Patterns of sponge recruitment and growth on a shipwreck corroborate chemical defense resource trade-off

Joseph R. Pawlik¹*, Timothy P. Henkel¹, Steven E. McMurray¹, Susanna López-Legentil¹, Tse-Lynn Loh¹, Sven Rohde²

¹Department of Biology and Marine Biology, Center for Marine Science, 5600 Marvin K Moss Lane, University of North Carolina Wilmington, North Carolina 28409, USA
²Leibniz-Institut für Meereswissenschaften, Universität Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany

ABSTRACT: Fundamental theories of resource allocation for terrestrial plants predict that species investing in chemical defenses should be slow growing or less fecund, while undefended species should mitigate consumer effects by diverting energy to growth and reproduction, thereby also enhancing their ability to colonize open space. As for some plant communities, sponges on Caribbean coral reefs include chemically defended species and undefended species that tolerate consumer damage. We surveyed the sponge community on the 155 m long wreck of the USS ‘Spiegel Grove’ (~1583 m² deck surface), which was intentionally sunk 4 yr previously in 2002 as an artificial reef off Key Largo, Florida, USA, to determine the relative abundance of undefended and defended species on previously uncolonized habitat compared to an adjacent reef at a similar depth and with similar topography. As predicted by theory, chemically undefended sponge species were significantly more abundant (96.0%) and larger on the shipwreck than on adjacent coral reef (15.2%; G-test, p < 0.0001). On a subsequent survey 18 mo later, the first recruits of 6 chemically defended sponge species were discovered, suggesting that the sponge community on the wreck is in transition toward that occurring on adjacent reefs. Although more definitive replicated experiments remain to be performed, these results corroborate the resource trade-off hypothesis as applied to the evolution of chemical defenses among sponge species on Caribbean reefs.

KEY WORDS: Predation · Optimal defense · Tolerance · Coral reef

INTRODUCTION

Central to theories of terrestrial plant defenses against consumers is the Optimal Defense Hypothesis, which proposes that defenses are costly, and come at the expense of other functions such as growth and reproduction (Rhoades 1979). Further, linked to trade-offs in resources is the idea that less defended plants may adapt to tolerate consumer damage (Stowe et al. 2000). Although increasingly complex (see review in Stamp 2003), plant defense theory remains the framework of choice for investigations of defense in other systems (e.g. Berenbaum 1995, Cronin & Hay 1996, Cronin 2001, Pavia et al. 2002).

The theoretical framework of terrestrial plant defenses is of particular relevance to the sponge community of Caribbean coral reefs. Sponges are benthic, sessile, liberate dispersive propagules, and elaborate a diverse array of secondary metabolites (Pawlik 1997). They dominate Caribbean coral reefs, considering the overall biomass of sponges, from shallow to deep water and including the communities within the reef framework (e.g. Schmahl 1991). In many respects, Caribbean coral reef sponge ecology is much simpler than that of many terrestrial plant communities, and therefore a better subject for investigations testing theory: community composition is remarkably consistent across the entire biogeographic region, space is the
primary limiting resource (there are few interactions
as complex as those among plants, e.g. for space, light,
nutrients, soil chemicals, etc.), only few large predators
(angel- and parrotfishes, turtles) drive consumption,
with little or no effect from insect equivalents (Pawlik
1997), and all of the component competitors, predators
and prey are extant (no extinct mega-consumers, e.g.
Levin et al. 2002).

Before the chemical ecology of the system was better
understood, it was believed that consumers had little
effect on Caribbean sponge communities, because
sponge-eating fishes were thought to spread their
predatory activities over a wide variety of sponge
species to the detriment of none in particular (Randall &
Hartman 1968, Wulff 1994). However, subsequent labo-

ratory and field experiments revealed 3 distinct cate-
gories of sponges within the community (Pawlik et al.
are unpalatable to consumers because they contain sec-

ondary metabolites (poor tolerance, well-developed de-

fense; see definitions in Stowe et al. 2000); (2) palatable
species that are grazed by consumers and yet as com-

mon as defended species on the reef (well-developed
tolerance, poor defense); and (3) preferred species that
are rapidly consumed when transplanted to the reef,
and are found only in refuge habitats (e.g. within the
reef framework; poor tolerance and defense). The sec-

ondary metabolites responsible for chemical defenses
of many sponge species have since been isolated and
identified using bioassay-guided fractionation and field
experiments with natural populations of reef consum-

ers (e.g. stevensine from Axinella corrugata, Wilson et al.
1999; formoside B from Erylus formusus, Kubanek et al.
2000). The activity of the oroidin class of defensive
metabolites (from the common genus Agelas) has been
fully characterized at the molecular level using syn-

thetic compounds (Lindel et al. 2000). Some defended
sponge species contain metabolites that play multiple
roles, such as allelochemical or antifouling defenses, in
addition to predator deterrence (Kubanek et al. 2002).
However, perhaps more interesting are the palatable
species, which appear to compensate for the lack of
chemical defenses through higher larval output
(Lindquist et al. 1997) and enhanced rates of healing
and growth (Walters & Pawlik 2005).

Application of plant defense theory predicts that
palatable sponge species would more rapidly colonize
free space on Caribbean reefs than defended species
because their abundant propagules are more likely to
encounter free space, because they grow more rapidly
after recruitment, or because of some combination of
these 2 factors. Unfortunately, it is difficult to test this
prediction with replicated manipulative experiments;
destructive clearing of coral reefs would be highly
impractical, and natural clearing by intense storm
events does not remove sponge fragments from reef
terstices from which survivors rapidly grow.

On 11 June 2002, the 155 m long, decommissioned
US Navy Landing Ship Dock ‘Spiegel Grove’ was
intentionally sunk as an artificial reef in 40 m of water
on sand substratum off Key Largo, Florida, USA. After
discovering that sponges had recruited to the decks of
the wreck, we surveyed them in November 2006. We
then surveyed Dixie Shoals reef, the nearest hard-

bottom substratum located 800 m NW (inshore) of the
wreck. Our prediction, based on the information
above, was that the sponge community on the wreck
would be dominated by palatable species, while the
adjacent reef would have a mixed population of palat-

able and unpalatable sponge species characteristic of
most Caribbean coral reefs (Pawlik et al. 1995).

MATERIALS AND METHODS

Sponge cover was largely restricted to the hori-

zontal decks of the USS ‘Spiegel Grove’ (25°04’N,
80°18.65’W; Fig. 1). Line intercept transect surveys
were conducted to estimate sponge cover on the fore,
mid and aft decks (27, 19 and 28 m depth, with surface
areas of approximately 258, 455, and 870 m², respec-

tively) in November 2006 and on the adjacent reef, Dixie
Shoals (800 m away, 25° 4.28’N, 80° 19.05’W, 15 m
depth), in May 2007. Either 6 or 7 transects, each 10 m in
length, were surveyed using standard methods (English
et al. 1997). Field work on the USS ‘Spiegel Grove’ was
performed by 6 divers using nitrox mixed gas or decom-

pression SCUBA diving. The shipwreck was revisited
18 mo after the initial survey (May 2008) to qualitatively
assess the sponge community and to check for the
recruitment of new sponge species.

To estimate maximum rates of sponge growth, the 5
largest individuals that could be found of the 8 most
common species on the wreck were collected and
their volume determined by seawater displacement.
Sponges were scraped carefully from the deck and
brought to the surface, where they were transferred to
tubs containing seawater and, if necessary, cut to
smaller sizes underwater with a scalpel. Sponge pieces
were then removed from seawater and drained for 3 s
before being placed in a full bucket of seawater with a
spigot at the top, from which the overflow volume was
carefully measured. The volume of sponge tissues was
then removed from seawater and drained for 3 s
before being placed in a full bucket of seawater with a
spigot at the top, from which the overflow volume was
carefully measured. The volume of sponge tissues was
comparably across all species using analysis of variance
(ANOVA) on log transformed data to meet the assump-

tions of ANOVA.

Classification of sponge species as defended or
palatable was based on published data from feeding
assays employing the bluehead wrasse Thalassoma
One sponge species found on the wreck, *Strongylacidon* sp., did not appear in these previous studies, and its feeding deterrent properties were determined following Pawlik et al. (1995). A G-test was performed to determine whether the proportion of palatable sponges on the wreck was significantly different to those on the adjacent Dixie Shoals reef.

RESULTS

On average, sponges covered 5.7, 12.0 and 6.8% of the fore, mid, and aft decks, respectively, of the USS ‘Spiegel Grove’ (Fig. 2). The 6 most abundant of the 8 species surveyed were in the palatable category (Pawlik et al. 1995, Walters & Pawlik 2005), (Fig. 2). *Strongylacidon* sp., which was least abundant, had not previously been assayed, and yielded an unpalatable extract (mean of 1.67 of 10 pellets eaten, SD = 2.08, n = 3). Mean sponge coverage on the adjacent Dixie Shoals reef was 2.5 % (±1.0; Fig. 3), with the 3 most abundant species in the defended category, and only 4 of 10 species in the palatable category. The proportion...
of palatable sponges on the wreck (96.0%) was significantly greater than that on the adjacent Dixie Shoals reef (15.2%; G-test, p < 0.0001).

The largest sponges on the wreck were the vasiform species *Callyspongia vaginalis* and *C. fallax* (Fig. 4), which were significantly larger than the 6 other species present (ANOVA, df = 39, F = 27.1, p < 0.0001, Tukey Kramer HSD multiple comparison) and extended well above the surface of the deck. Of the remaining 6 species, *Desmapsamma anchorata*, *Iotrochota birotulata* and *Niphates erecta* were rope-form, *Niphates digitalis* and *Mycale laxissima* were vasiform and *Strongylacidon* sp. formed small mounds. Sponge-eating fishes, particularly several pairs of gray angelfish *Pomacanthus arcuatus*, were observed feeding on sponges on the wreck.

In a subsequent qualitative assessment of the shipwreck 18 mo after the initial survey, the sponge species found in earlier observations dominated the community assemblage. However, at least 6 new sponge species had recruited to the wreck at very low densities (1 to 20 individuals). Individuals of most of these new species, not observed in previous surveys despite careful examination of the wreck surface, were all small (<10 cm). In order of abundance, they were: *Scopalina* (= *Ulosa*) *ruetzleri*, *Phorbas amaranthus*, *Rhaphidophlus venosus*, *Ircinia* sp. (*strobilina* or *felix*), *Verongula* sp. (*gigantea* or *ridida*), and *Aplysina cauliformis*. Pawlik et al. (1995) determined that all of these species were chemically defended.

Fig. 4. Tissue volume of sponges collected from the decks of the shipwreck USS ‘Spiegel Grove’ as in Fig. 2. n = 5 largest individuals of each species that could be found. Means ± SD. Rate of growth assumes growth period from June 2002 to November 2006 (see ‘Discussion’ for limitations of these estimates). Chemically defended species in bold.

DISCUSSION

Besides reef-building corals, the dominant benthic organisms of Caribbean coral reef ecosystems are algae, sponges and gorgonian corals, all of which have elaborate chemical defenses (Hay & Fenical 1996). The sponge community appears to have followed a different evolutionary trajectory from gorgonians, which are all potently chemically defended (O’Neal & Pawlik 2002). While most algae on Caribbean reefs are also chemically defended from a more diverse set of macro- and microconsumers (Bolser & Hay 1996), variations in defenses across species allow some to dominate under lower levels of herbivory (Morrison 1988), which may imply a resource trade-off between chemical defenses and growth. However, the sponge fauna is different from gorgonians and algae in that it includes an assortment of large, chemically defended and undefended species (Pawlik et al. 1993, Pawlik 1997, 1998). Palatable species such as *Callyspongia vaginalis* and *Niphates digitalis* frequently show evidence of grazing in the field, and regenerate tissue lost to grazing in a matter of days (Walters & Pawlik 2005), much like terrestrial plants that have adapted to tolerate consumer damage (Stowe et al. 2000). Moreover, many of these same palatable species brood and produce larvae most of the year (Lindquist et al. 1997, T. P. Henkel pers. obs.), while chemically defended species reproduce only infrequently (e.g. Tsurumi & Reiswig 1997). The rapid colonization of palatable sponge species on the free space provided by the wreck of the USS ‘Spiegel Grove’ is consistent with the predictions of the hypothesis that there is a resource trade-off between chemical defenses and reproduction or growth among Caribbean reef sponges. We are conducting on-going small-scale, replicated experiments that independently test patterns of growth and reproduction in chemically defended and undefended sponge species, the results of which also support the resource trade-off hypothesis (J. R. Pawlik unpubl. data); however, few experimental manipulations can match the scale of the study described herein, and seldom are results so clear.

The community of sponges on Dixie Shoals reef was chosen for comparison with that on the wreck because it is the closest (800 m) across the sandy bottom, making it the nearest (but not necessarily the only) source of propagules for recruitment to the wreck. Additionally, Dixie Shoals reef is at nearly the same depth as the mid deck of the wreck (15 vs. 19 m, respectively), and it has a flat, level topography that is similar to the surface of the wreck. Sponges on the wreck are likely the products of larval recruitment only, rather than the products of sponge fragments transported from the reef by storms, because the horizontal deck surfaces were a minimum of 15 m above the sandy bottom onto
which any sponge fragments would be swept by tides or currents. There was no evidence that the substratum difference between the wreck (epoxy-painted steel) and the flat reef (limestone) influenced sponge community compositions. The wreck surface had become fouled mostly by encrusting bivalves (e.g. Chama and Spondylus spp.) and tube-forming worms that develop a limestone substratum similar to adjacent reefs. Moreover, we have seen no differential colonization on anthropogenic structures and debris (including rusting and painted steel) by defended versus palatable sponges at our other study sites on shallow reefs in Florida and the Bahamas (J. R. Pawlik pers. obs.).

While percentage coverage of sponges on Dixie Shoals reef was less than half that on the wreck, the species surveyed on this natural reef were typical for the Caribbean, with 7 of 10 species also listed on a composite abundance ranking of the 10 most common sponges on shallow-water Caribbean reefs (compiled from surveys on reefs off Cuba, Venezuela, the US Virgin Islands and the Florida Keys, Pawlik et al. 1995; Table 1). We observed greater sponge coverage on reefs with more topographic complexity but further from the wreck (e.g. sponge cover was more than twice as high on North Dry Rocks reef), but the species composition matched that in Table 1 for Caribbean reefs in general. The fact that sponge coverage on the mid-deck of the wreck was almost 5-fold greater than on adjacent Dixie Shoals reef suggests that the trade-off strategy of palatable sponges enhances their ability to recruit to free space beyond that of other competitive rivals. We found no recumbent or upright gorgonian corals on the wreck, and only a few, small hard coral recruits on the deck surface during the initial survey, with many more coral recruits (and greater species diversity) 18 mo later.

The difference in the overall pattern of undefended versus defended sponges colonizing the wreck compared to the adjacent reef was strikingly clear, but some of the species involved deserve further comment. The species with the highest cover on the wreck, Desmapsamma anchorata (= Holopsamma helwigi), is not among the most common species on the reef (Table 1), although we found it in moderate to low abundance at a nearby study site (North Dry Rocks reef), showing evidence of predation. This species may be transitional between the preferred and palatable categories (see ‘Introduction’), and may gain some protection from sponge-eating fishes on the wreck. While angelfishes were abundant on the wreck, we did not observe parrotfishes, filefishes, or trunkfishes, and these different sponge predators may have different preferences (Dunlap & Pawlik 1996, 1998). The same is true for Callyspongia fallax, which is also found in low abundance on adjacent reefs. Another species that may not clearly fit into a palatability category may be Mycale laxissima, which is well defended chemically (Pawlik et al. 1995), yet often has developing larvae in its tissues (J. R. Pawlik pers. obs.).

Sponge coverage on the wreck as determined with the 2-dimensional line intercept method (Fig. 2) does not provide an estimate of sponge biomass, because many sponge species with branching or vaseform morphologies grow upward into the water column. The largest individual sponges on the wreck were the vaseform Callyspongia vaginavis and C. fallax (Fig. 4), with mean volumes of ~2.5 l. Assuming a linear rate of growth from the original date of the sinking of the USS ‘Spiegel Grove’ (11 June 2002), the very earliest point in time when larval recruitment could have occurred, these species grew ~550 ml yr⁻¹ (Fig. 4). To our knowledge, these are among the first reported rates of sponge growth that begin with larval recruits (cf. Wilkinson & Cheshire 1988), unlike growth estimates that rely on changes to the volume of full-sized sponges over time (e.g. McMurray et al. 2008). How-

Table 1. Most abundant sponges on Caribbean reefs in general, on Dixie Shoals reef, and on the USS ‘Spiegel Grove’ shipwreck (November 2006). Chemically defended species are in bold, undefended species are not in bold (see ‘Materials and methods’). The composite list for Caribbean reefs is based on an analysis in Pawlik et al. (1995) for surveys from Cuba, Venezuela, the US Virgin Islands and the Florida Keys.

<table>
<thead>
<tr>
<th>Caribbean reef composite</th>
<th>Dixie Shoals reef</th>
<th>USS ‘Spiegel Grove’ shipwreck</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Scopalina ruetzleri</td>
<td>Xestospongia muta</td>
<td>Desmapsamma anchorata</td>
</tr>
<tr>
<td>2 Ectyoplasia lerox</td>
<td>Ailochroia crassa</td>
<td>Iotrochota birotulata</td>
</tr>
<tr>
<td>3 Niphates digitalis</td>
<td>Amphimedon compressa</td>
<td>Callyspongia vaginavis</td>
</tr>
<tr>
<td>4 Callyspongia vaginavis</td>
<td>Niphates digitalis</td>
<td>Callyspongia fallax</td>
</tr>
<tr>
<td>5 Mycale laevis</td>
<td>Niphates erecta</td>
<td>Niphates erecta</td>
</tr>
<tr>
<td>6 Niphates erecta</td>
<td>Ectyoplasia lerox</td>
<td>Mycale laxissima</td>
</tr>
<tr>
<td>7 Smenospongia aurea</td>
<td>Callyspongia vaginavis</td>
<td>Mycale laxissima</td>
</tr>
<tr>
<td>8 Iotrochota birotulata</td>
<td>Aplysina cauliformis</td>
<td>Strongylacidon sp.</td>
</tr>
<tr>
<td>9 Aplysina cauliformis</td>
<td>Rhaphodophlus venuos</td>
<td></td>
</tr>
<tr>
<td>10 Amphimedon compressa</td>
<td>Mycale laevis</td>
<td></td>
</tr>
</tbody>
</table>
ever, the growth rates reported here are almost certainly underestimates, because growth is likely not linear from recruitment onward, and the recruitment of sponge larvae probably did not occur for many months after the wreck was sunk; in fact, sport divers reported very little fouling on the wreck surface more than 1 yr after sinking (August 2003). Recognizing that these growth rates are conservative, they are nevertheless the first estimates of growth from recruitment to full-size for these species, and the total growth of *Callyspongia* spp. over 4 yr reported here is nearly 5-fold greater than that reported by Wilkinson & Cheshire (1988) for *Verongula* and *Ircinia* spp. over 5 yr on a Jamaican reef (assuming 1 ml volume = 1 g wet mass).

By any measure, palatable sponge species dominated the wreck 4 yr after sinking, in spite of the large sponge-eating angelfishes that we observed grazing on them. These results corroborate the resource allocation trade-off hypothesis that 2 classes of sponges occur on Caribbean reefs: chemically undefended species that grow rapidly, tolerate grazing, and reproduce prolifically, and chemically defended species that grow more slowly and reproduce less frequently. While this study is based on a single wreck (although the 3 separate decks were at different depths), it is difficult to imagine a practical replicated experiment providing a similar spatial scale (~1583 m²) subject to larval recruitment without the confounding effect of invasion by asexual fragments (see Oksanen 2001 for a discussion of pseudoreplication, deductive experiments, importance of scale, and trade-offs in experimental design).

Recognizing the limitations of this non-replicated study, we nevertheless find no parsimonious explanation beyond the compelling one presented above for the distinct pattern of sponge recruitment on the wreck. With a null hypothesis that sponge species on Caribbean reefs have equal potential for recruitment and growth, the expected pattern should be approximately equal recruitment of chemically defended and unde- fended species. We encourage further tests of the trade-off hypothesis using a replicated experimental design or by monitoring similar artificial structures after deployment on or near Caribbean reefs, and we intend to continue monitoring the decks of the USS ‘Spiegel Grove’ with the prediction that the sponge community will change over time to approximate that found on adjacent reefs.

Acknowledgements. Funding was provided by the National Science Foundation, Biological Oceanography Program (OCE-0095724, 0550468) and by NOAA’s Undersea Research Center at the University of North Carolina at Wilmington (NA 96RU-0260). Sponge collections in Key Largo, Florida, were conducted under National Marine Sanctuary Permit FKNMS-2001-021 in compliance with the laws of the State of Florida and the USA. We thank the NURC technical diver support staff for training and assistance with field work.

LITERATURE CITED

References

Editorial responsibility: Pei-Yuan Qian, Kowloon, Hong Kong, SAR

Submitted: June 11, 2008; Accepted: February 7, 2008
Proofs received from author(s): September 9, 2008