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We describe an algorithm for animating time-dependent quantum wave functions in one dimension
with very high accuracy. The algorithm employs the Crank—Nicholson approximation for the time
dependence along with a Numerov extension of the discrete transparent boundary conditions
described recently by Ehrhardt. We illustrate the power of this approach by simulating the decay of
alpha particles from radioactive nuclei and the resonance scattering of electrons in a three-layer
GaAs—GaAlAs sandwich. ©004 American Association of Physics Teachers.
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[. INTRODUCTION wave functiony(x,tg). In natural unitsfi=1, m=1/2, the
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Numerical simulations of time-dependent Salinger system _propagator s exp(Ht), where H=—J%/0x .
wave functions in one space dimension began in earnest with ¥ () 1S the Hamiltonian operator and the system potential
the computer-generated motion pictures of Goldberg, SheyznerayV(x) is taken to be time-independent. The wave func-
and Schwart?,and first emerged as a teaching aid for undertion obeys the relationy(x,t+A)=exp(=iHA)¢(x1); it is
graduate quantum mechanics in the hands of Ghdhnu- this relation that must be discretized in space and time.
merical studies since then share with these studies the re-
guirement that the wave function be zero at the end points of\. Crank —Nicholson method
the interval. These rigid-wall boundary conditions work well .
when the quantum sgt]ate is forever cgnfined, such as the ad- The well-known Crank-Nicholson methbdeplaces the
mixture of low-lying states of a potential well. But problems SYStem propagator with the Cayley form,
arise in the treatment of scattering problems for which great 1—iHA/2
care must be exercised to avoid spurious reflections of the exp(—iHA)= m+O(A3), 1)
reflected and transmitted waves at the boundaries. These un-
wanted reflections restrict the usable portion of the spatialvhich is accurate to second order in the time stepike the
interval used for computation and limit the duration of theexact propagator, this replacement has the virtue of being
scattering event in ways that are artificial. With the advent ofunitary, and therefore is norm-preserving and inherently
transparent boundary conditiof? these limitations can be stable. The Crank—Nicholson approximation to the evolution
overcome. The use of transparent boundary conditions makgsoblem is then
it possible to mimic a spatial domain of infinite extent usin : .
bopundary conditions at I?he end points of a finite interval. Tﬁqe [1HTHARIY(tEA)~[1=THALZ]g(X,1). 2
discretization of transparent boundary conditions has itselfVe prefer to rewrite Eq(2) in terms of a new function
proved problematic, but recently Arnold and Ehrhardt havey(x,t)=(x,t+A)+ ¢(x,t). If we use the definition o,
pioneered a technique that yields the proper discrete transve find
parent boundary conditioﬁé With discrete transparent 5
boundary conditions, there is no need to artificially impose a_y_
restrictions on space and time: wave packet scattering can be ax?
simulated in an interval that includes little more than the
target, and the event can be followed as long as desired,
least in principle.

The discrete transparent boundary conditions developed i P .
Refs. 7 and 8 are bag,ed ona cente}r/ed-diﬁerence apprgximg_‘ze 2390020' derivative in EqS) by the centered-difference,
tion to the second spatial derivative of the evolving wave &.y/ax. ~y(x+h)+y(?<—h)—2y(?<), .and solve the re-
function. Here we formulate discrete transparent boundaryulting difference equation foy, which is accurate to third
conditions based on the Numerov approximation, which i€order in the space incremeht With just a little more com-
accurate to fifth order in the spatial step size. The improvedputanonal effort, however, we can realize results accurate to
spatial accuracy afforded by the Numerov extension comeéfth order in h using the Numerov method, as described
at a very modest computational cost. Numerical results argelow.
presented for simulating alpha decay of a radioactive
nucleus, and resonant scattering from a layered semicondup: Space discretization: The Numerov approximation
tor.

2

4
VOO =i Ty =i 3 #(x.D), ®)

V\{here #(x,t) is known (from the previous stepandy(x,t)
& to be found from Eq(3).
At this point, the usual numerical procedure is to replace

In terms of the variablex, Eq. (3) has the structure
Il. THE ALGORITHM y"(X)=g(x)y(x) +f(x), which lends itself to the Numerov
method. Briefly, the idea is to use this equation to evaluate
We seek numerical solutions to the time-dependent Schrdhe next order term in a discrete approximation to the second
dinger equation in one space dimension, given the initiaderivative. To facilitate the discussion, we abbrevig(g;
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=Xo+jh) asyj;, and similarly forg(x;) andf(x;). Then a lution problem, thes; need be computed jushceat the start

straightforward Taylor expansion aboytyields of the procesgby contrast, they] must be recalculated at
" each time stem).

Yis1tYi-1 2y =y 0+ iy Poght+ohd), - (4) The foregoiﬁg); procedure is the one traditionally followed
wherey™ is the fourth derivative of with respect tax. If ~ in animating one-dimensional quantum wave functions. And
we truncate Eq(4) at the first term, we reproduce the famil- although the method easily accommodates the improved ac-
iar centered-difference approximation to the second derivacuracy afforded by the Numerov scheme, the author is un-
tive. To evaluatQ/(“)(xj), we note that it is §y-+ f )u|xj and aware of any simulations that employ this refinement. In any

h | d-diff L case, the rigid-wall boundary conditions pose unacceptable
use the usual centered-difference approximation once moligyiiations in scattering problems or other situatidfe ex-

to obtain ample, radioactive decaywhere the wave function is not
y(4)(xj)h2:gj+1yj+1+fj+1+gjflyj71+fj71_zgjyj inherently confined. With transparent boundary conditions
. or, more precisely, discrete transparent boundary conditions,
—2f;+0(h%). (5)  these limitations can be completely overcome.

We substitute this result into E¢4) to obtain a refined esti-

mate Ofy"(Xj). We use this result to transform the Original C. Transparent boundary conditions

equation, which in our notation becomg¥(x;) =g;y;+f;, N o

to a finite difference relation that differs from the original by ~ Transparent boundary conditions enable us to mimic a
terms that are of orde®(h®). In terms of the two new func- spatial domain of infinite extent using boundary conditions

tions d,=1—h°g,/12 and w;=dyy;—hfy12, the resut  ERECE T FOIC B S ipport the imtial wave func.
takes the very compact form PP ' PP

tion, which is required to vanish everywhere in the extefor.
,9i o] The exterior region also is assumed to be force free, so that

2+h" g iwj+h7or (6)  the potential energy is constant there. The original transpar-
] ] ent boundary condition formulation for the Schinger

For comparison, we note that the less accurate centeregquation dates to 1982but only recently has the proper

difference approximation to the second derivative yields ardiscretization of the results been givehthereby opening

equation identical to E¢(6), but withd;=1 andw;=y; . f[he door to the full power _of the met_hod. Because this_ v_vork
The quantitiesv;, y;, andf; also depend on the timg IS not well known or readily accessible to many physicists,

which we discretize a,=ty+nA, and track using the no- We outline in the Appendix the principal ideas and results.
tation:wj—>w?zdjy}‘—hzf?/12. The Crank—Nicholson pro- The Appendix also establishes corrections to the standard

cedure, Eq.(3), is described byy?=w}‘“+w}‘, 9=V, 'gﬁ]z?)tlrgigé.that are necessary when the Numerov scheme is

—2i/A, andf=4iyj/A. For our purposes, the basic point is that the boundary con-
Equation(6) is a three-term recursion relation for the un- gition on the left {=0) takes the formw! = awj3+ 8",

known w; . The numerical solution is straightforward if the \yhere o« and B" are given in the Appendix. If we compare

initial values, saywg andwj, are known, but this informa- ith wi=eqwl+q7, we find e,=a, and gll= g0 [see Eq.

tion is atyp_ical for evolution problems._More commonly,_ the (A15)]:

wave function can be assumed to vanish at the end points of

a sufficiently large interval, correspondingwg=w}=0 for eo=ap=ap* Jag—1, (83

someJ>0 and alln. Goldberget al. showed how Slé];h n

rigid-wall boundary conditions can be handled numerically. N_ pN_ g% (g% _ n _ k

T%eir technique is){o reduce the original three-term recurs)i/on Go=Ao=o (a5 ~ o) Yo+ do(@o aO)kzl bn-+rvo.

Wj i1t Wj_ 1=

relation to a pair of two-term recursions for two new func- (8h)
tions e; andqj' by requiring thatwj' ;= ewj'+qf' for all ] Here d) and a, denote the values gt=0 taken byd;=1
=1,2,...J—1. If we use this relation in Eq6), we find —hzgj/12 anda; =1+ hzngZdj , respectively, and , are co-
1 9 efficients rela}ted to f[he_ Le_:gendre polynomie[lsee Eq.
e+ e-_:2+ hzd_J-’ (ra  (All)]. The sign ambiguity in Eq(8a) is resolved by the
i-1 i requirement thata,|>1. Notice that to computegy, we
q]n_l f? need, in addition to the current value #f all earlier values
q?=;+ hzd—j. (7b) & which occur in the convolution on the right. This history

is the price we must pay for having transparent boundary
Equation(7) generate; and qj from the initial valuese,  conditions. From Eq(8) we construct the remaining .q
and g). The two-for-one replacement means that one ofusing the recursion relations of E(). N
these data points may be chosen arbitrarily, while the other is I like fashion, the transparent boundary condition on the
dictated by the boundary conditions. The trick is to recognizdight becomesvy_, = a;wj+ B3, with a;, 8] given by[see
that for rigid walls wj=0), we can lek,—, thus permit-  Ed. (A17)]
ting bqth e; and q? tg bfa .found immedigtely from Ed7), ay=a,* /a§—1, (93)
assuming only thatg is finite. Then, starting witiv=0, we .
can use W ;=w'—q" /e _ to  construct N k% n K

i-1 IR VAR =dj(aj — +dj(a;— [ . (9b
wj_;,Wi_,, ... wj. As a bonus, we note that for the evo- By=di(a; —ay)ystdiay aj)gl n-keads. (D)
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Hered; anda, are the values ofi; anda;, respectively, at (3) Use g; and gl to calculate w! for j=J—1J

J J

the right boundary j(=J). Again, the correct root is that —2, ... 0from the recursion relatiom], ,=ejw] +q; and
which makes |a)|>1. Together with wij=e;_,Wj_;  the value ofw] at the right boundary=J. For transparent
+03-1, Eq.(9) leads to the correct initial value far], boundary conditions, the boundary valw§ is given by Eq.
QB s (10) with the definitions Eq(9) anda,=1+h?g,/2d;.
wi=——-—""= (10) (4) Recoven,//Jn+l from w]' using Eq.(11).
1-a5e; 4
from which we generatev)_;,wj_,, ... wg using w}_;

=(W}‘—q}‘,1)/ej,1 as before. Finally, the wave function at 1. IMPLEMENTATION AND RESULTS

the new timey! ! is recovered fromw]' by unfolding the

j We implemented the algorithm of the preceding section in

previous transformations: Java to take advantage of Java’s natural capabilities in the
h2 g W areas of Web integration and. port_ab[lity. '_rhgse capabilities of
Y= — i Ra R (11  Java must be balanced against its inferiority compared to C

! I U3A d;p o d or FORTRAN for scientific programming. For example, Java

thé]as no native support for complex number arithmetic, an
I%ssential component of most scientific applications, includ-

boundary conditions can be used with the Numerov schemf'9 the F:n& detscr#:l)letzi[hhere.' éAIthough thl{d—p)tarc;ty packages
to improve accuracy at a modest computational cost. Equ:flre avaiiable to i € void, we constructed our own

tions (8) and (9) are written for the Numerov discretization c-r)umlkler” class, ls'm't'i{]zg r']t to JUStIthe bﬁs'g metho;js we re-
of the Crank—Nicholson evolution problem. Without this re- dUire- Following Styer, tl € ?om;?]ex-va uhe wave UE.Ct'r?nh
finement, the equations are identical but for the repIaceme'ﬁhgggzgﬁgp:zlg?o?hgohztggggg?eseeoﬁegmger,eg:w v(\;rlg]u; €
d=1in the final res“'gs' a smasll price to pay for improving component of an hue-saturation-brightness color model. We
the accuracy fron(h ) o O(h ).'Second, because trans- 4150 used GL4Java, an OpenGL package developed for the
parent boundary conditions require that we retain all pash,, 5 |anguage that boosts graphics performance and allows
values of th(_a wave function on the F’OU”d{i'ﬁ‘E compute ¢, faster, smoother animatioh$.Specific results are dis-
the convolution in Egs(8) and (9)], it is straightforward to  ¢;ssed below for several applications especially suited to
reconstruct the solution for any previous time. In effect, the,, nsparent boundary conditions. The code used to generate
animation can be run backward, despite the apparent loss

. : . . ese results is part of a larger package catjedrooLs,
information as the waveform moves beyond the field of view,ich js available on request from the author and slated for
For the same reason, however, the amount of informatio

. . S “UHihclusion with the 3rd edition oModern Physichby Serway,
that must be stored and manipulated increases steadily Wit{yqses and Moyel

time, which brings us to the last point: the sharply increasing
cost of evaluating the convolution in Eg8) and (9) im-
poses a practical limit on the duration of the simulation. OneA. Traveling Gaussian wave packet
strategy to deal with this problem consists of approximating
the convolution kernel €, by a discrete sum of
exponentialg! Sacrificing accuracy for speed in this way
may be desirable in some applications, but will not be pur
sued further here. S : 4

In summary, the essence of the proposed algorithm fo‘nltlal wave is described by
calculating time-dependent Schinger wave functions on a #(x,0) = exp(ikx)exp( —[X—Xq]%/20?), (12
finite interval can be reduced to the following steps.

(1) Discretize the space and time variablesxgs o+ jh
andt,=ty+nA. The spatial interval extends from, to xg
+Jh, corresponding to & j<J, andty, (n=0) denotes the
initial time. In terms of the time stefA and spatial grid size
h, introduce new variableg;=V;—2i/A, dj=1-h?%g;/12,
fl=4iy]/A, and wi=d;(4{"*+ ) —h?f]/12. Here V,
=V(x;) and ¢;=¢(x;,t,) are the discrete versions of the
system potential energy and wave function, respectivel

We close this section with three remarks concerning
use of transparent boundary conditions. First, transpare

The simplest nontrivial example of a time-dependent

quantum wave function, the free Gaussian wave packet, has
become a benchmark in numerical computations of this sort.
The potential energy is everywhere zero for this case and the

whereo determines the width of a packet centereaatWe
usedo=0.125 andxy,=0.5. The choicek=50 endows our
packet with group velocity R=100. The computational in-
terval extends fronx=0 to x=1, and includes a mere 160
points for a relatively coarse grid size &f=1/160. The
packet has an observable amplitude over the approximate
range x,*=30: at the end points, the amplitudey(0,0)|
=|4(1,0)|=3.35x 104, not zero as required by the theory,

Note that 4" is K f . ¢ ; th Ybut small enough to have no appreciable effect. For the time
ote thatyj Is known from a previous step or from the g, \ye tookA =1075. As is well known, such a packet

initial x\ialveform; with eacrt\ new time step the problem is 05y els to the right and spreads uniformly, while retaining its
find y;" or, effectively,wj. _ Gaussian profile. Figure 1 shows our numerical results at
(2) Calculatee; and ;' for j=1,2,...J—1 from their ~ —0.004 andt=0.009. Notice the complete absence of any
values at the left boundary=0 and the recursion relations numerical reflections at the right boundary—clear evidence
of Eq. (7). For transparent boundary conditions, the properof transparent boundary conditions. Fer0.009, the packet
start valuese, and gy are given by Eq.(8) with ap=1 s nearly absent from view; theory shows that at this time it
+h?gy/2d, and ¢,, defined by Eq.A11). The numbersg, is centered atx=1.4 and has spread to a width
need be found only once at the outset, whereagjfhust = /(0.125F +4(0.009§/(0.125f=0.191, hence the “tail”
be recalculated at each time step. still visible at the extreme right of Fig.(l).
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electrons with energies close to the eigenenergies of the po-
tential well formed by the twin barriers. As it happens, the
average energy of the incident wave packet, 0.083 eV,
closely matches the ground state energy of this wt.
practice, the electron energy is fixed at the Fermi energy of
GaAs, and the device is tuned to resonance by applying a
suitable bias voltage that alters the well energies.

The sequence shown in Fig. 2 illustrates the scattering
event. The computational interval extends from40 to
+40 nm with a grid sizen=0.156 25 nm(512 point$ and
time stepA=0.1 fs. Figure 2a) shows interference fringes
developing on the leading edge of the incident wave as it first
encounters the barrier, followed later by the emergence of a
recognizable transmitted wave packet in Figh)2 This
transmitted wave is broader than usual, because it is com-
posed of only thosérelatively few) components in the inci-
| . dent packet with energies within the narrow range of reso-
(@) nance. The reflected wave in this case is unusual, being a
multi-peaked, coherent wave train that moves with a speed
that is independent of the average energy of the incident
packet'®!’ Long after the main scattering event is over (
=700 fs), a small remnant of the initial wave remains
trapped between the barriers, steadily losing amplitude with
time [Fig. 2(c)]. This residual wave resembles the bound
state at this energy and represents particle trapping; the ac-
companying time delay in the scattering process is a well-
known consequence of resonance.

In the absence of transparent boundary conditions, this
scattering event and subsequent particle trapping would be
far more difficult to model effectively. With rigid-wall
boundaries, we must be sure that the reflected and transmit-
ted packets at the end of the event are out of the region of the
potential, yet still far enough from the end points to avoid
spurious reflections. The remedy adopted in Ref. 1 was to
confine the event to the middle half of the interval, in effect
“wasting” half of it. Given the initial packet speedik/m
=0.541 nm/fs), a very conservative estimaignich ignores

(b) wave packet spreadihglaces the rigid-wall interval length
required to show Fig. @) at about 760 nm, or nearly an
Fig. 1. Arightward-traveling Gaussian wavefoep(x,t) at(a) t=0.004 and Order_ Qf magnitude larger than that for tr_ansparent_ boundary
(b) t=0.009. The interval shown is0x<1. Shades of gray in black and CONditions. To preserve the same spatial resolution would

white represent the phase of the wave. The complete absence of reflectioi€quire an increase in the number of grid points by the same
at the boundaries results from the use of transparent boundary conditionfactor.

The initial waveform is given by Eq(12) with k=50, x,=0.5, ando

=0.125 in units wheré =1 andm=1/2.

;

C. Alpha decay of a radioactive nucleus

Our final example concerns radioactivity, and makes for
an enlightening pedagogical activity. The potential is chosen

Our next example is an application drawn from semicont0 model alpha decay from a radioactive nucleus: it consists
ductor device physics: a wave packet scattering resonantf & square well bounded on the right by a thin barfer
from a double rectangular barrier. The initial wave is again'leaky” well). The well depth and barrier height are equal at
Gaussian as in Eq12), but this time we usett=0.31, « 30 MeV and the width of the well and barrier ae=5 fm

=10, andx,= —25 in units where length is measured in andw=1 fm, respectively. The mass is that of an alpha par-
nanometers, time in femtoseconds (:80 °s), and en- ticle, m=4.0026 u-3728 MeV/C (1u=9315 MeV/¢ is
ergy in electron volts. The barriers are 0.25 eV high and ghe atomic mass unitThe initial wave is a Gaussian con-
nm wide, with a gap of the same width separating the twofmed to the potential weII,_to represent an alpha parthle with
For the particle mass we toak=0.067m,=34.24 keV/@.  ItS parent nucleus. For this example, we used @@) with
These choices model electron transport in a three-laydf=0; Xo=2.5fm (the midpoint of the we) and o
GaAs-Ga_,Al,As sandwich®® the barrier regions are =1.0fm, small enough to make the initial probability of
formed from the GaAs matrix by doping with about 30% Al finding the alpha outside the well negligible. The computa-
content, and the effective mass of electrons in GaAs is abodtonal interval extends fronx=-3fm to x=15 fm and
0.067 of the free-electron value. The resulting heterostrucincludes 512 points, for a grid spacingn=3.5156
ture acts as a selective energy filter, transmitting only those< 10”2 fm. The time step ifA=10"%*s.

B. Resonant scattering from a double barrier
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(a)
(b)
(c)

Fig. 2. Resonant scattering of a Gaussian wave pagfet) from a double Fig. 3. Simulating alpha decay from a radioactive nucléaslnitially the
barrier.(a) The incident packet first encounters the barrier=ai6.0 fs and alpha is described by a Gaussian wave paackét,t) localized to the

(b) a recognizable transmitted wave emerge$=at8.0 fs. (c) Long after nuclear well. (b) The short-term waveform “pulsates,” as shown for
the encountert=700 fs), a remnant of the colliding packet remains trapped =0.0005 as (1 as10 8s). (c) At t=0.038 as, the waveform has assumed
in the well formed by the two barriers. Parameters for the initial wave, Eqg.a stable form marked by the steady flow of probability from the nuclear
(12), were chosen to model electron transport in a GaAs—=@d,As het- well. The average alpha particle energy is 2.622 MeV, well below the 30
erostructure, with the average packet energy, 0.083 eV, closely matching thdeV height of the nuclear barrier. The barrier thickness is 1 fm, and the
lowest quasidiscrete energy of the well formed by the two barriers. interval shown extends from= —3 fm to x=15 fm.
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Fig. 4. The logarithm of survival prob-
ability vs time for the simulation of
Fig. 3. The short-term fluctuations ac-
company the pulsating waveform
shown in Fig. 8b); these give way to
the linear behavior that marks expo-
nential decay fot=0.03 as. A straight
line fit to the data gives a decay rate
\=5.88x10'® Hz, corresponding to a
half-life of 1.18x10 % s. The results

agree within an order of magnitude
x with the predictions of the semiclassi-
cal model of radioactive decay.

Rl

time [as]

Figure 3a) shows the initial wave packet; at this instant, ity, and the reappearance of oscillations in the long term
the alpha particle can be found in the well with probability which signal a crossover from exponential to power law
0.9996, or near certainty. The average alpha particle energipehavior:” The former are reproduced in our simulation, but
2.622 MeV in our model, is far below the height of the the latter are not, presumably because they occur at survival
potential well(and somewhat above the lowest quasidiscretgrobabilities that are so smal{10 ¢ in the model calcula-
level energy, 1.508 Me) so the alpha must tunnel through tions) as to require much too long to realize.
the barrier to escape. Figuréb is illustrative of the wave- Again, transparent boundary conditions are indispensable
form “pulsations” that characterize the early stages of decayto this application. With rigid-wall boundary conditions, de-
These pulsations gradually fade, eventually changing theay from the nuclear well implies a buildup of probability in
original ¢ to a form marked by a steady flow of probability the adjacent well formed by the barrier and what is now an
from the nuclear well, as shown in Fig(c3. infinite barrier on the far right. In turn, this accumulation of

As the simulation proceeds, we record the survival probprobability leads to reverse tunneling, which interferes with
ability, the probability that the alpha particle can still be the decay process under study. To determine a handle on this
found within the confines of the potential well. Figure 4 effect, we note that when the survival probability drops to
shows the survival data at regular intervals plotted on a logag.5, the reverse tunneling rate is simply the fractigh, of
rithmic scale. The abscissa is the time measured in attoseghe forward amount, wherk, is the width of the exterior
onds (1as10"**s). We observe clear short-term fluctua- well. To keep this undesirable effect at the 1% level would
tions that give way to a steady decline after abaut require a hundredfold enlargement of the computational in-
=0.03 as(some 30000 time stepsThe short-term fluctua- terval, along with a proportionate increase in the number of
tions accompany the early pulsating waveform, while thegrid points to maintain the same spatial resolution.
linearity of the long-term data on a logarithmic scale implies
exponential decay. The slope of this line, 3880 s, is
the characteristic decay rate from which we obtain the
half-life T;,=In2/\=1.18x10 % s for this process. These
results are to be compared with the standard semiclassical The application of discrete transparent boundary condi-
treatment which predicts exponential decay at a rate equal t@ons has been extended to include a Numerov discretization
the collision frequency multiplied by the barrier transparencyof the spatial grid. The improved accuracy afforded by this
at this energy. Fotkinetic) energyE=2.622 MeV, the alpha  Numerov extension is shown to come at a modest computa-
has velocityv/c=/2(2.622)/3728-3.7505<10 2, imply-  tional cost. The method has been implemented in Java and
ing a collision frequency=v/2L=1.124<x 10? Hz. And for ~ demonstrated for two applications where the use of transpar-
alpha particles witlE=2.622 MeV, the transmission factor ent boundary conditions is especially advantageous: simulat-
for a square barrier 30 MeV high and 1 fm wide is readily ing resonant scattering of electrons in a layered semiconduc-
found to bé® T=1.318< 10 2, giving a predicted decay rate tor, and modeling alpha decay from a radioactive nucleus.
A=fT(E)=1.48<10*s ! and half-life T,,=4.68
X 10 2°s. This order of magnitude agreement is likely all
that we should expect from such a simplistic argument. AAACKNOWLEDGMENTS
the simulation shows, the process of decay is far more com-
plex than the semiclassical argument suggéste, for ex- The author wishes to thank Professor Wolfgang Christian
ample, the discussion by Kembfe The same point has for directing him to the literature on transparent boundary
been emphasized again only recently, as analytical resultonditions. Financial assistance for this project was provided
reported for a semi-infinite well with @-function barrier  through the generous support of the National Science Foun-
show small, short-term fluctuations in the survival probabil-dation under Grant No. DUE-9972322.

IV. CONCLUSION
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APPENDIX: TRANSPARENT BOUNDARY external problem in either region is reduced to
CONDITIONS IN THE NUMEROV ~ ~
APPROXIMATION bi+1(2)=e(2)¥i(2), (A6)

We outline the theory of discrete transparent boundar;}N ith €(z) the proper root of EqA4a). If we iterate Eq(AG)

conditions when the Numerov approximation to the second Suitable number of times, we obtaj(z) anywhere in the

derivative is used in the Crank—Nicholson evolution prob-exterior in terms of its value at the end poml@u(z) How-

lem. The discussion extends the results presented recently er, inverting thez transform of the result to recovd:’j‘ is

Ehrhardf’ a formidable task. Fortunately, the boundary conditions we
The equation to be studied is E@) with w]'=d;(4{"!  seek require only that we invert EGA6) where the interior

+y)—h?f/12, dj=1-h?gj/12, g;=V;-2i/A, and f]  and exterior regions meet, that is,jat 0, J. The inversion,

=4 ¢“/A The strategy is to solve qu) exactly in the while still challenging, is nonetheless doable.

exterlor regions to obtain the proper connections at the left We begin by writing an explicit result for the roogs (z),

(j=0) and right {=J) end points. In the exterior regions, which we recast in the following form:

we assume the initial waveform vanishe,g".:(_) for js_o_ _ (z+c)e.(z)=az+a*c*zVa’— 11— 2ux+x2, (A7)

andj=J. (In fact, the development also requwes the initial

wave to vanish at the neighboring points=y9_,=0.) 1-|al?

The exterior regions also are assumed to be force-free, so '“E|1_—az|' (A8)

thatg; andd; become constants which we denote simply by

g andd, respectively. It is also convenient to introduke _exp(—ig)

=2h?/A (twice the parabolic mesh rajio X= z ' (A9)

Equation(6) is a difference relation in both the spagg ( 5
and time ) indices. To handle the latter, we introduce #he p=ard(a’-1)/c]. (A10)
transform 0f¢ defined by The inversion of th& transform requires a representation of
the square root in inverse powersofThe desired develop-

zpj(z)— E zp“ -, (A1) ment follows directly from a Taylor expansion of

JV1—2ux+xZ in powers ofx, reminiscent of the generating
If we apply theZ transform to Eq.(6) in either exterior function for Legendre polynomials. With some extra effort,

region, we find we find
- - _ 1 . -
'/’j+l(z)+(//jfl(z)zzawj(z)""le/lj(z)v (A2) \/1—2,u,x+x2=—; €.z ", (A11)
with new constanta=1+h?g/2d andc=1—i\/6d. It is xp( —ing)
worth noting thatcd=d*, implying thatc is a complex gnzeli—¢[pn(ﬂ)_pn72(ﬂ)], (A12)
number of unit magnitude. The similarity to E@) suggests 2n—1

that we try the same method of solution, that is, introduc

auxiliary functionse;(z) andg;(z) by requiring GilvherePn is the Legendre polynomial of degree(negative

subscripts imply a value of zeroThus, {;=—1 and ¢,
Yi+1(2)=€)(2)¢(2) +q;(2). (A3) Zﬂ@r(]p(;'@)- | he left boundary
We substitute Eq(A3) into Eq. (A2) and see that the auxil- With these resuilts, EqAB) at the left boundary j=0)

iary functions satisfyfsee Eq.(7)] becomes
1 2N 1 ~

e(2)+ ——=2a+i—7 —, (Ada)  (z+0)Yjua(2)=|az+a*cTzya’~ Z e }l/fo(z

ej-1(2) d- z+c
) (A13)

gi_1(z

gj(2)= ej—l(z)- (Adb)  To invert theZ transform, we expand both sides of E413)

i—1

in powers of 12 and equate coefficients of like powers. After
Becausg does not appear on the right side of E44),  some manipulation, we find the transparent boundary condi-

the recursion relation foe;(z) is satisfied by a uniform tion on the left

ej(z)=e(2), and Eq.(A4a) reduces to a quadratic form for

e(z). The two roots, sag. (z), are inversese, (z)e_(2) P+ eyi=(ax Ja?-1)ygt +a*cyp

= 1. We use this last property to show tligz) can be made n

to vanish everywhere in the exterior region. On the lgft ( * \/az—lz {’n,kﬂz//(‘;, (A14)
=0,—1,—2,...), wechoose the rodie(z)|>1 to conclude k=1

from Eq. (A4b) that or, in terms of thew'",

%(2)= qje(lz()Z) B q:?(zg) - qjew?;z) —0. (A9 wi=(axa’~hwg+(a* —aF va'~1)d*yg

n
Similarly, in the right exterior region we take the root Tdvaz—1> ¢ k Al5
le(z)|<1, to showqy(z) = 1(2)="--=0. In this way, the N kgl n—kr1o- (A15)
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