between the peak amplitude pre-
ceding lever movement and the final position targeted by training.

Neurorobotic control
Our ultimate aim was to determine whether the animal could
use its brain activity, electronically transformed in real-time from
on-line NP recordings, to control the robot arm with sufficient
accuracy to obtain water. Because the above analyses demon-
strated that the NP-function peak amplitude preceding lever
movement was proportional to lever movement used to position

the robot arm, we hypothesized that NP activity itself could be
used to achieve the same positioning. On the other hand, it was
not known whether this brief, premovement NP function could
substitute for the relatively long-duration limb movement with
which it was normally associated.

For this purpose, NP functions were generated (using PCA
as above) for neurons selected for strong activity preceding lever
movement. To manifest these NPs in real time, a summing ampli-
fier-integrator circuit allowed each of 32 discriminated spike-
train input channels to be individually weighted and integrated
into a single analog voltage output. Control of the robot arm
could be suddenly switched from the lever-movement/robot-arm
mode to an NP-function/robot-arm mode (Fig. 1), allowing sub-
stitution of the NP function for lever movement as the operant
behavior necessary to obtain the water reward. To maintain the
normal association between movement of the lever and of the
robot arm, animals worked in the lever-movement/robot-arm
mode for about five minutes preceding each experimental ses-
sion. This ensured that the animal continued to initiate condi-
tioned lever movements when the mode was suddenly switched
to the NP-function/robot-arm mode. These movements provid-
ed direct timing of the animal’s motor-behavioral ‘intention’ as
defined by the conditioning task.

Figure 6b shows typical activity of the NP function over 100
seconds following this rat’s first switch to NP-function/robot-
arm mode. In eight of nine lever movements during this period,
the real-time NP function output successfully moved the robot
arm to the water-drop position to obtain the water reward (indi-
cated by asterisks). Over the entire 280-second experiment, the
animal was 100% efficient (15 of 15 trials) in using NP-function
activity to retrieve the water reward when appropriately large-
amplitude lever movements were made. In contrast, the NP-func-
tion failed to reach threshold and the rat did not receive water
in 8 of 11 trials in which lever movements were incomplete (for
example, F in Fig. 6b). Two of six animals showed 100% effi-
ciency during complete lever movements; another 2 showed 76%
and 91% efficiency on the first try, all of which were sufficient
to maintain operant behavior. In the remaining two animals, NP-
function signals were only 67% and 54% efficient in generating
rewards, insufficient to maintain the behavior for more than 1–2
minutes.

The success of the NP function in maintaining conditioned
behavior depended on the strength of activity preceding lever
movement relative to its background variability21. This was most
importantly related to the number and selectivity of the neurons
whose activity was integrated to generate the NP function. In Fig.
6b, for example, the NP-function threshold for moving the robot
arm to the water dropper was 10.25 s.d. above the mean, but
among the 32 neurons used to encode it, mean peak activity pre-
ceding lever movement was on average 3.2 s.d. above the mean.
Thus, the NP function resolved lever movement much more clear-
ly than any single constituent neuron. Across the 4 successful ani-
mals, the activity peaks preceding lever movement were on average
9.2 s.d. above the mean (range, 7.64–10.25), but only 3.6 for the
individual neurons. In the 2 unsuccessful rats, the yield of task-
related neurons was relatively low (16 and 19), giving relatively
weaker activity peaks preceding lever movement (5.2 and 5.7 s.d.
above the mean). Thus, an activity peak of 6–8 s.d. above the
mean and an NP of 20–25 task-related neurons were required to
successfully control the robot arm and maintain conditioning.

These results showed that animals could substitute the NP
function for limb movement despite its tendency to lead lever
movement, triggering delivery of water before movement onset.

articles

Fig. 4. Comparison of modes of movement ‘coding’ in lever-move-
ment/robot-arm mode. Vertical dotted lines indicate starts and stops of
lever movement. (a) Spike train rasters from three neurons showing low,
middle and high correlation with forelimb movement. (b) Stripchart of
32-neuron NP function (NPF) binned at 20 ms and smoothed over 2-bin
windows. Activity peaks relating to overall magnitude of limb movement
are shown at 1, 2, 3 and 4. White, dotted lines mark mean activity during
the resting period (two-headed arrow). Black, dashed lines mark 3 s.d.
above mean activity. (c) Vertical position of the lever; threshold ‘drinking’
position is at bottom and ‘water drop’ position at top. (d)
Transformation of NPF (b) with a recurrent neural network (rANN) to
predict lever movement timing and magnitude as in (c). (e) ‘Impulse
response’ shows the response of this ANN to an input pulse (arrow)
equivalent to one spike; impulse-response amplitude is about 1% maxi-
mum in (d). For both (d) and (e), bin width is 100 ms. Horizontal axes
are the same for (a–d). Coefficients of correlation (r) with lever position
in (c) are shown at right for spike trains and NP functions.
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Therefore, this provided a test of whether the animal could adapt
its operant behavior and/or its NP activity to the changed
response criterion. These experiments were typically begun with
a short period of lever-movement/robot-arm mode testing to
confirm the normal correlation between the activity peak pre-
ceding lever movement and its initial trajectory (Fig. 6c, left).
After switching to NP-function/robot-arm mode (Fig. 6c, right),
animals typically continued to press the lever down to the origi-
nal threshold position for obtaining the water for several trials,
presumably reflecting the high correlation between lever move-
ment and the preceding activity peak (Fig. 5b). During subse-
quent trials, however, this normally high correlation declined
(from r = 0.81, p = 0.004 over the first 10 trials in Fig. 6c, right, to
insignificant correlation for all subsequent sets of 10 trials). Even
though the animal continued to make sporadic lever movements,
usually following failures (for instance, trials 30 and 45 follow-

ing 29 and 44), the animal was generally able to obtain
water without moving the lever to the threshold rou-
tinely attained under the lever-movement/robot-arm
mode. Indeed, 11 of these trials were rewarded without
any lever movement, and in one trial, without even a
forelimb-reaching movement, the animal simply resting
its paw on the lever.

Similar results were obtained in all four animals able
to work in the NP-function/robot-arm mode. By the sec-
ond day of this conditioning, they all maintained a
60–100% success rate, even when the normally high cor-
relation between lever movement and preceding activi-
ty peak (rmean = 0.65) fell to insignificant levels (rmean =
0.15). Despite these changes, analysis of the magnitude
and timing of the first five principal components of the
NP-function activity revealed no significant changes in
the overall distribution of neuronal discharges. Thus, it
is unlikely that the observed reduction in movement
magnitude could be explained by a selective reduction
of activity in a certain subclass of neurons in this popu-
lation, in either the MI or the VL.

DISCUSSION
This investigation demonstrated that information
extracted from simultaneously recorded populations of
single neurons in the brain can be used to proportion-
ally drive an external motion device in real time. This

was made possible by the recent availability of techniques for
multisite, multineuron recording, and provides further evidence
of the importance of activity across neuronal populations for
information processing in the brain. The current results also cor-
roborate previous suggestions22–24 that neuronal populations sur-
pass single neurons in the ability to smoothly encode brain
information pertaining to a sensory image or a movement. Here
this hypothesis was directly tested by requiring animals to use
such neuronal population activity to control the robot arm to
obtain water.

Another important finding was that representations of the
spatiotemporal domain of neural information (using recurrent
ANNs, for instance) predicted movement timing with greater
accuracy than representions of the spatial domain alone. In par-
ticular, a short but highly synchronized period of neural activity
(the pre-lever-movement peak) was a better predictor of lever

articles

Fig. 5. Premovement NP activity predicts lever movement. (a)
Rank-ordered peri-event rasters show NP-function activity
(NPF; as in Fig. 4), left, and lever movement (LM), right, over the
same 74 trials. Trials are rank ordered (from bottom) by peak
amplitudes measured within the first 100 ms before lever move-
ment. Traces at top show averaged NP function and lever move-
ment. Colors show NP function amplitude or lever displacement
as percentages between minima and maxima. (b) Time-shifted
correlation matrix between the NP function and lever move-
ment in Fig. 5a displayed as a spline-smoothed color-coded sur-
face. Correlation coefficients (r) indicated at right. White
diagonal line indicates correlations at zero time shift. In correla-
tions to the left of this diagonal, the NP leads the movement (as
for a ‘motor’ signal); right of the diagonal, the NP follows the
movement (as for a ‘sensory’ response). Vertical and horizontal
lines indicate lever-movement onset (at 0.0 s) and of lever release
(1.5 s). Traces at top and right show averaged NP function and
lever movement. (c) Correlogram similar to (b) correlating NP
activity with lever velocity rather than displacement.
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movement than was neural activity recorded during the lever
movement itself. This is consistent with our finding that distinct
temporal patterns of multi-neuronal ensemble discharge in the
monkey somatosensory cortex encode specific parameters of sen-
sory stimulation25.

We also demonstrated that the pre-lever-movement peak’s
normal ability to predict movement can be quickly modified by
training in the neurorobotic mode. Thus, even though the pre-
lever-movement peak normally shows ‘movement coding’ (as
defined by the usual correlational approach), this does not guar-
antee an obligatory relationship with movement. Though this
adaptability implies a level of abstraction normally ascribed to
the premotor cortices, there is evidence that the MI shows simi-
lar functional adaptability26. Moreover, our findings are directly
consistent with classic reports that MI cortical single units can
be dissociated from movement by conditioning27–31. These results
are also generally consistent with reports of remapping of motor
output functions of the MI cortex after peripheral injury32. The
current results also show that the NP function itself could rapid-
ly replace overt movement as the operant behavior for this con-
ditioning protocol. On the other hand, the context of voluntary
movement was not extinguished, as our animals generally con-
tinued to reach to the lever, but not to press it. It seems, there-
fore, that this decorrelation of motor cortex neural activity from
movement was facilitated by maintenance of the overall motor
context. It is thus conceivable that the animals could have formed
an internal representation of the intended movements and then
aborted their expression.

The feasibility of using simultaneously recorded NPs to con-
trol external movement devices demonstrated by this study rais-
es the possibility that paralyzed patients could use such recordings
to control external devices or even their own muscles through
functional electrical stimulation33–35. Considering the require-
ment for such patients to ‘relearn’ neural control of movement, it
is notable that the current studies demonstrate modifiability of

cortical NP codes. Finally, beyond this clinical application, the
general strategy developed here of using brain-derived signals to
control external devices may provide a unique new tool for inves-
tigating information processing within particular brain regions.

METHODS
Implantation. Methods for surgery, multineuron recording and analy-
sis have been published3–6,11,16,17. Briefly, six Long-Evans (hooded) rats
were chronically implanted with arrays or bundles of microwire elec-
trodes in the MI cortex and VL thalamus. Arrays consisted of two par-
allel rows of eight electrodes (2.0-mm long, rows separated by 0.5). Arrays
were implanted rostrocaudally across layer V of the primary motor cor-
tex (MI) forelimb area36; location was verified by microstimulation to
produce forelimb movements at threshold (80–200 A)13, characteriza-
tion of motor correlates (see Fig. 3) and histology. All MI cortical neu-
rons described were ‘forelimb-positive’ by these criteria. Bundles were
implanted in the VL thalamus within a 1.0-mm radius. Two rats were
also implanted with four bipolar EMG electrodes (twisted pairs of seven-
stranded stainless steel, Medwire, Mt. Vernon, New York) in forelimb
muscles, including the triceps and biceps long head and extensor and
flexor carpi/digitorum muscles.

Signal processing. Approximately one week after surgery, animals were
placed in the behavior chamber, and their head-mounted chronic
implants were connected via a wire harness to a 64-channel Many-Neu-
ron-Acquisition-Processor (MNAP; Plexon, Dallas, Texas). Amplified
and filtered waveforms from one to two single neurons (at least 5 noise)
per channel were continuously discriminated using on-screen manipu-
lation of multiple time–voltage windows. Times of single neuron (and
also multi-motor-unit) action potentials were stored on a Motorola VME
162 computer, synchronized with analog recordings of robot-arm posi-
tion and videotape recordings of the animals’ motor behavior. Discrim-
inated waveforms (40 kHz resolution; Fig. 1) could be uploaded into a
PC computer for off-line graphical display and analysis. Timing pulses
for each of 32 discriminated action potentials were also routed via sepa-
rate channels into a real-time 32-channel, spike-integrator board to gen-
erate a single analog signal to control robot arm position.

Both single neuron and neuronal population function signals were

articles

Fig. 6. Neurorobotic mode. (a) Spike
trains from three neurons for 100 seconds
after switching to NP-function/robot-arm
(NPF/RA) mode. (b) NP function for the
same period used to electronically drive a
robot arm in realtime. Asterisks indicate
pre-movement NP peaks in trials in which
the robot arm was successfully moved to
the water drop ‘T (NPF)’ using this real
time NP signal. (c) NPF amplitude in the
100 ms before lever movement shows loss
of correlation between the NPF and lever
movement (LM) during continued training
in NPF/RA mode. On day 2, the animal
was first reconditioned in the LM/RA for
27 trials (left) followed by 50 trials in
NPF/RA mode (right). Correlation coeffi-
cients (r) are indicated by thick horizontal
lines over included trials. Significant corre-
lation (p = 0.004) was found only in the
first ten NPF/RA trials. ‘T (LM)’ indicates
the threshold position and ‘T(NPF)’ indi-
cates activity threshold for reward in
LM/RA and NPF/RA modes, respectively.
Animals failing to attain the T(LM) thresh-
old in 500 ms of LM/RA often reached it
with additional pressing.
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analyzed using Stranger (Biographics, Winston-Salem, North Carolina)
and NEX (Plexon, Dallas, Texas) to generate stripcharts, peri-event his-
tograms (PEHs), rasters and correlograms. Significant events for such
analysis were obtained from the lever output, field-by-field analysis of
videotapes (17-ms resolution, system from Lafayette Instruments,
Lafayette, Indiana) and EMG recordings. PEHs were used to initially
characterize single-neuron movement correlates. To visualize the statis-
tical dispersion in such PEHs, bins were standardized by subtracting the
mean and dividing by the standard deviation (Fig. 2), allowing one con-
fidence interval to be calculated for all histogram bins. The Kolmogorov-
Smirnov one-sample test was also used as a non-parametric, robust and
relatively assumption-free statistical method for evaluating PEH results.
Significance among multiple neurons was assessed using a multivariate
analysis of variance (MANOVA), typically with a repeated measures, sin-
gle-factor design across non-overlapping experimental groups. Dis-
criminant function analysis (DFA)6–7 was performed by randomly
dividing the data from the neuronal population into a learning set and
a test set (Statistica, StatSoft, Tulsa, Oklahoma).

Two techniques were used to transform the timing pulses for the dis-
criminated action potentials of simultaneously recorded neurons into
neuronal population functions21. Principal components analysis (PCA)
was used to generate linear neuronal population functions based on
recurring patterns of covariance among the neuronal activity as previ-
ously described5,21,22. PCA provides weighting of each neuron’s contri-
bution to the population average according to its patterns of correlation
with other neurons, thereby concentrating the salient ‘signal’ embedded
within the neural activity into a small number of orthogonal principal
components and effectively separating them from the stochastic activity
of individual neurons. PCA involved eigenvalue rotation of the correla-
tion matrix between firing rates in equivalent time bins of recorded neu-
rons. This produced a set of principal components (eigenvectors) that
explained successively smaller amounts of the total variance. Compo-
nents could be reconstructed as a weighted population average of the
recorded neurons using the rotational coefficients as weights.

Spatio-temporal transformations using recurrent artificial neural net-
works (ANNs). The ANNs were built using the ‘Neurosolutions’ pack-
age (Neural Dimensions, Gainesville, Florida). Dynamic
back-propagation learning (using the learning data set) was used to adjust
the weightings within this network to optimally transform the NP input
(from the test data set) into an output function that closely matched the
lever-movement predictor function (Fig. 4d). Testing was carried out
only after the mean-squared error of the prediction (loss function)
asymptotically reached a minimum level.
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