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We describe an algorithm for animating time-dependent quantum wave functions in one dimension
with very high accuracy. The algorithm employs the Crank–Nicholson approximation for the time
dependence along with a Numerov extension of the discrete transparent boundary conditions
described recently by Ehrhardt. We illustrate the power of this approach by simulating the decay of
alpha particles from radioactive nuclei and the resonance scattering of electrons in a three-layer
GaAs–GaAlAs sandwich. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

Numerical simulations of time-dependent Schro¨dinger
wave functions in one space dimension began in earnest
the computer-generated motion pictures of Goldberg, S
and Schwartz,1 and first emerged as a teaching aid for und
graduate quantum mechanics in the hands of Chen.2 All nu-
merical studies since then share with these studies the
quirement that the wave function be zero at the end point
the interval. These rigid-wall boundary conditions work w
when the quantum state is forever confined, such as the
mixture of low-lying states of a potential well. But problem
arise in the treatment of scattering problems for which gr
care must be exercised to avoid spurious reflections of
reflected and transmitted waves at the boundaries. These
wanted reflections restrict the usable portion of the spa
interval used for computation and limit the duration of t
scattering event in ways that are artificial. With the adven
transparent boundary conditions,3–6 these limitations can be
overcome. The use of transparent boundary conditions m
it possible to mimic a spatial domain of infinite extent usi
boundary conditions at the end points of a finite interval. T
discretization of transparent boundary conditions has it
proved problematic, but recently Arnold and Ehrhardt ha
pioneered a technique that yields the proper discrete tr
parent boundary conditions.7,8 With discrete transparen
boundary conditions, there is no need to artificially impo
restrictions on space and time: wave packet scattering ca
simulated in an interval that includes little more than t
target, and the event can be followed as long as desire
least in principle.

The discrete transparent boundary conditions develope
Refs. 7 and 8 are based on a centered-difference approx
tion to the second spatial derivative of the evolving wa
function. Here we formulate discrete transparent bound
conditions based on the Numerov approximation, which
accurate to fifth order in the spatial step size. The impro
spatial accuracy afforded by the Numerov extension com
at a very modest computational cost. Numerical results
presented for simulating alpha decay of a radioact
nucleus, and resonant scattering from a layered semicon
tor.

II. THE ALGORITHM

We seek numerical solutions to the time-dependent Sc¨-
dinger equation in one space dimension, given the ini
351 Am. J. Phys.72 ~3!, March 2004 http://aapt.org/aj
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wave functionc(x,t0). In natural units,\51, m51/2, the
system propagator is exp(2iHt), where H52]2/]x2

1V(x) is the Hamiltonian operator and the system poten
energyV(x) is taken to be time-independent. The wave fun
tion obeys the relationc(x,t1D)5exp(2iHD)c(x,t); it is
this relation that must be discretized in space and time.

A. Crank –Nicholson method

The well-known Crank–Nicholson method9 replaces the
system propagator with the Cayley form,

exp~2 iHD!5
12 iHD/2

11 iHD/2
1O~D3!, ~1!

which is accurate to second order in the time stepD. Like the
exact propagator, this replacement has the virtue of be
unitary, and therefore is norm-preserving and inheren
stable. The Crank–Nicholson approximation to the evolut
problem is then

@11 iHD/2#c~x,t1D!'@12 iHD/2#c~x,t !. ~2!

We prefer to rewrite Eq.~2! in terms of a new function
y(x,t)[c(x,t1D)1c(x,t). If we use the definition ofH,
we find

]2y

]x2 2FV~x!2 i
2

DGy~x,t !5 i
4

D
c~x,t !, ~3!

wherec(x,t) is known ~from the previous step! andy(x,t)
is to be found from Eq.~3!.

At this point, the usual numerical procedure is to repla
the second derivative in Eq.~3! by the centered-difference
h2]2y/]x2'y(x1h)1y(x2h)22y(x), and solve the re-
sulting difference equation fory, which is accurate to third
order in the space incrementh. With just a little more com-
putational effort, however, we can realize results accurat
fifth order in h using the Numerov method, as describ
below.

B. Space discretization: The Numerov approximation

In terms of the variablex, Eq. ~3! has the structure
y9(x)5g(x)y(x)1 f (x), which lends itself to the Numerov
method. Briefly, the idea is to use this equation to evalu
the next order term in a discrete approximation to the sec
derivative. To facilitate the discussion, we abbreviatey(xj
351p © 2004 American Association of Physics Teachers
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5x01jh) as yj , and similarly forg(xj ) and f (xj ). Then a
straightforward Taylor expansion aboutxj yields

yj 111yj 2122yj5y9~xj !h
21 1

12 y(4)~xj!h
41O~h6!, ~4!

wherey(4) is the fourth derivative ofy with respect tox. If
we truncate Eq.~4! at the first term, we reproduce the fam
iar centered-difference approximation to the second der
tive. To evaluatey(4)(xj ), we note that it is (gy1 f )9uxj

and
use the usual centered-difference approximation once m
to obtain

y(4)~xj !h
25gj 11yj 111 f j 111gj 21yj 211 f j 2122gjyj

22 f j1O~h4!. ~5!

We substitute this result into Eq.~4! to obtain a refined esti
mate ofy9(xj ). We use this result to transform the origin
equation, which in our notation becomesy9(xj )5gjyj1 f j ,
to a finite difference relation that differs from the original b
terms that are of orderO(h6). In terms of the two new func-
tions dj[12h2gj /12 and wj[djyj2h2f j /12, the result
takes the very compact form

wj 111wj 215F21h2
gj

dj
Gwj1h2

f j

dj
. ~6!

For comparison, we note that the less accurate cente
difference approximation to the second derivative yields
equation identical to Eq.~6!, but with dj[1 andwj[yj .

The quantitieswj , yj , and f j also depend on the timet,
which we discretize astn5t01nD, and track using the no
tation: wj→wj

n[djyj
n2h2f j

n/12. The Crank–Nicholson pro
cedure, Eq.~3!, is described byyj

n5c j
n111c j

n , gj5Vj

22i /D, and f j
n54ic j

n/D.
Equation~6! is a three-term recursion relation for the u

known wj . The numerical solution is straightforward if th
initial values, sayw0

n andw1
n , are known, but this informa

tion is atypical for evolution problems. More commonly, th
wave function can be assumed to vanish at the end poin
a sufficiently large interval, corresponding tow0

n5wJ
n50 for

some J.0 and all n. Goldberg et al. showed how such
rigid-wall boundary conditions can be handled numerical1

Their technique is to reduce the original three-term recurs
relation to a pair of two-term recursions for two new fun
tions ej and qj

n by requiring thatwj 11
n 5ejwj

n1qj
n for all j

51,2, . . .J21. If we use this relation in Eq.~6!, we find

ej1
1

ej 21
521h2

gj

dj
, ~7a!

qj
n5

qj 21
n

ej 21
1h2

f j
n

dj
. ~7b!

Equation~7! generatesej and qj
n from the initial valuese0

and q0
n . The two-for-one replacement means that one

these data points may be chosen arbitrarily, while the othe
dictated by the boundary conditions. The trick is to recogn
that for rigid walls (w0

n50), we can lete0→`, thus permit-
ting both ej and qj

n to be found immediately from Eq.~7!,
assuming only thatq0

n is finite. Then, starting withwJ
n50, we

can use wj 21
n 5(wj

n2qj 21
n )/ej 21 to construct

wJ21
n ,wJ22

n , . . . ,w1
n . As a bonus, we note that for the ev
352 Am. J. Phys., Vol. 72, No. 3, March 2004
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lution problem, theej need be computed justonceat the start
of the process~by contrast, theqj

n must be recalculated a
each time stepn).

The foregoing procedure is the one traditionally follow
in animating one-dimensional quantum wave functions. A
although the method easily accommodates the improved
curacy afforded by the Numerov scheme, the author is
aware of any simulations that employ this refinement. In a
case, the rigid-wall boundary conditions pose unaccepta
limitations in scattering problems or other situations~for ex-
ample, radioactive decay! where the wave function is no
inherently confined. With transparent boundary conditio
or, more precisely, discrete transparent boundary conditio
these limitations can be completely overcome.

C. Transparent boundary conditions

Transparent boundary conditions enable us to mimic
spatial domain of infinite extent using boundary conditio
applied at the end points of a finite interval. In quantu
applications, this interval must support the initial wave fun
tion, which is required to vanish everywhere in the exterio10

The exterior region also is assumed to be force free, so
the potential energy is constant there. The original trans
ent boundary condition formulation for the Schro¨dinger
equation dates to 1982,3 but only recently has the prope
discretization of the results been given,7,8 thereby opening
the door to the full power of the method. Because this wo
is not well known or readily accessible to many physicis
we outline in the Appendix the principal ideas and resu
The Appendix also establishes corrections to the stand
treatment that are necessary when the Numerov schem
employed.

For our purposes, the basic point is that the boundary c
dition on the left (j 50) takes the formw1

n5aw0
n1bn,

wherea and bn are given in the Appendix. If we compar
with w1

n5e0w0
n1q0

n , we find e05a0 and q0
n5b0

n @see Eq.
~A15!#:

e05a05a06Aa0
221, ~8a!

q0
n5b0

n5d0* ~a0* 2a0!c0
n1d0~a02a0!(

k51

n

,n2k11c0
k .

~8b!

Here d0 and a0 denote the values atj 50 taken bydj51
2h2gj /12 andaj511h2gj /2dj , respectively, and,n are co-
efficients related to the Legendre polynomials@see Eq.
~A11!#. The sign ambiguity in Eq.~8a! is resolved by the
requirement thatua0u.1. Notice that to computeq0

n , we
need, in addition to the current value ofc, all earlier values
c0

k which occur in the convolution on the right. This histo
is the price we must pay for having transparent bound
conditions. From Eq.~8! we construct the remainingej ,qj

n

using the recursion relations of Eq.~7!.
In like fashion, the transparent boundary condition on

right becomeswJ21
n 5aJwJ

n1bJ
n , with aJ ,bJ

n given by@see
Eq. ~A17!#

aJ5aJ6AaJ
221, ~9a!

bJ
n5dJ* ~aJ* 2aJ!cJ

n1dJ~aJ2aJ!(
k51

n

,n2k11cJ
k . ~9b!
352Curt A. Moyer
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HeredJ andaJ are the values ofdj andaj , respectively, at
the right boundary (j 5J). Again, the correct root is tha
which makes uaJu.1. Together with wJ

n5eJ21wJ21
n

1qJ21
n , Eq. ~9! leads to the correct initial value forwJ

n ,

wJ
n5

qJ21
n 1bJ

neJ21

12aJeJ21
, ~10!

from which we generatewJ21
n ,wJ22

n , . . . ,w0
n using wj 21

n

5(wj
n2qj 21

n )/ej 21 as before. Finally, the wave function a
the new timec j

n11 is recovered fromwj
n by unfolding the

previous transformations:

c j
n1152c j

n1 i
h2

3D

c j
n

dj
1

wj
n

dj
. ~11!

We close this section with three remarks concerning
use of transparent boundary conditions. First, transpa
boundary conditions can be used with the Numerov sche
to improve accuracy at a modest computational cost. Eq
tions ~8! and ~9! are written for the Numerov discretizatio
of the Crank–Nicholson evolution problem. Without this r
finement, the equations are identical but for the replacem
d51 in the final results, a small price to pay for improvin
the accuracy fromO(h3) to O(h5). Second, because tran
parent boundary conditions require that we retain all p
values of the wave function on the boundaries@to compute
the convolution in Eqs.~8! and ~9!#, it is straightforward to
reconstruct the solution for any previous time. In effect,
animation can be run backward, despite the apparent los
information as the waveform moves beyond the field of vie
For the same reason, however, the amount of informa
that must be stored and manipulated increases steadily
time, which brings us to the last point: the sharply increas
cost of evaluating the convolution in Eqs.~8! and ~9! im-
poses a practical limit on the duration of the simulation. O
strategy to deal with this problem consists of approximat
the convolution kernel ,n by a discrete sum o
exponentials.11 Sacrificing accuracy for speed in this wa
may be desirable in some applications, but will not be p
sued further here.

In summary, the essence of the proposed algorithm
calculating time-dependent Schro¨dinger wave functions on a
finite interval can be reduced to the following steps.

~1! Discretize the space and time variables asxj5x01 jh
and tn5t01nD. The spatial interval extends fromx0 to x0

1Jh, corresponding to 0< j <J, andt0 (n50) denotes the
initial time. In terms of the time stepD and spatial grid size
h, introduce new variablesgj[Vj22i /D, dj[12h2gj /12,
f j

n[4ic j
n/D, and wj

n[dj (c j
n111c j

n)2h2f j
n/12. Here Vj

[V(xj ) and c j
n[c(xj ,tn) are the discrete versions of th

system potential energy and wave function, respectiv
Note thatc j

n is known from a previous step or from th
initial waveform; with each new time step the problem is
find c j

n11 or, effectively,wj
n .

~2! Calculateej and qj
n for j 51,2, . . . ,J21 from their

values at the left boundaryj 50 and the recursion relation
of Eq. ~7!. For transparent boundary conditions, the pro
start valuese0 and q0

n are given by Eq.~8! with a051
1h2g0/2d0 and ,n defined by Eq.~A11!. The numbersej

need be found only once at the outset, whereas theqj
n must

be recalculated at each time step.
353 Am. J. Phys., Vol. 72, No. 3, March 2004
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~3! Use ej and qj
n to calculate wj

n for j 5J21,J
22, . . . ,0 from the recursion relationwj 11

n 5ejwj
n1qj

n and
the value ofwj

n at the right boundaryj 5J. For transparent
boundary conditions, the boundary valuewJ

n is given by Eq.
~10! with the definitions Eq.~9! andaJ511h2gJ/2dJ .

~4! Recoverc j
n11 from wj

n using Eq.~11!.

III. IMPLEMENTATION AND RESULTS

We implemented the algorithm of the preceding section
Java to take advantage of Java’s natural capabilities in
areas of Web integration and portability. These capabilities
Java must be balanced against its inferiority compared t
or FORTRAN for scientific programming. For example, Ja
has no native support for complex number arithmetic,
essential component of most scientific applications, incl
ing the one described here. Although third-party packa
are available to fill the void, we constructed our ow
c-number class, limiting it to just the basic methods we
quire. Following Styer,12 the complex-valued wave functio
is portrayed using a color-for-phase scheme, in which
phase is mapped to the hue~the degree of red, green, or blue!
component of an hue-saturation-brightness color model.
also used GL4Java, an OpenGL package developed for
Java language that boosts graphics performance and al
for faster, smoother animations.13 Specific results are dis
cussed below for several applications especially suited
transparent boundary conditions. The code used to gene
these results is part of a larger package calledQMTOOLS,
which is available on request from the author and slated
inclusion with the 3rd edition ofModern Physicsby Serway,
Moses, and Moyer.14

A. Traveling Gaussian wave packet

The simplest nontrivial example of a time-depende
quantum wave function, the free Gaussian wave packet,
become a benchmark in numerical computations of this s
The potential energy is everywhere zero for this case and
initial wave is described by

c~x,0!5exp~ ikx!exp~2@x2x0#2/2s2!, ~12!

wheres determines the width of a packet centered atx0 . We
useds50.125 andx050.5. The choicek550 endows our
packet with group velocity 2k5100. The computational in-
terval extends fromx50 to x51, and includes a mere 16
points for a relatively coarse grid size ofh51/160. The
packet has an observable amplitude over the approxim
range x063s: at the end points, the amplitudeuc(0,0)u
5uc(1,0)u53.3531024, not zero as required by the theor
but small enough to have no appreciable effect. For the t
step, we tookD51025. As is well known, such a packe
travels to the right and spreads uniformly, while retaining
Gaussian profile. Figure 1 shows our numerical resultst
50.004 andt50.009. Notice the complete absence of a
numerical reflections at the right boundary—clear eviden
of transparent boundary conditions. Fort50.009, the packet
is nearly absent from view; theory shows that at this time
is centered atx51.4 and has spread to a widths
5A(0.125)214(0.009)2/(0.125)250.191, hence the ‘‘tail’’
still visible at the extreme right of Fig. 1~b!.
353Curt A. Moyer
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B. Resonant scattering from a double barrier

Our next example is an application drawn from semico
ductor device physics: a wave packet scattering resona
from a double rectangular barrier. The initial wave is ag
Gaussian as in Eq.~12!, but this time we usedk50.31, s
5A10, andx05225 in units where length is measured
nanometers, time in femtoseconds (1 fs510215 s), and en-
ergy in electron volts. The barriers are 0.25 eV high an
nm wide, with a gap of the same width separating the tw
For the particle mass we tookm50.067me534.24 keV/c2.
These choices model electron transport in a three-la
GaAs-Ga12xAl xAs sandwich;15 the barrier regions are
formed from the GaAs matrix by doping with about 30%
content, and the effective mass of electrons in GaAs is ab
0.067 of the free-electron value. The resulting heterostr
ture acts as a selective energy filter, transmitting only th

Fig. 1. A rightward-traveling Gaussian waveformc(x,t) at ~a! t50.004 and
~b! t50.009. The interval shown is 0<x<1. Shades of gray in black an
white represent the phase of the wave. The complete absence of refle
at the boundaries results from the use of transparent boundary condi
The initial waveform is given by Eq.~12! with k550, x050.5, ands
50.125 in units where\51 andm51/2.
354 Am. J. Phys., Vol. 72, No. 3, March 2004
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electrons with energies close to the eigenenergies of the
tential well formed by the twin barriers. As it happens, t
average energy of the incident wave packet, 0.083
closely matches the ground state energy of this well.~In
practice, the electron energy is fixed at the Fermi energy
GaAs, and the device is tuned to resonance by applyin
suitable bias voltage that alters the well energies.!

The sequence shown in Fig. 2 illustrates the scatter
event. The computational interval extends from240 to
140 nm with a grid sizeh50.156 25 nm~512 points! and
time stepD50.1 fs. Figure 2~a! shows interference fringe
developing on the leading edge of the incident wave as it fi
encounters the barrier, followed later by the emergence
recognizable transmitted wave packet in Fig. 2~b!. This
transmitted wave is broader than usual, because it is c
posed of only those~relatively few! components in the inci-
dent packet with energies within the narrow range of re
nance. The reflected wave in this case is unusual, bein
multi-peaked, coherent wave train that moves with a sp
that is independent of the average energy of the incid
packet.16,17 Long after the main scattering event is overt
5700 fs), a small remnant of the initial wave remai
trapped between the barriers, steadily losing amplitude w
time @Fig. 2~c!#. This residual wave resembles the bou
state at this energy and represents particle trapping; the
companying time delay in the scattering process is a w
known consequence of resonance.

In the absence of transparent boundary conditions,
scattering event and subsequent particle trapping would
far more difficult to model effectively. With rigid-wall
boundaries, we must be sure that the reflected and trans
ted packets at the end of the event are out of the region of
potential, yet still far enough from the end points to avo
spurious reflections. The remedy adopted in Ref. 1 was
confine the event to the middle half of the interval, in effe
‘‘wasting’’ half of it. Given the initial packet speed (\k/m
50.541 nm/fs), a very conservative estimate~which ignores
wave packet spreading! places the rigid-wall interval length
required to show Fig. 2~c! at about 760 nm, or nearly a
order of magnitude larger than that for transparent bound
conditions. To preserve the same spatial resolution wo
require an increase in the number of grid points by the sa
factor.

C. Alpha decay of a radioactive nucleus

Our final example concerns radioactivity, and makes
an enlightening pedagogical activity. The potential is chos
to model alpha decay from a radioactive nucleus: it cons
of a square well bounded on the right by a thin barrier~a
‘‘leaky’’ well !. The well depth and barrier height are equal
30 MeV and the width of the well and barrier areL55 fm
andw51 fm, respectively. The mass is that of an alpha p
ticle, m54.0026 u'3728 MeV/c2 (1 u5931.5 MeV/c2 is
the atomic mass unit!. The initial wave is a Gaussian con
fined to the potential well, to represent an alpha particle w
its parent nucleus. For this example, we used Eq.~12! with
k50, x052.5 fm ~the midpoint of the well!, and s
51.0 fm, small enough to make the initial probability o
finding the alpha outside the well negligible. The compu
tional interval extends fromx523 fm to x515 fm and
includes 512 points, for a grid spacingh53.5156
31022 fm. The time step isD510224 s.

ons
ns.
354Curt A. Moyer
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Fig. 2. Resonant scattering of a Gaussian wave packetc(x,t) from a double
barrier.~a! The incident packet first encounters the barrier att516.0 fs and
~b! a recognizable transmitted wave emerges att548.0 fs. ~c! Long after
the encounter (t5700 fs), a remnant of the colliding packet remains trapp
in the well formed by the two barriers. Parameters for the initial wave,
~12!, were chosen to model electron transport in a GaAs–Ga12xAl xAs het-
erostructure, with the average packet energy, 0.083 eV, closely matchin
lowest quasidiscrete energy of the well formed by the two barriers.
355 Am. J. Phys., Vol. 72, No. 3, March 2004
Fig. 3. Simulating alpha decay from a radioactive nucleus.~a! Initially the
alpha is described by a Gaussian wave packetc(x,t) localized to the
nuclear well. ~b! The short-term waveform ‘‘pulsates,’’ as shown fort
50.0005 as (1 as510218 s). ~c! At t50.038 as, the waveform has assum
a stable form marked by the steady flow of probability from the nucl
well. The average alpha particle energy is 2.622 MeV, well below the
MeV height of the nuclear barrier. The barrier thickness is 1 fm, and
interval shown extends fromx523 fm to x515 fm.
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Fig. 4. The logarithm of survival prob-
ability vs time for the simulation of
Fig. 3. The short-term fluctuations ac
company the pulsating waveform
shown in Fig. 3~b!; these give way to
the linear behavior that marks expo
nential decay fort*0.03 as. A straight
line fit to the data gives a decay rat
l55.8831018 Hz, corresponding to a
half-life of 1.18310219 s. The results
agree within an order of magnitude
with the predictions of the semiclassi
cal model of radioactive decay.
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Figure 3~a! shows the initial wave packet; at this instan
the alpha particle can be found in the well with probabil
0.9996, or near certainty. The average alpha particle ene
2.622 MeV in our model, is far below the height of th
potential well~and somewhat above the lowest quasidiscr
level energy, 1.508 MeV!, so the alpha must tunnel throug
the barrier to escape. Figure 3~b! is illustrative of the wave-
form ‘‘pulsations’’ that characterize the early stages of dec
These pulsations gradually fade, eventually changing
original c to a form marked by a steady flow of probabili
from the nuclear well, as shown in Fig. 3~c!.

As the simulation proceeds, we record the survival pr
ability, the probability that the alpha particle can still b
found within the confines of the potential well. Figure
shows the survival data at regular intervals plotted on a lo
rithmic scale. The abscissa is the time measured in atto
onds (1 as510218 s). We observe clear short-term fluctu
tions that give way to a steady decline after about
50.03 as~some 30 000 time steps!. The short-term fluctua-
tions accompany the early pulsating waveform, while
linearity of the long-term data on a logarithmic scale impl
exponential decay. The slope of this line, 5.8831018 s21, is
the characteristic decay ratel, from which we obtain the
half-life T1/25 ln2/l51.18310219 s for this process. Thes
results are to be compared with the standard semiclas
treatment which predicts exponential decay at a rate equ
the collision frequency multiplied by the barrier transparen
at this energy. For~kinetic! energyE52.622 MeV, the alpha
has velocityv/c5A2(2.622)/372853.750531022, imply-
ing a collision frequencyf 5v/2L51.12431021 Hz. And for
alpha particles withE52.622 MeV, the transmission facto
for a square barrier 30 MeV high and 1 fm wide is read
found to be18 T51.31831022, giving a predicted decay rat
l5 f T(E)51.4831019 s21 and half-life T1/254.68
310220 s. This order of magnitude agreement is likely
that we should expect from such a simplistic argument.
the simulation shows, the process of decay is far more c
plex than the semiclassical argument suggests~see, for ex-
ample, the discussion by Kemble19!. The same point has
been emphasized again only recently, as analytical res
reported for a semi-infinite well with ad-function barrier
show small, short-term fluctuations in the survival probab
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ity, and the reappearance of oscillations in the long te
which signal a crossover from exponential to power la
behavior.20 The former are reproduced in our simulation, b
the latter are not, presumably because they occur at surv
probabilities that are so small (;1026 in the model calcula-
tions! as to require much too long to realize.

Again, transparent boundary conditions are indispensa
to this application. With rigid-wall boundary conditions, d
cay from the nuclear well implies a buildup of probability
the adjacent well formed by the barrier and what is now
infinite barrier on the far right. In turn, this accumulation
probability leads to reverse tunneling, which interferes w
the decay process under study. To determine a handle on
effect, we note that when the survival probability drops
0.5, the reverse tunneling rate is simply the fractionL/L0 of
the forward amount, whereL0 is the width of the exterior
well. To keep this undesirable effect at the 1% level wou
require a hundredfold enlargement of the computational
terval, along with a proportionate increase in the number
grid points to maintain the same spatial resolution.

IV. CONCLUSION

The application of discrete transparent boundary con
tions has been extended to include a Numerov discretiza
of the spatial grid. The improved accuracy afforded by t
Numerov extension is shown to come at a modest comp
tional cost. The method has been implemented in Java
demonstrated for two applications where the use of trans
ent boundary conditions is especially advantageous: simu
ing resonant scattering of electrons in a layered semicond
tor, and modeling alpha decay from a radioactive nucleu
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APPENDIX: TRANSPARENT BOUNDARY
CONDITIONS IN THE NUMEROV
APPROXIMATION

We outline the theory of discrete transparent bound
conditions when the Numerov approximation to the seco
derivative is used in the Crank–Nicholson evolution pro
lem. The discussion extends the results presented recent
Ehrhardt.8

The equation to be studied is Eq.~6! with wj
n5dj (c j

n11

1c j
n)2h2f j

n/12, dj512h2gj /12, gj5Vj22i /D, and f j
n

54ic j
n/D. The strategy is to solve Eq.~6! exactly in the

exterior regions to obtain the proper connections at the
( j 50) and right (j 5J) end points. In the exterior regions
we assume the initial waveform vanishes:c j

050 for j <0
and j >J. ~In fact, the development also requires the init
wave to vanish at the neighboring points,c1

05cJ21
0 50.)

The exterior regions also are assumed to be force-free
thatgj anddj become constants which we denote simply
g and d, respectively. It is also convenient to introducel
52h2/D ~twice the parabolic mesh ratio!.

Equation~6! is a difference relation in both the space (j )
and time (n) indices. To handle the latter, we introduce theZ
transform ofc defined by

c̃ j~z![ (
n50

`

c j
nz2n. ~A1!

If we apply the Z transform to Eq.~6! in either exterior
region, we find

c̃ j 11~z!1c̃ j 21~z!52ac̃ j~z!1 i
2l

d2

1

z1c
c̃ j~z!, ~A2!

with new constantsa511h2g/2d and c512 il/6d. It is
worth noting thatcd5d* , implying that c is a complex
number of unit magnitude. The similarity to Eq.~6! suggests
that we try the same method of solution, that is, introdu
auxiliary functionsej (z) andqj (z) by requiring

c̃ j 11~z!5ej~z!c̃ j~z!1qj~z!. ~A3!

We substitute Eq.~A3! into Eq. ~A2! and see that the auxil
iary functions satisfy@see Eq.~7!#

ej~z!1
1

ej 21~z!
52a1 i

2l

d2

1

z1c
, ~A4a!

qj~z!5
qj 21~z!

ej 21~z!
. ~A4b!

Becausej does not appear on the right side of Eq.~A4!,
the recursion relation forej (z) is satisfied by a uniform
ej (z)5e(z), and Eq.~A4a! reduces to a quadratic form fo
e(z). The two roots, saye6(z), are inverses:e1(z)e2(z)
51. We use this last property to show thatqj (z) can be made
to vanish everywhere in the exterior region. On the leftj
50,21,22, . . . ), wechoose the rootue(z)u.1 to conclude
from Eq. ~A4b! that

qj~z!5
qj 21~z!

e~z!
5

qj 22~z!

e2~z!
5¯5

qj 2N~z!

eN~z!
→0. ~A5!

Similarly, in the right exterior region we take the ro
ue(z)u,1, to showqJ(z)5qJ11(z)5¯50. In this way, the
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external problem in either region is reduced to

c̃ j 11~z!5e~z!c̃ j~z!, ~A6!

with e(z) the proper root of Eq.~A4a!. If we iterate Eq.~A6!

a suitable number of times, we obtainc̃ j (z) anywhere in the

exterior in terms of its value at the end points,c̃0,J(z). How-
ever, inverting theZ transform of the result to recoverc j

n is
a formidable task. Fortunately, the boundary conditions
seek require only that we invert Eq.~A6! where the interior
and exterior regions meet, that is, atj 50, J. The inversion,
while still challenging, is nonetheless doable.

We begin by writing an explicit result for the rootse6(z),
which we recast in the following form:

~z1c!e6~z!5az1a* c6zAa221A122mx1x2, ~A7!

m[
12uau2

u12a2u
, ~A8!

x[
exp~2 if!

z
, ~A9!

w[arg@~a221!/c#. ~A10!

The inversion of theZ transform requires a representation
the square root in inverse powers ofz. The desired develop
ment follows directly from a Taylor expansion o
A122mx1x2 in powers ofx, reminiscent of the generatin
function for Legendre polynomials. With some extra effo
we find

A122mx1x252(
0

`

,nz2n, ~A11!

,n[
exp~2 inw!

2n21
@Pn~m!2Pn22~m!#, ~A12!

wherePn is the Legendre polynomial of degreen ~negative
subscripts imply a value of zero!. Thus, ,0521 and ,1

5m exp(2iw).
With these results, Eq.~A6! at the left boundary (j 50)

becomes

~z1c!c̃ j 11~z!5Faz1a* c7zAa221(
0

`

,nz2nG c̃0~z!.

~A13!

To invert theZ transform, we expand both sides of Eq.~A13!
in powers of 1/z and equate coefficients of like powers. Afte
some manipulation, we find the transparent boundary co
tion on the left

c1
n111cc1

n5~a6Aa221!c0
n111a* cc0

n

7Aa221(
k51

n

,n2k11c0
k , ~A14!

or, in terms of thewj
n ,

w1
n5~a6Aa221!w0

n1~a* 2a7Aa221!d* c0
n

7dAa221(
k51

n

,n2k11c0
k . ~A15!
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Similarly, at the right boundary we takej 5J21 in Eq.~A6!
to obtain

cJ21
n111ccJ21

n 5~a7Aa221!cJ
n111a* ccJ

n

6Aa221(
k51

n

,n2k11cJ
k , ~A16!

or, equivalently,

wJ21
n 5~a7Aa221!wJ

n1~a* 2a6Aa221!d* cJ
n

6dAa221(
k51

n

,n2k11cJ
k . ~A17!

At each boundary, the relevant parametersa, c, andd ~in-
cludingm andw subsumed in the,n) take values appropriat
to the adjoining exterior region, and these will differ if th
left and right side saturation potentialsV are not equal.
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