Course Information:
This course continues material introduced in ART/CSC/FST 220 and concentrates on character animation using computers and the related theory, production techniques, and industry. Advanced modeling, rigging, shading, rendering, and character-design skills are developed in conjunction with traditional story, animation, lighting, and cinematography concepts. Students complete individual projects and also work as a team to produce at least one short animated movie during the semester.

Required Materials:
Character Animation Fundamentals: Developing Skills for 2D and 3D Character Animation by Steve Roberts.
Access to a still camera, recordable CD or DVD discs, and art supplies for drawing and sculpting.

Optional:
The Animator’s Survival Kit by Richard Williams.
Maya Python for Games and Film by Adam Mechtley & Ryan Trowbridge.
MEL Scripting for Maya Animators by Mark Wilkins & Chris Kazmier.
How to Cheat in Maya 2012: Tools and Techniques for Character Animation by Eric Luhta & Kenny Roy.

Useful:
Houdini, ZBrush, Nuke, Photoshop, Illustrator, Final Cut Pro, etc. on computers in the Digital Arts Lab.

Maya Resources housed in the Randall Library, including these and more:
The Art of Maya
MEL Fundamentals Courseware
Learning Maya: Character Rigging and Animation
Learning Maya: Games and Interactive
Maya Seminars: Optimizing a Production Pipeline
Rendering 2D Effects in a 3D Environment
Particles for Visual Effects
Exploring Advanced Shading Networks
Polygon Texturing, Lighting, and Shading
Inside the Maya Architecture
Hyper-Realistic Body Setup
Digital Tutors discs covering topics such as modeling, animation, shading, MEL, and Python for Maya.

Grades:
Project 1: Story Development (treatment, script, shot-list, storyboards, animated). 5%
Project 2: Character Animation Tests (walk cycles, lip-sync, animated clips). 15%
Project 3: Character Pack (design, maquette, model, rigging, shading, turntable, tests). 15%
Project 4: Participation in animated, short production. 20%
Homework and short exercises focused on improving basic skills. 20%
Quizzes, possibly unannounced -- based on readings, web material, and class material. 20%
Class participation, discussion, and presentations. 5%
Tentative Project Description Summaries:

1. Create an original short narrative, following the traditional three-act structure and crafted for the visual nature of animation. The story should have a visually interesting setting, one or more appealing characters, a conflict with a few obstacles, and a satisfying resolution. Complete a treatment, script, shot-list, storyboards, and animatic along with at least one color key per scene for art direction.

2. Complete several production-quality, animated shots using a character as specified. Suggested examples include these: Complete two or more different walk cycles such as a stroll, a run, or a sneak. Devise and complete two shots of a more complex nature, where the character completes a sequence of actions for a short scene. Complete a lip-sync with performance, using a favorite quote or movie line.

3. Design and build a complete, original character ready for animation. Collect reference material to inspire your design. Complete developmental sketches, image planes, and a sculpted maquette for the character. Shade and fully rig the character. Complete a turntable with three-point lighting as well as one (or more) test animation(s).

4. Perform assigned production roles and complete contributing elements to complete a professional quality animated short.

Student Learning Outcomes:

1. Students gain understanding in mathematical, algorithmic, and conceptual techniques related to animating computer-graphics models and environments.

2. Students develop the ability to model and rig objects and characters in three dimensions using constraints, expressions, and scripting in computer animation software.

3. Students learn aspects of the topology of polygon, NURBs, and subdivision-surface modeling that relate to deformations used in animation.

4. Students understand and apply concepts of narrative structure and animation technique.

5. Students model, rig, shade, and animate characters of their own creation, presenting their work for class critique.

6. Students work together as a large, coordinated group to complete a fully realized animated-short-film project from concept through to post-production and screening.

7. Students learn aspects of digital production and workflow as applied in current industry
Class Policies

Quizzes will cover materials presented in class, whether lecture, video, tutorial, etc., as well as material from the required texts. Quizzes may include written questions or practicum.

General computer literacy is required for this course. Also desirable are artistic and cinematic interests. Projects will be presented in class on their due dates with open critiques and discussion. 3-D graphics work is very time-consuming, akin to a studio, workshop, or programming course. Plan carefully to complete projects in a timely manner. Late work will be reduced in grade by 5 points each day. There are no make-up quizzes. Please contact me in advance, if possible, if you must miss any graded work.

Attendance is required and will both directly and indirectly affect grades -- covered material is very pertinent to completing homework and projects effectively. Unless special circumstances are involved, more than three absences will result in class failure. Students are individually responsible for keeping current with course material and assignments.

Class announcements supersede posted material.

Academic honesty in all your work is required for a passing grade.

This syllabus and course materials may be subject to change with reasonable notice.