IX. Conclusions and Future Work

Survey results from 2010 add to a growing dataset on the distribution, abundance, size, and condition of benthic coral reef organisms in the Florida Keys National Marine Sanctuary. For many of the variables assessed, we have now developed an 11-year record dating back to 1999 to evaluate benthic community structure in no-take zones throughout the Sanctuary, within the context of larger-scale environmental variability of coral reef and hard-bottom habitats on the south Florida shelf. Benthic surveys completed in 2010 included a follow-up effort, albeit within the upper Keys region, for *Acropora* corals, urchins, anemones, corallimorpharians, selected mollusks, and marine debris. In addition, we were able to sample several nine sites in three depth intervals across Conch Reef to continue a time-series for that reef area. We are in the process of analyzing temporal trends in benthic organisms and community structure throughout the Sanctuary and evaluating the responses of the benthic community to protection from fishing the 23 no-take zones from Key Largo to Key West.

The cumulative results of our program define baseline conditions for coral reef community structure throughout the FKNMS and Dry Tortugas, including marine protected areas. However, sampling only began in 1999 and thus represents an effort established after major declines had already occurred throughout the system, especially related to the loss of *Acropora* corals from disease, the demise of the urchin *Diadema antillarum*, coral bleaching, and various other stressors that impact this ecosystem. To address the lack of a longer temporal framework of our program, we have an unprecedented opportunity to integrate our work with results from an unpublished NSF-funded project conducted in the 1970s. Specifically, we are partnering with the FKNMS, through B. Precht and his damage assessment team, to compare and extend work first started by Dr. Don Kissling in the early 1970s, when Dr. Kissling and his students completed over 190 days of underwater field studies from June 1970 to January 1974. Over 1,000 pages of field notes and data were compiled, reporting on the hydrological, sedimentological and ecological elements of nine reefs located from Looe Key to Sand Key. Kissling’s data indicate diverse living coral assemblages. In addition, hundreds of black-and-white and color photographs were cataloged. In 1978, Dr. Kissling retired unexpectedly from academia, and this treasure trove of data has sat idle for over 30 years. Dr. Kissling has agreed to work with us to publish and resample the sites he visited over 30 years ago. The comparative work will be based on our on-going, long-term monitoring protocols, as well as additional work to resample the parameters he measured that are not presently included in our sampling program (e.g. brittle stars and sediments). In general, publications from this work will be based on comparisons of these reefs after three decades of decline, including what was lost and why. Other elements of this data rescue element include preparation of database files for publication on our website and digitizing photographs for archival purposes.
In 2011, we are coordinating a region-wide assessment of *Acropora* corals in U.S. territorial waters, including southeast Florida, the U.S. Virgin Islands, and Puerto Rico. We plan to survey *Acropora* corals for abundance, size, and condition throughout a large section of the Florida Keys, specifically from northern Biscayne National Park to near the Marquesas region. In addition, urchins, anemones/corallimorpharians, selected mollusks, and marine debris will be sampled Keyswide. We will also be coordinating similar efforts in the U.S. Caribbean to identify to develop abundance estimates structured by colony size and habitat type.

In 2011-2012, we plan to collaborate further with Nancy Sheridan of the Florida Fish & Wildlife Research Institute to sample ocean-side and nearshore-Florida Bay-Biscayne Bay hard-bottom and seagrass matrix habitats for benthic community structure, with a focus on several species targeted by the marine ornamental trade. Along with fishery-dependent data on landings and aggregation locations, these data will provide both fishery-dependent and independent population assessments of targeted species. This will also provide an unprecedented data set from nearshore to offshore habitats for evaluating population status of benthic organisms that provides a framework for monitoring trends over time.

In 2010-2011, we will also continue to analyze data and prepare publications. Of particular note is work related to our now 11-year record of surveys in the FKNMS and additional multivariate work related to the distribution and abundance of species and habitat types throughout the region. The data set provides unprecedented spatial coverage of organism habitat distribution, density, and size, as well as a means to evaluate temporal changes related to the FKNMS zoning action plan relative to larger-scale phenomena.

Manuscripts published or in press

Manuscripts in progress

Chiappone M, Swanson DW, Miller SL (In review) Density and habitat utilization patterns of anemones and corallimorpharians (Anthozoa, Zoantharia) in the Florida Keys National Marine Sanctuary. *Coral Reefs*

Chiappone M, Swanson DW, Miller SL (In review) Large-scale density patterns of anemones and corallimorpharians on offshore coral reef habitats in the Florida Keys. *Bulletin of Marine Science*

Miller SL, Chiappone M, Swanson DW, Rutten LM (In progress) Design-based surveys of coral reef and hard-bottom habitats in Dry Tortugas National Park and the Tortugas Bank, Florida. *Ecological Applications*

Swanson DW, Chiappone M, Miller SL (In progress) Coral disease prevalence in the Florida Keys National Marine Sanctuary. *Marine Ecology Progress Series*

Background References

Adams C (1992) Economic activities associated with the commercial fishing industry in Monroe County, Florida. Staff Paper SP92-27, Food and Resource Economics Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL

Benaka, L. R. (1999) Fish habitat: Essential fish habitat and rehabilitation. AFS Symposium 22, Bethesda, MD
Bursey CR, Harmer JA (1979) Induced changes in the osmotic concentration of the coelenteron fluid in the sea anemone Condylactis gigantea. Comp. Biochem Physiol 64A:73-76
Clark KB (1994) Ascoglossan (=Sacoglossa) molluscs in the Florida Keys: Rare marine invertebrates at special risk. Bull Mar Sci 54:900-916
Colin PL, Heiser JB (1973) Associations of two species of cardinalfishes (Apogonidae: Pisces) with sea
anemones in the West Indies. Bull Mar Sci 23:521-524
Sci 27:223-236
Conserv Mar Freshw Ecosys 5:205-232
(Netherlands Antilles) linked to lagoonal and wave sheltered shallow rocky habitats. Bull Mar Sci
79:415-424
DeMaria K (1996) Changes in the Florida Keys marine ecosystem based upon interviews with
experienced residents. The Nature Conservancy, Key West and Center for Marine Conservation,
Washington DC, 134 p
Done TJ (1999) Coral community adaptability to environmental change at the scales of regions, reefs and
reef zones. Amer Zool 39:66-79
Dunn DF (1981) The clownfish sea anemones: Stichodactylidae (Coelenterata: Actiniaria) and other sea
anemones symbiotic with pomacentrid fishes. Trans Amer Phil Soc 71:1-115
Edmunds PJ, Bruno JF (1996) The importance of sampling scale in ecology: Kilometer-wide variation in
coral reef communities. Mar Ecol Prog Ser 143:165-171
Edmunds PJ, Carpenter RC (2001) Recovery of *Diadema antillarum* reduces macroalgal cover and
increases abundance of juvenile corals on a Caribbean reef. Proc Natl Acad Sci USA 98:5067-5071
Elliot J, Cook CB (1989) Diel variation in prey capture behavior by the corallimorpharian Discosoma
sanctithomeae: Mechanical and chemical activation of feeding. Biol Bull 176:218-228
Fautin DG (1988) Anthozoan dominated benthic environments. Proc Sixth Intl Coral Reef Symp 3:231-
236
Fautin DG, Lowenstein JM (1992) Phylogenetic relationships among scleractinians, actinians, and
Fishelson L (1970) Littoral fauna of the Red Sea: the population of non-scleractinian anthozoans of
FWCC (Florida Fish and Wildlife Conservation Commission) (2000) Fishing lines. Division of Marine Fisheries, Tallahassee, 8 p
Hartog JC den (1977) The marginal tentacles of Rhodactis sanctithomae (Corallimorpharia) and the sweeper tentacles of Montastrea cavernosa (Scleractinia): their cnidom and possible function. Proc Third Intl Coral Reef Symp 1:463-469
Kier PM, Grant RE (1965) Echinoid distribution and habits, Key Largo Coral Reef Preserve, Florida. Smithsonian Misc Coll 149:1-68

