Foundations of gregariousness

SIR — Most benthic marine invertebrates have a pelagic larval phase, during which they may disperse widely. Once ready to metamorphose, the planktonic larvae of many species (for example mussels, oysters, barnacles, sand dollars) settle preferentially on or near conspecific adults, forming monospecific aggregations. Gregarious settlement has many advantages, most notably enhanced adult reproductive success, but at the cost of increased intraspecific competition. Aggregations must initially develop from a two-step process: solitary larvae first colonize an uninhabited substratum, then gregarious settlement occurs on or near these ‘founders’. To date, research has focused on the latter step. It has been suggested that founders settle because they are unable to locate conspecifics and are incapable of prolonging their planktonic lives, a concept we term the ‘desperate larva’ hypothesis. One alternative, however, is that larvae differ in their substratum preferences and that founders are somehow distinct. We have found that females of a tube-dwelling polychaete worm produce larvae that settle in two different ways: one type colonizes uninhabited substrata (founders), whereas the other settles only in response to cues associated with conspecifics (aggregators).

We conducted still-water, single-substratum, laboratory settlement assays with larvae of *Hydroides dianthus*, a common member of epibenthic fouling communities along the east coast of North America. Three experiments were performed, each on a population of 90,000 larve (pooled from the spawns of about 25 females) cultured in three 4-litre glass jars. We used two types of settlement substrata to assess larval responses: biofilm slides and ‘adult’ slides. Biofilm slides were made by placing etched glass microscope slides into running unfiltered seawater for at least 5 days, so that they became coated with an organic/microbial film. Adult slides were treated similarly, but five small conspecific worms were attached by gluing their tubes to each slide. Two types of settlement assay were conducted until larval cultures were depleted: sample and whole-population assays. For sample assays, a sample of larvae was removed from culture jars and exposed to experimental substrata for whole-population assay, all remaining larvae were exposed to substrata. Twelve replicate sample assays were run simultaneously in Petri dishes containing a single biofilm or adult slide and 25 competent larvae. Assay dishes were examined for settlers after 24 h. For whole-population assays, the entire population of larvae was filtered down into a small volume and split evenly among nine replicate glass dishes, each containing a single biofilm or adult slide. Slides were placed on a shaker table rotating at 50 r.p.m. for 1 h, and slides then examined for settlers. Larval types were defined by their responses: founders settled on biofilm slides, and aggregators settled on adult slides.

In the first experiment, the whole population was exposed to both biofilm and adult slides daily after day 3; therefore, all larvae had access to both substrata throughout development. Settlement on both experimental substrata began simultaneously as larvae became competent (Fig. 1), contrary to the prediction of the desperate larva hypothesis. The bulk of settlement on both biofilm and adult slides occurred soon after competence, with settlement occurring 7–8 days post-fertilization. Larvae continued to settle on adult slides in low numbers through day 26, but no larvae settled on biofilm slides after day 14.

In a second experiment, the whole population was exposed to biofilm slides daily (day 4 through day 14, weekly thereafter), then samples were exposed to adult and biofilm slides. Under these constraints, only the larve exposed to adult slides had the opportunity to settle gregariously, whereas the remainder of the population were forced to delay settlement, or settle on biofilm slides. Surprisingly, virtually all founders settled between 5 and 12 days after fertilization, with the remaining larvae settling only in response to conspecifics (in sample assays) throughout a seven week period (Fig. 2). These results indicate the existence of a distinct subpopulation of larvae that responded to biofilm substrata; once these individuals were removed, the remaining aggregators delayed settlement in the absence of acceptable conspecific-associated cues. In a similar experiment (not presented here) in which daily exposure of the whole larval population to biofilm slides was omitted, sample assays revealed the same patterns as seen in Fig. 2 over a period of 70 days, after which, larvae began to die in culture rather than settle in the absence of conspecifics.

The desperate larva hypothesis was advanced on the basis of observations of the development of non-feeding pelagic larvae that exhaust a yolk reserve, i.e. are in the planktonic phase. If reduced substratum selectivity is a function of energetic desperation, rather than age alone, it should be possible to test this by starving the larvae of a planktrophic (feeding) species, such as *H. dianthus*, and monitoring larval responses to substrata. We performed a third experiment, like the second, in which half the population of larvae was starved during days 10–14, and fed and starved subpopulations were
assayed separately. We found that settlement of founders could not be induced by starvation. Moreover, starvation resulted in a developmental reversion to a precompetent state, a condition that was reversed when larvae were again provided with food. An ontogenetic shift of this kind was recently described for the larvae of another species of marine polychaete.

Besides random settlement, the desperate larva hypothesis is, to our knowledge, the only published explanation for the colonization of new habitats by larvae of gregarious species. The results of our study, a full version of which will be presented in a forthcoming paper, provide an alternative explanation for the process by which monospecific aggregations develop on hard substrata previously uninhabited by conspecifics.

Robert J. Toonen
Joseph R. Pawlik
Department of Biological Sciences and
Center for Marine Sciences Research,
University of North Carolina, Wilmington,
North Carolina 28403-3297, USA