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We explain how modifying a cake recipe by changing either the dimensions of the cake or the
amount of cake batter alters the baking time. We restrict our consideration to the génoise and obtain
a semiempirical relation for the baking time as a function of oven temperature, initial temperature
of the cake batter, and dimensions of the unbaked cake. The relation, which is based on the diffusion
equation, has three parameters whose values are estimated from data obtained by baking cakes in
cylindrical pans of various diameters. The relation takes into account the evaporation of moisture at
the top surface of the cake, which is the dominant factor affecting the baking time of a cake. © 2006
American Association of Physics Teachers.
�DOI: 10.1119/1.2186330�
I. INTRODUCTION

To cook and do it well requires little knowledge of the
sciences in general and physics in particular. Indeed, most
cookbooks are just that—cookbooks: one merely follows the
steps in a recipe and obtains the finished product. Usually no
discussion of the physical principles on which a recipe is
based is given, making it difficult in many instances to
modify the recipe in nontrivial ways. There are, however,
noteworthy exceptions.1–4

Surprisingly, there appears to be a dearth of research re-
lated to the cake baking process. Much of what appears in
the literature is specifically related to bread baking.5,6 A no-
table exception is the work of Lostie and collaborators.7,8

They analyzed the baking process of sponge batter during the
first baking period.9,10 As described in Ref. 7 the data used in
their analysis were obtained from controlled experiments in
which the cake batter was heated only from the top, with the
sides and bottom of the pan thermally insulated. Based on
their experiments they proposed a one-dimensional model of
the baking process to predict the spatial dependence and time
evolution of water content �water and vapor�, temperature,
gas phase pressure, and porosity �the proportion of non-solid
volume to total volume� of the cake batter. The model has
nine adjustable parameters whose values are determined by
fitting the model to their data.

The motivation for this article is to provide an answer to
the question of how the baking time of a cake varies when its
recipe is modified, either by changing the dimensions of the
cake or the amount of cake batter. To make the problem
manageable we have restricted our analysis to one type of
cake only, the génoise, one of the basic cakes of classic
French cuisine. Although the technique for baking this cake
is somewhat exacting, the ingredients are readily available,
facilitating attempts to reproduce our results. The theoretical
basis of our solution is the diffusion equation.

The outline of the article is as follows. First, we briefly
discuss the quantitative aspects of cake baking. Next, we
describe the experimental techniques and data used in the
subsequent analysis. We, then, propose a simple model for
the cake baking process and use it to obtain a semiempirical

formula for estimating the baking time of the génoise.
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II. CAKE BAKING AS A DIFFUSION PROCESS

A. Cake baking from a quantitative point of view

Before modeling the cake baking process, we first make
more precise the imprecise measuring techniques that have
customarily accompanied the instructions for baking a cake.
A typical cake recipe lists the ingredients with amounts, a
description of the technique used to prepare the cake batter,
and the baking time for the recipe. Until recently, the
amounts of the ingredients have generally been given in units
of liquid measure, such as the cup or tablespoon. We can
surmise that the reason for these units has been the scarcity
of mass measuring scales in the home. The reason for using
dry measure �measuring by scale� rather than liquid measure
is to increase the likelihood of consistently producing a cake
with the desired taste, texture, and appearance. Generally, the
time necessary to bake a cake is accompanied by some sub-
jective measure of determining whether the cake has baked
to the proper degree of doneness. Such subjective measures
include when a toothpick thrust into the center of the cake
comes out clean, when the cake shows a faint line of shrink-
age from the sides of the pan, when the top springs back
lightly, and when you can smell the cake. To a first approxi-
mation these criteria can be quantified by equating the degree
of doneness to the temperature at the center of the cake,
although we can imagine more complex criteria that include
other measurable quantities such as the temperature gradient.

B. The génoise

The recipe for the génoise is adapted from that described
by Pépin.11–13 In Table I we converted the units to dry mea-
sure. Qualitatively, we have found that the recipe prepared
using traditional measuring techniques, that is, proportions of
ingredients are measured using measuring cups �liquid mea-
sure� rather than a scale �dry measure�, produces a cake con-
sistent in texture, taste, and appearance with one prepared
using dry measuring techniques. Quantitatively, the amounts
measured and re-measured using traditional techniques typi-
cally differ by less than 2% compared to amounts measured
by weight.

According to the recipe the cake batter is placed in two
cake pans, 8 in. in diameter by 1.5 in. deep, filling each pan
3/4 full. The cakes are baked in an oven of temperature Tb

=350 °F for a time between 22 and 25 min. To establish
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benchmarks for this study we have prepared the recipe, with
exceptions as noted, filling two 8 in. cake pans to a depth of
1 in. We assessed the degree of doneness using traditional
techniques14 and observed the baking time to be approxi-
mately 17 min. The qualitative measure of doneness corre-
sponds to a temperature Tf =203 °F at the center of the cake.
The recipe was prepared several times with baking times
varying by no more than 2 min.

C. Theory from a naive perspective

We initially believed that we could model the cake baking
process as a simple diffusion process.15 Although this model
is inadequate, it is the basis of the final model and is thus
presented. This model is based on the diffusion equation,16

D�2T =
�T

�t
, �1�

where T=T�t ,r ,� ,z� is the temperature of the cake at time t
at the position �r ,� ,z� �in cylindrical coordinates� within the
cake, and D is the heat diffusivity �assumed constant� of the
cake batter.

We assume the cake batter to be in a cylindrical pan of
radius R and thickness Z at initial temperature Ti and baked
in an oven of constant temperature, T . We solve the diffu-

Table I. The proportion of ingredients for the génoise is given in traditional
measure as well as dry measure.

Traditional measure Dry measure �g�

Eggs 6 large 298
Sugar 3/4 cup 176

Vanilla extract 1 /2 tsp 2
All purpose flour 1 cup 144

Butter 3 /4 stick 114
b

time, tf,
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sion equation with these initial conditions for the tempera-
ture T, which is independent of � because of azimuthal sym-
metry,

T�t,r,z� = Tb + �Ti − Tb�
2R�Z

�
�

n=1,m=1

�
�1 − �− 1�n�

nxm,0
�mn,

�2�

where the �mn are the normalized eigenfunctions of the dif-
fusion equation,

�mn =
2

RJ1�xm,0��Z
sin�n�z

Z
� J0� xm,0r

R
�

xm,0J1�xm,0�

� exp	− 
��n�

Z
�2

+ � xm,0

R
�2��Dt� , �3�

and xm,0 is the mth root of the zeroth-order Bessel
function.17 In Eq. �2� the first term on the right-hand side
is the steady state solution. The second term is the solu-
tion particular to the boundary conditions and vanishes at
the surface bounding the cylinder. Only the Bessel func-
tions of zeroth order appear because of azimuthal symme-
try. The other factors are required to reproduce the initial
temperature in the interior of the cake at t=0.

The initial temperature of the cake batter Ti
80 °F cor-
responds to the temperature at which the cake batter is pre-
pared. The initial and final temperatures of the cake and tem-
perature of the oven satisfy the relation

Tf − Ti

Tb − Ti
� 
 1. �4�

For temperatures Tf that satisfy Eq. �4�, the infinite series in
Eq. �2� evaluated at the center of the cake can be approxi-
mated by a single term

T�tf,0,Z/2� = Tf = Tb + �Ti − Tb�F , �5�

where
F =�
8

�x1,0J1�x1,0�
exp	− �
��

Z
�2

+ � x1,0

R
�2��Dtf� �C1 � 1 and �C2 � 1��

4

�
exp	− ��

Z
�2

Dtf� �C1 � 1�

2

x1,0J1�x1,0�
exp	− �� x1,0

R
�2�Dtf� �C2 � 1� .

� �6�

Here

C1 =
2

x1,0J1�x1,0�
exp	� − � x1,0

R
�2�Dtf� , �7a�

C2 =
4

�
exp	− ��

Z
�2

Dtf� �7b�

and tf is the amount of time for the temperature of the center of the cake to become equal to Tf.
This simplification to Eq. �2� is most readily verified by direct calculation. We can solve Eq. �5� explicitly for the baking
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1

tf
	�

x1,0
2

R2 +
�2

Z2 �C1 � 1 and C2 � 1�

�2

Z2 �C1 � 1�

x1,0
2

R2 �C2 � 1� ,
� �8�

where x1,0
2.40 is the first root of the zeroth-order Bessel
Function.

The constant of proportionality depends only on the un-
known heat diffusivity constant D, which can, in principle,
be estimated from the baking time of a given recipe. In any
case, if the baking time is known for a cake of specified
dimensions, then Eq. �7� can be used to estimate the baking
time of a cake of arbitrary dimensions.

For practical applications it is useful to express Eq. �8�
with its numerical constants appearing explicitly:

1

tf
	�

2.34

D2 +
1

Z2 �C1 � 1 and C2 � 1�

1

Z2 �C1 � 1�

2.34

D2 �C2 � 1� ,
� �9�

where D is the diameter of the cake.18,19 We use Eq. �9� to
estimate the baking time of a cake with a 2.1 in. radius and
depth of 4.0 in. The calculation assumes the same initial
conditions as for the preparation of the basic recipe de-
scribed previously.20 The predicted baking time is

85 min in comparison to the actual baking time, based
on an internal temperature of 203 °F is 26 min.

III. EXPERIMENT

A. Procedure

To understand why the previously described model of the
cake baking process is inadequate, we collected data for dif-
ferent amounts of cake batter baked in cylindrical cake pans
of various dimensions. Seven cakes were baked with radii
ranging from 2.1 to 6.5 in. and depths from 1.0 to 4.0 in.;
the baking times ranged from 17 to 42 min. The data consist
of the mass of each cake before and after baking, the diam-
eter and depth of the cake, the depth of the cake after baking,
and the temperature at the center of the cake recorded at
1 min intervals until the cake’s internal temperature reaches
203 °F.21 The experimental setup for recording the internal
temperature of the cake is shown in Fig. 1.

In most ovens the temperature of the oven is measured by
a probe that is close to the oven walls and relatively distant
from whatever is being baked in the oven. The temperature
at the oven walls is typically higher than the temperature at
the surface of what is being baked. In this study temperatures
were monitored next to the cake pan, with the heating ele-
ment of the oven regulated manually to maintain the desired
oven temperature. By monitoring the oven temperature close
to the surface of the cake we minimized convective effects,
making conduction the primary mechanism of heat transfer.
After the cake is baked, the depth and mass was remeasured.

The baking time of an individual cake is very sensitive to

the depth of the cake batter. The reason is that the batter is
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relatively shallow, as is typical of cakes of this type. For
example, if the cake batter is approximately 1.5 in. deep, an
error in measurement of 1

8 in. is a 12% error. Even when
using extreme care to make depth measurements at the center
of the cake, it is difficult to ensure that the depth remains
constant across the surface of the cake. This problem is ex-
acerbated for the cakes of larger diameter used in this study.
The fact that cakes rise while baking is not a problem, but
identical cake recipes baked on different occasions do not
rise precisely the same way. These uncertainties explain why
for many cake recipes there is a range of baking times of
15% or more. Given the sensitivity of the baking time to the
depth of the cake batter, it seems reasonable to expect more
variation in the baking time of cakes of larger radii because
cohesion of the cake batter between regions separated by
large distances would be suppressed causing variations in the
depth at these locations to be independent.

There is another practical consideration that is a potential
source of error. Because of the shallow depth of the batter
relative to the size of the temperature probe, it is difficult to
ensure that the probe is inserted accurately into the center of
the cake. If extremely careful experiments are needed for
making accurate theoretical predictions, then our results
would be of little use. Because it was impractical to automate
the data collection process, specifically the temperature/time
measurements, the data collection was tedious.

In Figs. 2 and 3 we show plots of the temperature mea-
sured at the center of two cakes as a function of time, one
cake of radius 4.0 in. radius and depth 1.0 in. and another
cake of 2.1 in. radius and depth 4.0 in. We also show the
theoretical fits to the data based on Eq. �2�. The summations
in Eq. �2� have been truncated at n ,m=17.22 As is apparent
in the figures, the model based on the diffusion equation does
not account for the features of the data.

B. Revised model

We can make several qualitative and quantitative observa-
tions from an analysis of our data. For a baked cake, not only
does the volume of the cake increase, but the mass of the
cake decreases.23 With hindsight it was naive to believe that
a model based only on Eq. �2� could account for the features
of the data. The cake batter is a viscous liquid at the start of

Fig. 1. The oven, baking pan, and two thermocouple sensors and tempera-
ture measuring instruments. One sensor monitors the internal temperature of
the cake, and the other the temperature of the oven.
the baking process and a solid at the end. Thus, not only
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conduction, but also convection and even radiation contrib-
ute to the baking process. In addition, the parameters associ-
ated with these processes of heat transfer, that is, the thermal
conductivity, density, specific heat, heat diffusivity, and con-
vection coefficient, depend on temperature to some extent. In
any case, assuming that the heat diffusivity is constant as in
Eq. �2� is simplistic. To improve the model we assume that
the thermal conductivity of the cake batter varies during the
baking process, primarily because of moisture evaporation at
the top cake surface.

In the revised model moisture evaporates at the top surface
of the cake causing the cake batter to dry out so that the heat
diffusivity decreases. The cake batter consists of two homo-
geneous mixtures, each with its own heat diffusivity. In Fig.
4 we diagrammatically represent the cake baking process. As
baking occurs, the interface between the two homogeneous
mixtures of cake batter �dry on top and moist on the bottom�
moves from the top to the bottom of the pan. The quantity a
denotes the interface between the two mixtures at an arbi-
trary time and D and D� are the heat diffusivity of the dry
and moist mixtures, respectively. To reduce the time for nu-
merical computations we assume that the cake batter remains

Fig. 2. The temperature of a génoise with a 4.0 in. radius and 1.0 in. depth
recorded at 1 min intervals is shown along with the theoretical fit based on
Eq. �2�.

Fig. 3. The temperature of a génoise with a 2.1 in. radius and 4.0 in. depth

recorded at 1 min intervals along with the theoretical fit based on Eq. �2�.
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uniformly moist in time interval 0� t� t1. In the time t1� t
� t2 the cake comprises two homogeneous mixtures, dry bat-
ter in the top half and moist batter in the bottom half of the
pan, that is, the interface remains fixed at a=Z /2. At time t2
and until it completes baking at time tf �interval 3�, the cake
is uniformly dry.24

For time t� t1 and t2� t� tf the evolution of the tempera-
ture is calculated using the eigenfunctions of the diffusion
equation given in Eq. �2�, substituting D or D�, as appropri-
ate. For t1� t� t2 we require eigenfunctions obtained from
solving the diffusion equation for two contiguous, homoge-
neous media whose interface is located at z=a.

The unnormalized eigenfunctions 
mj with eigenvalue Emj
are given by


mj = exp�− Emjt�J0� xm,0r

R
�Zmj�z� , �10�

where

Zmj�z� = 
Amj sin��mjz��z� �0 � z � a�
Bmj sin��mj� �Z − z�� �a � z � Z� .

� �11�

The coefficients Amj and Bmj are determined by the normal-
ization condition and the boundary conditions at z=a. The
quantities �mj and �mj� are related by

Emj = D	�mj
2 + � xm,0

R
�2� = D�	�mj�2 + � xm,0

R
�2� , �12�

and satisfy the eigenvalue equation

tan��mja�
D�mj

= −
tan��mj� �Z − a��

D��mj�
. �13�

The eigenvalue equation is obtained from the boundary
conditions at the interface separating the two homogeneous
mixtures of cake batter:

�Z�z��z=a− = �Z��z��z=a+, �14a�

and

�D�Z�z�
�z

�
z=a−

= �D�
�Z��z�

�z
�

z=a+
. �14b�

Equation �14b� is the result of applying the continuity equa-
tion at the interface. We take D�D� because the moist cake
batter thermally conducts better than the dry cake batter.

Fig. 4. As the cake is baked, moisture evaporates through the top surface of
the cake resulting in a two component system, one with a thermal diffusivity
D, corresponding to the moist batter in the bottom portion of the pan and
another with thermal diffusivity D�, corresponding to the dry batter in the
top portion of the pan.
As a function of �mj� , we have
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�mj
2 =

D�

D
�mj�2 − �D − D�

D �� xm,0

R
�2

. �15�

The solutions of the eigenvalue equation have the following
properties: �mj

2 ��mj�2; there are no solutions for �mj�2 �0; the
derivative of an eigenfunction is discontinuous at z=a; and
some eigenfunctions are oscillatory in the region 0�z�a
and decaying in the region a�z�Z.

We now prescribe the recipe for implementing the revised
model.

1. Specify values for the parameters D, D�, t1, and t2.
2. Substitute the temperature of the oven Tb, the initial tem-

perature Ti of the cake, the radius R of the cake pan, and
the depth Z of the cake, as well as the value of D� into Eq.
�2� to obtain the internal temperature of the cake T�t� for
0� t� t1. T�t1� becomes the initial temperature of the
temperature distribution for t1� t� t2.

3. Expand T�t1� in terms of the eigenfunctions, 
mj Eq. �10�,
to obtain the temperature T�t� during the interval t1� t
� t2. T�t2� becomes the initial temperature of the tempera-
ture distribution for t2� t� tf.

4. Expand T�t2� in terms of the eigenfunctions �mn, Eq. �3�,
to obtain the temperature T�t� during the interval t2� t
� tf. Substitute D� for D in �mn.

The evaluation of the infinite series for the temperature in
the various time intervals requires that each series be trun-
cated at a finite number of terms, depending on the degree of
accuracy desired. For 0� t� t1 assume that Eq. �2� is termi-
nated for integers M �m�M� and N �n�N�. To achieve
approximately the same degree of accuracy in the interval
t2� t� tf, we apply the same values to the corresponding
infinite series. For t1� t� t2, the temperature is expanded
using 
mj also for values of m�M, but the selection of the
truncation for j is more complicated, and all values of j such
that

�mj �
�N + 1/2��

Z − a
�16�

are used. We note that solving for all eigenvalues �mj is
nontrivial because there is not a one to one correspondence
between those in the interval t1� t� t2 and those in the other

Table II. A summary of the data used in this study. L
A representative sample of these data was selected
selected to ensure that the theoretical curves are r
determined by trial and error.

Radius Depth tf

A

D

4.0 1.0 17 0.029
2.1 4.0 26 0.012
2.1 2.0 20 0.025
5.0 1.8 41 0.035
6.5 1.6 35 ¯

5.0 1.0 20 ¯

2.1 1.8 19 ¯
intervals.
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We have used these expansions to determine the tempera-
ture at the center of the cake for four representative, sets of
data. We summarize the results in Table II and Fig. 5.25 The
data have been selected to span the range of cake dimen-
sions. As is apparent in Fig. 5 it is possible to obtain a rea-
sonable fit to the data by varying D, D�, t1, and t2. Equally
good fits have been obtained for the other three sets of data.

The primary purpose of these models has been to provide
insight into the baking process so that quantitative estimates
can be obtained for the baking time of cakes of various di-
mensions. These results are consistent with the qualitative
aspects of the revised model. In accordance with Table II,
cakes of larger depth, although taking longer to bake, have
an effective thermal diffusivity that is greater than cakes of
smaller depth. Cakes of smaller radius have an effective ther-
mal diffusivity that is greater than cakes of larger radius.

For cakes of less depth moisture can evaporate from the
top surface of the cake relatively quickly causing the cake to
dry out leading to a decrease in the thermal diffusivity be-
cause of the lack of moisture content. For an amount of
baking time t, we hypothesize that the moisture content
within the cake scales approximately as

s are in inches, time in minutes, and D in in.2 /min.
odeling purposes. The values M and N have been
ely smooth. The adjustable parameters have been

table parameters Accuracy

D� t1 t2 M N

0035 2 2 10 10
.047 10 � 10 10
.010 1 15 10 10
.005 2 2 10 10
¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯

Fig. 5. A theoretical fit to the temperature as a function of time at the center
of a cake, with a 2.1 in. radius and 2.0 in. depth. The parameters are given
ength
for m
elativ

djus

0.
0
0
0

in Table II.
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t

Z2 . �17�

This type of behavior is typical in random walk processes
because diffusion times scale as the square of some charac-
teristic length.

Moisture also diffuses from the sides of the cake inward.
If the radius of the cake is less than its depth, moisture in the
interior of the cake might remain constant or possibly in-
crease, even though moisture continues to evaporate from the
top cake surface. For an amount of baking time t, we hypoth-
esize that the moisture content scales as

t/R2

t/Z2 =
Z2

R2 . �18�

These hypotheses for the scaling behavior of the moisture
content are highly speculative and the degree to which they
can be justified rests on how successfully they can be applied
to predicting the baking time of cakes of various dimensions.

IV. ESTIMATING THE BAKING TIME OF A
CAKE

We now utilize the revised model of Sec. III B to obtain an
explicit formula for the baking time of a cake.26 In the re-
vised model we have assumed that as a cake bakes its diffu-
sivity changes, primarily because of evaporation of moisture
at the top surface of the cake; however, for a given cake we
can calculate using Eq. �5� an effective diffusivity Deff that is
constant during the baking process. In accord with the re-
vised model the functional form of Deff should be consistent
with Eqs. �17� and �18�. If the functional form is known, it
provides a relation between the baking time and physical
dimensions of the cake, making it possible to solve for the
baking time as a function of the cake dimensions.

For each of the data entries in Table II we estimate an
effective diffusivity using Eq. �5�. We then fit these data to
an expression for Deff of the form,

Deff = a0 − a1 exp	− a2�Z2

tf
�� Z2

D2�� . �19�

The parameters are estimated to be a0=2.57�10−2, a1
=2.07�10−2, and a2=19.2.

The functional form of Eq. �19� was chosen primarily be-
cause it can be interpreted in a relatively straightforward and
physically intuitive manner. We have tried other forms with
different dependencies on the baking time and cake dimen-
sions; however, when inverted to estimate baking times they
yield multiple roots for a cake of specified dimensions. Gen-
erally, these additional roots have no obvious physical inter-
pretation. We have also considered functional forms that are
not plagued by multiple roots for the baking time and have
found the latter not to be too different from the results ob-
tained using Eq. �19�.

The effective heat diffusivity depends explicitly on the
baking time, the diameter of the pan, and depth of the cake
batter. In Figs. 6 and 7 we show the experimental values of
Deff and the theoretical fit. Rather than plotting Deff as a
function of the baking time, diameter of the pan, and depth
of the batter, we have plotted Deff as a function of tf /Z2 and
D2 /Z2.

The adjustable parameters in Eq. �19� have a simple physi-

cal interpretation. If the values of tf, D, or Z are such that the
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exponential becomes vanishingly small, the cake batter
should be maximally moist and Deff=a0. If their values are
such that the exponential approaches one, the cake should be
totally dry with the effective heat diffusivity being a0−a1.
The parameter a2 measures how readily moisture evaporates
from the cake. The three parameters a0, a1, and a2 should
also depend on the initial moisture content of the cake batter.

If we combine Eqs. �5� and �19� we obtain an implicit
formula for the baking time as a function of depth, diameter,
oven temperature, initial temperature of the cake batter, and
final temperature of the cake:

K = − Defftf�
4x1,0

2

D2 +
�2

Z2 �C1 � 1 and C2 � 1�

�2

Z2 �C1 � 1�

4x1,0
2

D2 �C2 � 1� ,
� �20�

where K is obtained from

Fig. 6. The experimental values of the effective heat diffusivity and the
theoretical fit to these values. The independent variable was selected based
on the discussion of Sec. III B.

Fig. 7. The experimental values of the effective heat diffusivity and the
theoretical fit to these values. The independent variable was selected based

on the discussion of Sec. III B.
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exp�− K� = � Tf − Ti

Tb − Ti
�

��
�x1,0J1�x1,0�

8
�C1 � 1 and C2 � 1�

�

4
�C1 � 1�

x1,0J1�x1,0�
2

�C2 � 1� .
�
�21�

The conditions C1 and C2 are defined by Eq. �7�.
We use Eqs. �20� and �21� to estimate the baking times of

cakes of various dimensions used in this study and compare
them to the actual baking times. These results are presented
in Fig. 8 and Table III. Note that Eqs. �20� and �21� exhibit
the scaling behavior that is typical of diffusion processes,
that is, the baking times are proportional to the square of a
characteristic length.

Consider the four hypothetical cakes whose dimensions
and predicted baking times are given in Table IV. For various
reasons these cakes are impractical to bake. Nonetheless,
they provide an arena for qualitatively exploring the theoret-
ical basis of Eqs. �20� and �21�. Even to someone with little
cooking experience it is not surprising that cake two requires
17 min to bake, given that a cake 8 in. diameter and 1 in.
depth requires 17 min baking time �see Table III�. It may be

Fig. 8. The theoretical and measured baking times of cakes of various
depths and diameters.

Table III. Empirical baking times and times predicted by the theoretical
model are presented for the diameters and the depths of cakes used in this
study. The baking time predicted by linear regression is also presented.

tf ttheor tlinreg Diameter D Depth Z

17 16 21 8.0 1.0
26 26 29 4.1 4.0
20 20 18 4.1 2.0
41 45 30 9.9 1.8
35 41 37 13.0 1.6
20 16 25 9.9 1.0
19 19 17 4.1 1.8
508 Am. J. Phys., Vol. 74, No. 6, June 2006
surprising that cake three requires so little time to bake,
given the baking time for cake two. The reason is that the
moisture content of cake three remains high because very
little evaporation takes place during the cooking process. As
a result, the heat diffusivity remains relatively large so that
the cake bakes quickly. Cake four requires nearly 24 h to
bake. Note that the baking time of cake four reflects the
scaling property of diffusion processes, that is, its physical
dimensions are thirty times those of number one and is there-
fore predicted to require 900 times as long to bake.

The semiempirical model for the baking time has three
adjustable parameters. We ask if performing a linear regres-
sion, which also has three adjustable parameters, would pro-
duce a model with as good or possibly better predictive abil-
ity than the revised model. The result of such an analysis for
diameter and depth dependence is

tf = − 3.00 + 2.34D + 5.74Z . �22�

In Table III we give the baking times predicted by Eq. �22�
for comparison to those predicted according to theory. We
argue as follows that the theoretical model is preferable to
the linear regression. Using the data in Table III we calculate
the sum of the squared residuals, that is, the differences be-
tween the predicted and actual value of baking time, for the
linear regression and the theoretical model. For the regres-
sion model the sum is 183, while for the theoretical model
the sum is 69. Each model has three adjustable parameters.
Thus, from a statistical perspective the theoretical model is
better than linear regression because there is less variance in
the predicted baking time. The linear regression is not based
on any physical principles underlying the baking process,
thus making it less appealing than the theoretical model. In
fact, the regression model predicts a negative baking time for
a cake of zero thickness and diameter.

Although our analysis has been applied to the génoise, we
can generalize the results. The difference between cake batter
and pastry dough is the proportions of the same ingredients.
Both typically are composed of flour, fats, and ingredients
that contain water, eggs, milk, and juice. Typically, pastry
dough contains a very small amount of liquid in proportion
to other ingredients. The lack of liquid explains why it takes
such a long time to pre-bake a pastry shell �15 to 30 min�,
even though pastry shells are generally not much more than
1
8 to 1

4 in. in depth. Cookie dough, which has a moisture con-
tent between pastry dough and cake batter, also requires a
longer time to bake than cake batter. Cookies typically re-
quire between 10 and 15 min to bake, even though they are
usually not more than 1

2 in. thick.

V. CONCLUSIONS

The primary emphasis of this study has been to explain

Table IV. The predicted baking times of four hypothetical cakes.

Cake ttheor Diameter D Depth Z

1 1.56 1.00 1.00
2 17.0 30.0 1.00
3 1.82 1.00 30.0
4 1.40�103 30.0 30.0
how modifying a cake recipe by changing either the dimen-
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sions of the cake or the amount of cake batter alters the
baking time. Our analysis has been restricted to a particular
type of cake, the génoise. We found that conduction is the
primary mechanism of heat transfer and that the diffusion
equation provides a theoretical framework for describing the
baking process; however, the heat diffusivity does not remain
constant during baking. The heat diffusivity changes during
the baking process principally because of the evaporation of
moisture at the top surface of the cake. We approximated the
cake baking process as one in which the heat diffusivity as-
sumes a constant value during baking. Its value depends on
the diameter, depth, and baking time of the cake, all of which
affect the moisture content of the cake. We then proposed a
semiempirical formula for the effective heat diffusivity. The
formula has three parameters whose values were estimated
from the data. We inverted the formula to obtain the baking
time of a cake as a function of diameter and depth. The
resulting formula exhibits scaling behavior typical of diffu-
sion processes: the baking time scales as the square of a
characteristic size of the cake.

Although we have not solved the problem of how long is
required to bake a cake, we have offered a qualitative expla-
nation of the factors that most importantly determine baking
times. In addition to the dimensions of the cake we suggest
that the moisture content of a cake is the dominant factor
affecting its baking time. This assumption explains why
pastry dough and cookie dough require a relatively long time
to bake in comparison to cake batter, after accounting for
differences in their physical dimensions.
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