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INTRODUCTION

Chemical mediation of predator-prey interactions is
now known to be important in benthic marine environ-
ments (for reviews see Paul 1992, Pawlik 1993). The
hypothesis that marine organisms without obvious es-
cape mechanisms or structural defenses are likely to
be chemically defended has been tested with greater
frequency recently, especially in ecosystems such as
tropical coral reefs in which predatory pressure is in-
tense. Of these organisms, sponges appear to be par-
ticularly well endowed with a diversity of antifeedant

secondary metabolites (Pawlik et al. 1988, Rogers &
Paul 1991, Albrizio et al. 1995, Pawlik et al. 1995,
Chanas et al. 1996, Wilson et al. 1999). Compounds
that have been shown to deter feeding by relevant po-
tential predators include brominated pyrroles (Chanas
et al. 1996, Wilson et al. 1999), brominated modified
amino acids (Thompson et al. 1985) and other aromatic
alkaloids (Herb et al. 1990), terpenoids (Thompson et
al. 1985, Rogers & Paul 1991), and macrolides of mixed
polyketide and peptide origin (Pawlik et al. 1988).

Erylus formosus (Demospongiae: Geodiidae) is widely
distributed throughout the Caribbean on shallow coral
reefs. We are not aware of any reports of predation on
E. formosus, despite its conspicuous presence. Pawlik
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et al. (1995) reported that organic extracts of E. formo-
sus strongly deterred feeding by the generalist blue-
head wrasse Thalassoma bifasciatum in aquarium
assays. In this study, we pursued the bioassay-guided
isolation and identification of chemical defenses of E.
formosus against predatory fishes using aquarium and
field assays. Here we report that triterpene glycosides
are responsible for the unpalatable nature of E. formo-
sus extracts.

MATERIALS AND METHODS

Sponge collection and identification. Specimens of
Erylus formosus were collected by SCUBA at 5 to 15 m
depth from several locations in the Bahamas and one
site in Florida, and each of these collections of 1 to 5
colonies was treated separately. The sponge was iden-
tified by comparisons of spicule and tissue prepara-
tions with published accounts (Wiedenmayer 1977, cf.
de Laubenfels 1953 and Pulitzer-Finali 1986). Sponge
volumes of all collections were quantified by seawater
displacement in a graduated cylinder. A collection of E.
formosus (670 ml) from Highborn Cay, Exuma Cays,
Bahamas (23° 53.30’ N, 75°83.30’ W) was made in
August 1995, and was used as a source of compounds
for structural analyses. E. formosus from Sweetings
Cay (26° 33.721’ N, 77° 52.973’ W) (250 ml) and Black
Rock (26° 33.852’ N, 77° 41.374’ W) (1500 ml), both near
Grand Bahama Island, collected in September 1998,
was used for bioassay-guided fractionation, as was a
May 1998 collection (300 ml) from White Banks Dry
Rocks, Florida Keys (25° 01.509’ N, 80° 23.604’ W). Four
collections from September 1998 were used for com-
parisons of chemical composition and feeding deter-
rence within this species: Sweetings Cay (300 ml),
Black Rock (300 ml), Samana Cay, Southeastern
Bahamas (23° 23.380’ N, 73° 42.986’ W) (250 ml), and
Chubb Cay, Berry Islands, Bahamas (25° 01.509’ N,
80° 23.604’ W) (250 ml).

Isolation and structural identification of antifeedant
compounds. General chemical methods and instru-
mentation are described in Kubanek et al. (2000). Fol-
lowing collection and volume measurements, speci-
mens were stored in a freezer at –20°C until ready for
analysis. At this time, sponges were freeze-dried, and
a small sample was removed for spicule analysis.
Freeze-dried sponge material was extracted repeat-
edly with methanol and methanol/dichloromethane
(1:1), and the extracts were concentrated in vacuo and
combined. The crude extracts were assayed for effects
on feeding by the generalist wrasse Thalassoma bifas-
ciatum, as described below, as were all subsequent
fractions, and deterrent fractions were subjected to
further fractionation.

Bioassay-guided fractionation of deterrent extracts
was accomplished as described in Kubanek et al.
(2000). Summarized briefly, solvent partitioning between
n-butanol and water was followed by reversed-phase
vacuum liquid chromatography of the n-butanol solu-
ble constituents, yielding a triterpene glycoside-rich
fraction for each collection. These were further puri-
fied by reversed-phase flash-column chromatography
and reversed-phase HPLC using methanol/water or
acetonitrile/water mixtures as eluents. Structure deter-
mination was accomplished by NMR and mass spectral
analyses, and by GC analysis of hydrolyzed and
derivatized saccharides (Kubanek et al. 2000).

Feeding deterrence assays. Aquarium assays using
a generalist predatory reef fish, the bluehead wrasse
Thalassoma bifasciatum, were conducted as previ-
ously described (Pawlik & Fenical 1992, Pawlik et al.
1995). Each extract or compound to be tested (10 ml
equiv) was dissolved in a minimum amount of appro-
priate solvent, and 0.3 g sodium alginate and 0.5 g
freeze-dried powdered squid mantle and water were
added to yield a final volume of 10 ml. This mixture
was homogenized and then loaded into a 10 ml
syringe, and the paste squeezed into a 0.25 mol l–1

solution of calcium chloride, creating a spaghetti-like
strand of squid food in which extracts or compounds
were incorporated at appropriate concentrations. The
food was rinsed and chopped into 4 mm-long pellets
with a razor blade. Control pellets were made without
the addition of sponge extracts or compounds but with
the solvent used in treatment assays, and occasionally
with the addition of food coloring to both treatment
and control pellets to mask coloration of sponge
extracts. Control and then treatment pellets were
offered in this order to each cell of assay fish. Each of
10 cells contained between 3 and 6 fish (at least one in
the blue phase, and most others in yellow phase) that
were fed a diet of control pellets each day. The ecolog-
ical relevance of using of T. bifasciatum in aquarium
assays has been discussed in Pawlik et al. (1987, 1995).
A food pellet was considered rejected if not eaten after
a minimum of 3 attempts by one or more fish to take it
into their mouth cavity, or if the pellet was approached
and ignored after one such attempt. The significance of
differences in the consumption of treated versus con-
trol pellets was evaluated with the Fisher exact test
(Zar 1984). For any single assay of 10 replicates, an
extract was considered significantly deterrent if 4 or
more of the pellets were rejected (p ≤ 0.043, 1-tailed
test); therefore, in judging the mean deterrence of
individual assays, an extract, fraction, or pure com-
pound was considered deterrent if the mean number of
pellets eaten was less than or equal to 6.

Purified fractions from Sweetings Cay, Highborn
Cay, and the Florida Keys were tested at multiple con-
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centrations in aquarium feeding assays. For each frac-
tion, the concentration designated as natural concen-
tration was the highest concentration of that fraction
that had been isolated from a collection (HPLC fraction
A: 0.39 mg ml–1; HPLC B: 0.41 mg ml–1; HPLC C:
0.036 mg ml–1; formoside: 7.9 mg ml–1; formoside B:
0.052 mg ml–1). Assays were performed in triplicate
and at 3 different concentrations for each fraction.
Effects of treatments on feeding relative to controls
(10 pellets each) were determined using 1-tailed Stu-
dent’s paired t-tests. The relationship between concen-
tration and deterrence was assessed by correlation and
linear regression analysis (Zar 1984). Triplicate aquar-
ium assays were also performed on combinations of
purified fractions each at natural concentration. Differ-
ences in mean feeding deterrence (proportion of total
pellets eaten) were tested with 1-way analysis of vari-
ance (ANOVA) on arcsine-transformed data to meet
the assumptions of ANOVA (Sokal & Rohlf 1981). The
Tukey-Kramer HSD test was applied a posteriori to
determine which treatments resulted in different mean
feeding deterrence at the 0.05 level of significance (Zar
1984). Analyses were conducted on JMP software.

Field assays were conducted according to the method
used in Hay (1984) (assay design), and Pawlik & Feni-
cal (1992) and Chanas & Pawlik (1995) (assay food
preparation). Extracts or compounds from Erylus for-
mosus were incorporated at natural volumetric con-
centrations into carageenan strips that contained squid
mantle as a protein source. Paired treatment and con-
trol strips were then placed on shallow (<15 m) reefs in
the Bahamas. Twenty replicate ropes, each with a
treatment and control strip attached, were offered to
the natural assemblage of fishes until half or more of
one food strip from each was eaten, or 2 h passed,
whichever came first. Amounts eaten were measured
using a ruler, and data were analyzed using the Wil-
coxon paired sample test (1-tailed, Zar 1984) after
excluding pairs for which either all or none of both
strips had been consumed.

RESULTS

The crude extracts of Erylus formosus significantly
deterred feeding in aquarium and field assays
(Table 1, Fig. 1). Solvent-partitioning of crude extracts
of E. formosus from several independent collections
and extractions concentrated the deterrent compo-
nents in n-butanol rather than water (Tables 1 to 3,
Fig. 2). Vacuum liquid chromatography using reversed-
phase silica gel was performed on the n-butanol-solu-
ble materials, yielding a terpene glycoside-rich frac-
tion for extracts from each location. Table 4 shows the
variable yield of total terpene glycosides from different

locations and collections of E. formosus. Each of these
mixtures was characterized by 1H NMR and was found
to consist of a complex suite of triterpene glycosides
with no other hydrogen-bearing compounds in evi-
dence (i.e. organic components of mixtures contained
>95% terpene glycosides). NMR spectral analysis of
these mixtures indicated that a known triterpene gly-
coside, formoside (Fig. 3; and Jaspars & Crews 1994),
was the major metabolite in fractions from Sweetings
Cay, Chubb Cay, and Black Rock. The terpene glyco-
side-rich fraction from Samana Cay also contained for-
moside, but in lesser quantity, and contained other
compounds in greater quantities. The terpene glyco-
side-rich mixture from Key Largo, Florida did not con-
tain formoside, but did contain a number of other triter-
pene glycosides. Each of these terpene glycoside-rich
fractions was assayed in an aquarium assay and was
found to significantly deter feeding by Thalassoma
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Fig. 1. Erylus formosus. Field assay of crude extract (High-
born Cay, Bahamas, 1995). Error bars in this and subsequent 

figures show 1 SE

Sample Pellets eaten (of 10)
1 × natural concentration

Crude extract 0
Water-partition of crude extract 9
n-butanol partition of crude extract 0
Water eluate of vacuum column 10
Methanol eluate of vacuum column 2
Column fraction A 10

B 6
C 7
D 4
E 3
F 6
G 10
B + C 2
C + D 1
D + E 0

Table 1. Feeding by Thalassoma bifasciatum in aquarium
assays using natural concentrations of extracts and fractions
of Erylus formosus from Sweetings Cay, Bahamas collected 

in 1998
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bifasciatum (Tables 1 to 4). The terpene glycoside-rich
mixture from E. formosus collected at Black Rock in the
Bahamas also deterred feeding by a natural assem-
blage of reef fishes in field assays (Fig. 4).

The terpene glycoside-rich fractions from 3 collec-
tions were fractionated using reversed-phase flash-
column chromatography. In most cases, this separation
yielded 7 fractions (column fractions A to G) with dis-
tinct constituents, although components of some frac-
tions overlapped. Analysis by NMR spectroscopy indi-
cated that triterpene glycosides were concentrated in
column fractions B to F (B to E for Key Largo collec-
tion). Fractions were assayed separately and in combi-
nation (Tables 1 to 3).

Fractions B to F collected from the reversed-phase
flash column that deterred feeding alone or in combi-
nation contained mixtures of closely related triterpene
glycosides, as determined by NMR spectroscopy. Fur-
ther purification of these triterpene glycoside mixtures
was achieved by reversed-phase HPLC. From column
fractions D, E, and F, formoside was purified to approx-
imately 99% from Bahamian extracts, as was a previ-
ously unknown but related metabolite, formoside B
(Fig. 3; Kubanek et al. 2000). These 2 compounds were
absent from the Florida collection of Erylus formosus.
Column fractions B and C were purified by repetitive
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Fig. 2. Erylus formosus. Field assay of solvent partitions
(Highborn Cay, Bahamas, 1995). TRT: treated; CTRL: control

Fig. 3. Erylus formosus. Antifeedant metabolites

Sample Pellets eaten (of 10)
1 × natural 2 × natural

conc. conc.

Water-partition of crude extract 9
n-butanol partition of crude extract 2
Water eluate of vacuum column 10
Methanol eluate of vacuum column 4
Column fraction A 9 7

B 8 1
C 8 2
D 10 2
E 10 3
F 10 5
G 10 1

All column fractions recombined 2

Table 2. Feeding by Thalassoma bifasciatum in aquarium as-
says using natural concentrations of extracts and fractions of
Erylus formosus from Black Rock, Bahamas collected in 1998

Sample Pellets eaten (of 10)
1 × natural concentration

Water-partition of crude extract 10
n-butanol partition of crude extract 1
Water eluate of vacuum column 10
Methanol eluate of vacuum column 4
Column fraction A 7

B + C + D 6
E 8
F 10

Table 3. Feeding by Thalassoma bifasciatum in aquarium
assays using natural concentrations of extracts and fractions
of Erylus formosus from Key Largo, Florida collected in 1998
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HPLC to yield fractions containing closely related com-
pounds, called HPLC fractions A, B, and C (only HPLC
A and B from E. formosus from the Bahamas). Diode-
array HPLC analysis and NMR spectral analysis indi-
cated that each of HPLC fractions A, B, and C con-
tained 2 major compounds and a number of more
minor constituents. Chemical degradation experiments
and further spectroscopic analysis revealed that the
terpene glycosides from these 3 fractions all contained
the same unusual triterpene core (Fig. 3; Kubanek et
al. 2000). Mass spectral data coupled with degradative
carbohydrate analysis showed that the 2 major com-
pounds in HPLC fractions A and B were hexasaccha-
rides, while the 2 in HPLC fraction C were trisaccha-
rides. Fig. 3 shows the saccharides present in each
fraction. Further efforts to separate the closely related
pairs of compounds in HPLC fractions A to C proved
fruitless.

Fig. 5 shows the results of assays using the pure com-
pounds formoside and formoside B, and HPLC frac-
tions A, B, and C, separately and at different concen-
trations. Formoside, HPLC A, and HPLC B all deterred
fish feeding at or close to their natural concentrations
(7.9 mg ml–1, 0.39 mg ml–1, and 0.41 mg
ml–1, respectively) relative to controls (p-
values shown in Fig. 5). These compounds
showed a negative correlation between
concentration and food consumed (–0.85 < r
< –0.72 for HPLC A, B, and formoside), with
a significant linear regression for each
when tracking food consumption as a func-
tion of metabolite concentration (HPLC A p
= 0.0004, HPLC B p = 0.008, formoside p =
0.004). Analysis of variance followed by the
Tukey-Kramer HSD test applied to the con-
centration-related data in Fig. 5 indicated
that HPLC A and B at all concentrations
tested (1 to 4 times natural concentration;
0.39 to 1.64 mg ml–1) were similarly deter-

rent to formoside at 0.5 and 1 times the natural con-
centration (4.0 to 7.9 mg ml–1). Formoside B (natural
concentration = 0.052 mg ml–1) and HPLC C (natural
concentration = 0.036 mg ml–1) were significantly
deterrent at some concentrations much higher than
natural concentrations but not others, and their effects
on feeding did not correlate well with concentrations
at the levels tested (formoside B linear regression p =
0.16, HPLC p = 0.35).

Aquarium assay results of combinations of these
compounds and fractions are shown in Fig. 6. Using
the Tukey-Kramer HSD test, all combinations that con-
tained formoside at its maximum known natural con-
centration (7.9 mg ml–1) were found to be significantly
more deterrent than all combinations that did not con-
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Fig. 4. Erylus formosus. Field assay of terpene glycoside-rich 
fraction (Black Rock, Bahamas, 1998)

Fig. 5. Erylus formosus. Aquarium assay results of purified
triterpene glycosides from sponge at various multiples of nat-
ural concentration (all n = 3). p-values shown above each bar
refer to paired Student’s t-tests between treatments listed and
controls. Horizontal lines under histograms overlap treat-
ments that do not significantly differ in their palatabilities 

(Tukey-Kramer HSD test, p < 0.05)

Sponge origin Date mg total terpene Pellets
glycosides eaten 

per ml sponge (of 10)

Key Largo, Florida May 1998 7.2 4

Sweetings Cay, Bahamas Sep 1998 14 1

Chubb Cay, Bahamas Sep 1998 2.4 2

Samana Cay, Bahamas Sep 1998 5.0 3

Black Rock, Bahamas Sep 1998 22 4
(1 clone)

Black Rock, Bahamas Sep 1998 15 1
(mixture of clones)

Table 4. Erylus formosus. Geographic variation in terpene glycoside-rich 
fraction and feeding deterrence of extracts
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tain formoside. These assays were run separately from
those in Fig. 5 and so differences between those 2 data
sets cannot be assessed.

DISCUSSION

Bioassay-guided fractionation of extracts of Erylus
formosus from several locations in the Bahamas and 1
location in Florida revealed that a group of triterpene
glycosides is responsible for the unpalatability of this
sponge to Caribbean reef fishes. Two pure triterpene
glycosides, formoside and formoside B, and 3 mixtures
of closely related triterpene glycosides, HPLC fractions
A, B, and C, were obtained (Fig. 3).

Formoside, HPLC A, and HPLC B all deterred fish
(Thalassoma bifasciatum) feeding relative to controls
within a range of 1 to 4 times natural concentrations,
while formoside B and HPLC C showed negligible
effects at concentrations up to 16-fold higher than 
natural (Fig. 5). At natural concentrations, formoside,
HPLC A, and HPLC B were similarly deterrent (Fig. 5);
however, the natural concentration of formoside mea-
sured from Bahamian specimens of Erylus formosus
was as high as 7.9 mg ml–1, whereas for the others the
natural concentration was 0.39 to 0.41 mg ml–1. Formo-
side had a statistically indistinguishable effect at 4.0 to
7.9 mg l–1 from HPLC A and B at concentrations of 0.39
to 1.6 mg ml–1, suggesting that formoside is less potent
on a weight per volume basis than the compounds pre-
sent in HPLC A and B. Although formoside B and
HPLC C showed no concentration-dependent deter-

rence at up to 16 times the natural concentration, the
highest concentrations tested were only 0.83 and
0.58 mg ml–1, respectively. The small quantities of iso-
lated material prevented testing above 16-fold. There-
fore, we conclude that formoside is responsible for
most of the chemical deterrence of E. formosus extracts
because of its high concentration, but that minor con-
stituents in HPLC A and B also contribute to the deter-
rence of this sponge and are, in fact, more potent on a
per molecule basis.

Terpene glycosides have rarely been encountered in
marine sponges. The few sponges that are known to
contain triterpene or steroidal glycosides have come
from the demosponge orders Astrophorida/Choristida
(Asteropus sarasinosum, Kitagawa et al. 1987, Koba-
yashi et al. 1991; Erylus spp., see below), Halichon-
drida (Ulosa sp., Antonov et al. 1994, 1998), and Axi-
nellida (Ectyoplasia ferox, Cafieri et al. 1999). Of these,
sponges of the genus Erylus have yielded a large num-
ber (approx. 8 of 21) of the known sponge terpene gly-
cosides. Erylosides A to F (excluding B) were isolated
from E. lendenfeldi (Carmely et al. 1989), Erylus sp.
(D’Auria et al. 1992), E. goffrilleri (Gulavita et al. 1994),
and E. formosus (Stead et al. 2000). Despite the consis-
tent naming of these compounds, the erylosides repre-
sent 3 different aglycone carbon skeletons and are
quite distinct in their patterns of glycosylation. As dis-
cussed earlier, formoside was also reported as a triter-
pene glycoside from E. formosus (Jaspars & Crews
1994). Eryloside F shares the penasterol aglycone with
formoside. The parent triterpene, penasterol, was iso-
lated from the astrophorid/choristid sponge Penares
sp. (Cheng et al. 1988).

Because terpene glycosides are quite polar and pre-
sent difficulties during purification (including foam-
ing), it seems reasonable to suppose that natural-
product chemists have only begun to prioritize deter-
mination of their prevalence and structural diversity
across sponge taxa. These compounds have been
reported to possess interesting pharmacological activi-
ties, such as cytotoxicity (Cafieri et al. 1999), immuno-
suppressive activity (Gulavita et al. 1994), and throm-
bin receptor antagonist activity (Stead et al. 2000).
However, until now there have been no published
reports of the ecological roles of these compounds, and
no discussion in the literature of the chemical defenses
of these sponges except in the survey of crude extracts
by Pawlik et al. (1995).

The soapy character of steroidal and triterpene glyco-
sides may assist in keeping these compounds at the in-
terface of sponge tissue and seawater, where they can
most readily be contacted by potential predators. These
compounds possess a lipophilic core (the steroid or
triterpene aglycone) and 1 or more hydrophilic portions
(the saccharides). Similar metabolites from terrestrial
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Fig. 6. Erylus formosus. Aquarium assay results of combina-
tions of purified triterpene glycosides, each at natural concen-
tration (all n = 3). Metabolites were combined as they occur in
populations of E. formosus in the Bahamas and Florida. Hori-
zontal line under histograms overlaps combinations that do
not significantly differ in their palatabilities (Tukey-Kramer 

HSD test, p < 0.05)
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plants are believed to cause digestive problems in large
herbivores such as cattle by altering the surface tension
of stomach contents, thereby trapping gas produced by
bacterial fermentation (Applebaum & Birk 1979). How-
ever, the soapy character of triterpene glycosides does
not in itself explain the ecological activity that we ob-
served in this study, because of the variation in concen-
tration-dependent potencies in triterpene glycosides
with different molecular structures (Figs. 3 & 5).

The physiological mechanisms by which chemical
defenses affect consumers’ feeding behavior are
largely unknown, although acute toxicity (e.g. Huntley
et al. 1986, Ives 1987), reduction of digestive efficiency
(e.g. Boettcher & Targett 1993), and decreased repro-
ductive success (e.g. Poulet et al. 1994, Lindquist &
Hay 1995) have been investigated in marine systems.
Some metabolites have been shown to reduce herbi-
vore or predator growth rates (Hay et al. 1987, Pen-
nings & Carefoot 1995) and survivorship (Paul & Fenical
1986), although the molecular or cellular mechanisms by
which this occurs remain elusive. Previous investiga-
tions of the pharmacological potential of erylosides E
and F isolated from Erylus spp. indicated that these
compounds caused significant cellular calcium release
(A. Wright pers. comm.). Calcium release and subse-
quent cascading physiological effects may play a role
in the feeding deterrence of Erylus spp. triterpene gly-
cosides, but this hypothesis remains to be tested.

We observed some important geographic variation in
the quantity and identity of terpene glycosides in Ery-
lus formosus collected at different sites. Total terpene
glycosides of 6 sponge collections from 5 locations var-
ied between 2 and 22 mg terpene glycosides ml–1 fresh
sponge tissue (Table 4). NMR spectral analysis showed
that E. formosus collected in the Bahamas at Sweetings
Cay, Chubb Cay, Samana Cay, Black Rock, and High-
born Cay all contained formoside as discussed above,
present as approx. 90% of total terpene glycosides at
most Bahamian sites studied. The sample from Samana
Cay, Bahamas, contained lesser quantities of formo-
side, although it was still a prominent metabolite in the
terpene glycoside mixture. The collection of E. formo-
sus made in the Florida Keys contained no detectable
amount of formoside. However, the total terpene gly-
coside concentration (7.2 mg ml–1 sponge) for the
Florida sample was similar to that of other locations,
and this fraction deterred fish from feeding (Table 4).
Because of the consistent feeding deterrence of total
triterpene glycoside mixtures from any given sponge
collection that appears independent of compound
composition, it must be concluded that any 1 com-
pound is not essential for the chemical defense of this
sponge. Increases in metabolite concentration resulted
in more pronounced effects on feeding (Fig. 5). Thus,
simply increasing the overall concentration of terpene

glycosides, even if the mixture does not contain the
entire suite of natural compounds, appears to provide
protection against fish predation. When direct compar-
isons were made of combinations of compounds, each
present at its natural concentration, only the presence
or absence of formoside, the most concentrated com-
pound, caused a significant difference in deterrence
(Fig. 6). If the metabolites were acting synergistically,
one would expect that certain combinations would be
more deterrent than the summed effects of individual
components, but this was not observed.

The geographic variation in chemical composition
raises the possibility that there is a group of closely
related species of Erylus in the Caribbean. The de-
scription of E. formosus by Wiedenmayer (1977) has
since been separated by Pulitzer-Finali (1986) into E.
bahamensis in the Bahamas and Dominican Republic
and E. clavatus in Jamaica on the basis of small differ-
ences in spicule size and morphology. Like others who
have studied the chemistry of this sponge (Jaspars &
Crews 1994, Stead et al. 2000), we identified our spec-
imens as E. formosus because of similarities in gross
morphology, and a continuous gradation in spicule
morphology that made distinctions between E. baha-
mensis and E. clavatus seem ambiguous. A possible
geographic correlation between the chemical variation
observed in this study and small differences in spicule
morphology was not addressed herein, but may war-
rant future attention. The documentation of chemical
composition over a wider geographic range may pro-
vide a chemotaxonomic reference to add to morpho-
logical characteristics in helping to resolve uncertainty
in species identification.

Marine steroidal and triterpene glycosides have
mainly been reported from echinoderms, specifically
from the Asteroidea (sea stars), which possess steroidal
glycosides, and the Holothuroidea (sea cucumbers),
which possess triterpene glycosides (Stonik & Elyakov
1988). Although it has been suggested that these com-
pounds play a defensive role in echinoderms, experi-
mental evidence is inconclusive and mostly related to
seasonal fluctuations in metabolite levels and varying
concentrations in different echinoderm tissues (Burnell
& ApSimon 1983, Stonik & Elyakov 1988). Bingham &
Braithwaite (1986) used an assay to demonstrate the
toxicity of holothurian triterpene glycosides against
fishes, but reported no effect of the compounds on
predators in feeding assays. One study supporting a
defensive hypothesis was that of Lucas et al. (1979), in
which planktivorous fishes were deterred from feeding
on foods laced with partially-purified steroidal glyco-
sides from the crown-of-thorns sea star Acanthaster
planci, and its larvae. Despite limited experimental
evidence using echinoderm metabolites, steroidal and
triterpene glycosides have been widely assumed to

75



Mar Ecol Prog Ser 207: 69–77, 2000

play a defensive role for echinoderms, analogous to
similar metabolites found in terrestrial plants (Apple-
baum & Birk 1979). These compounds have more
recently been found in taxonomically distant organ-
isms such as soft corals (e.g. Kittakoop et al. 1999) and
amphipods (N. Lindquist pers. comm.). The application
of ecologically relevant bioassays and chemical frac-
tionation procedures may reveal further evidence of
defensive functions of marine terpene glycosides.

This report is the first account of sponge terpene gly-
cosides functioning as fish feeding-deterrents. In a
parallel study, preliminary evidence indicates that ter-
pene glycosides defend Mycale laxissima (order Poe-
cilosclerida) from fish predation (Kubanek et al. un-
publ.), and that triterpene glycosides at natural
concentrations from Ectyoplasia ferox (Cafieri et al.
1999) are also deterrent (Kubanek et al. unpubl. data).
It is reasonable to suppose that similar compounds may
function likewise in many sponges, although based on
the structure-activity relationships noted herein, one
should be watchful for differences in ecological activity
based upon subtle variations in chemical structure.
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