Rotational Equilibrium of a Rigid Body

Introduction

Consider a rigid body acted upon by N forces. The two conditions which must be satisfied in order that the rigid body be in both translational and rotational equilibrium are,

$$\sum_{i=1}^{N} \vec{F}_i = 0 ,$$ \hspace{1cm} (1)

and

$$\sum_{i=1}^{N} \vec{\tau}_i = 0 .$$ \hspace{1cm} (2)

Here, the \vec{F}_i and $\vec{\tau}_i$ are the individual forces and corresponding torques, about some pivot point, acting on the rigid body (See reference [1] and Eq. 3 in Appendix A.).

In Parts I and II of the experiment a rigid body (a meter stick) is subjected to various combinations of forces in such a way that the body remains in equilibrium. In each case the forces and torques exerted on the rigid body are determined from data collected in the experiment. The calculated value of the net torque derived from the experiment is compared for consistency with the theoretical value of zero predicted by Eq. 2. In Part III of the experiment, Eq. 2 is applied in a novel way to predict the mass of an object. The predicted value is then compared for accuracy to the value obtained from a triple beam balance.

Procedure

The equipment used in performing this experiment is shown in Figure 1. Record all measurements and calculations in the appropriate table.

1. Measure the mass of the meter stick.
2. Measure the mass of the metallic object.
3. Determine the center of mass of the meter stick by balancing the meter stick on the knife edge.
Part I
Determine the pivot point of the meter stick when 150 grams of mass are suspended from the 20 cm mark of the meter stick.

Part II
Determine the pivot point of the meter stick when 150 grams of mass are suspended from the 20 cm mark and 250 grams are suspended from the 70 cm mark of the meter stick.

Part III
Suspend the metallic object from the 10 cm mark of the meter stick. Suspend 250 grams from the meter stick so that the masses and the meter stick balance at the center of mass of the meter stick.

Analysis
1. For both Part I and Part II calculate the counterclockwise torque, the clockwise torque, the net torque, and the percent discrepancy, as given by Eq. 5 in Appendix B.
2. For Part III calculate the theoretical value of the metallic mass, using Eq. 2. Calculate the percent error, as given by Eq. 4 in Appendix B.
Appendix A

In general, the magnitude of the torque τ resulting from a force \vec{F} about some pivot point P is defined as

$$\tau = |\vec{r}||\vec{F}| \sin(\theta) = r_\perp |\vec{F}|.$$ \hspace{1cm} (3)

The quantity r_\perp is the length of the line connecting the pivot point, perpendicularly, to the line of action of the force, as shown in Figure 2. The torque is assigned a positive (negative) value if it can be associated with a counterclockwise (clockwise) rotation.

Appendix B

The percent error p_e in the mass is defined as:

$$p_e = 100 \times \frac{|m_{\text{exp}} - m_{\text{theo}}|}{m_{\text{exp}}},$$ \hspace{1cm} (4)

where m_{exp} and m_{theo} are the measured and theoretical values of the mass.

The percent discrepancy p_d in the torque is defined as

$$p_d = 100 \times \frac{|\tau_{\text{net}}|}{(\sum_{i} |\tau_i|)/2},$$ \hspace{1cm} (5)

where τ_{net} is the net torque, and the τ_i include both clockwise and counterclockwise torques.
References

<table>
<thead>
<tr>
<th>Mass of Meter Stick (kg)</th>
<th>Mass of Metallic object (kg)</th>
<th>Center of Mass of the Meter Stick (m)</th>
</tr>
</thead>
</table>

Table 1: Data

<table>
<thead>
<tr>
<th>Part I</th>
<th>Part II</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC Torque (Nt-m)</td>
<td></td>
</tr>
<tr>
<td>C Torque (Nt-m)</td>
<td></td>
</tr>
<tr>
<td>Net Torque (Nt-m)</td>
<td></td>
</tr>
<tr>
<td>Percent Discrepency</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Calculations

<table>
<thead>
<tr>
<th>Part III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (theoretical) (kg)</td>
</tr>
<tr>
<td>Percent Error</td>
</tr>
</tbody>
</table>

Table 3: Calculations