CHAPTER 4

SEDIMENT MOVEMENT
BY FLUID FLOW

41 FUNDAMENTALS OF FLUID FLOW

Introduction

Before discussing the transport and sorting of sediment and the formation of
sedimentary structures, some attention must be given to the part of the dynamic
environment often neglected by the geologist—the fluid. The term fluid includes 4
both liquids and gases’ A fluid i nce that is deformed by a shear fg_g&, ‘

~no matter how small the force m -that is, it is a substance that has no strength.

The forces that act on solid or fluid bodies are vectors that may be resolved
into components normal to and parallel with the surface of the body. The com-
ponents of force, per unit area; normal tgethe surface are called pressure; @ose
parallel to the surface are called shear stress. It is convenient to distinguish certain
body forces that act equally on every particle composing the body—for example,
gravity or inertia. Gases, including air, respond to change in pressure by expansion
or contraction; that is, they are compressible fluids and, at high speeds, the density
cannot be treated as constant. Liquids are only slightly compressible, however,
and for a given temperature the density may be considered to be constant.

Apart from the density, the other main property of fluids controlling the way
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Sediment Movement by Fluid Flow 91

the fluid flows is the dynamic viscosity. As noted earlier, this is defined as the coef-
ficient in the equation relating the shear stress acting on a fluid to its rate of shear.
In many dynamic equations the ratio of dynamic viscosity to density (u/p)appears,
and this ratio is called the kinematic viscosity v (nu). These parameters have dimen-
sions as indicated in Table 3-4.

_Air and water are the two fluids of greatest geological importance. 1“’l‘hey differ
substantially in their density and dynamic viscosity with water being some 800
times as dense as air and having a much larger dynamic viscosity. At 20°C the
dynamic viscosity of water is almost exactly 0.001 kgm™! §‘1, vflich is about 55 : .
times that of air. The kinematic viscosity of air (at 20°C) is, however, 15 times that
of water (Fig. 4-1). Both air and water are fluids that obey Newton’s law of
viscosity:
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For pure water or air, the dynamic viscosity 4 is a constant at constant temperature
(see Chap. 3). Water may, however, become mixed with substantial concentration
of clays—for example, in mud flows. High concentrations of clay not only greatly
increase the viscosity (Fig. 4-2) but also change the way in which the suspension_
responds to shear stress so that the coefficient of vis,c,osi?' is no longer a constanty
Such substances are described as non-Newtonian Sfluids.

At high sediment concentrations muds may acquire strength so that they
can no longer be sheared by very low shear stresses. At shear stresses in excess of
this strength such muds behave like viscous fluids! Substances that behave in this
way are described as pseudo-plastics. Some of their properties are discussed further -
in Chap. 5. .

The behavior of Newtonian fluids is described by the equations of fluid dynam-
ics, based on Newton’s law of viscosity and the laws of Newtonian dynamics.
The basic equations are (a) the equation of continuity, which simply expresses the
Jaw of conservation of mass for a fluid, and (b)the three Navie r—Stokes ions,
orecq tat -‘ ‘;" a n i "i (;"";; ':‘ 11¢ . ,ngh‘%‘ O Q. I '

a fluid. Together they make up a system of four partial differential equations that
express, in principle, how a viscous fluid must behave in any and all circumstances
in which Newtonian dynamics are valid.

The ideal explanation of any fluid phenomenon (including all sedimentation
phenomena) is to show how the phenomenon may be deduced from the four
equations, plus a statement about the shapes of the fluid boundaries (the “bound-
ary conditions”). Nature is generally too complicated to permit the solution of
these equations, although it can be done for a few simple cases, including the very
slow movement of a sphere through a fluid. Here Stokes’ law, discussed on p. 63,
was actually derived from the basic equations of motion by Stokes in 1851.

=

Dimensionless Numbers

One very important application of the basic equations is to derive the proper
criteria for making scale models of fluid flow that correctly represent phenomena
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Fig. 4-1 Variation in dynamic and kinematic viscosity of air and water with
temperature. (Scale for dynamic viscosity on left, for kinematic viscosity on
right.)

at a different (usually larger) scale. In the eﬂklagql}'s,lf we express all the lengths

as ratios of some reference length, all velocities as atios of some standard velocni

. R bR e ARSNGB g o s Mmoo : :
“-and the other variables similarly and then re rrange the terms, w he
tio 1 gravity tha

e find fo
“equations that apply to flow of fluids with a free surface subject to i,
“two coefficients appear t‘ae Daily and Harleman, 1966). In other words, in order
to make all the variables in the equations dimensionless (scaled in terms of some
reference length L and velocity U), it is necessary to introduce two dimensionless;

 coefficients § p—
Ry _Ui_p (Reynolds number) )
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Fig. 4-2 Variation in dynamic viscosity of clay suspensions with clay con-
centration and mineralogy. (From Grim, Applied Clay Mineralogy, McGraw-
Hill Book Co. After data in “Drilling Mud,” Baroid Division National Lead
Co., 1953.)
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F, Tl (Froude number) 3)
This means that if there are two situations (the original or prototype and the model)
that have the same shaped boundaries and if the Reynolds number and Froude
number of the model are equal to the Reynolds number and Froude number for
the prototype, then the two situations will be exactly similar as far as all aspects
of the fluids are concerned. The only differences will be in the scale of the phe- ‘
nomena, not in their basic nature. §

The derivation of Reynolds and Froude numbers sketched above cannot be
given in detail here. It is the most fundamental way, however, to derive these two
numbers that play a prominent part in the discussion of most hydraulic phenomena,
including many aspects of sedimentation. The significance of the numbers can be

illustrated by reference to some specific applications. .

The Reynolds number appeared previously in the discussion of particle sc:ttling,‘tﬁy

iven p. 61, In that case, the representative length L may be taken as the diameter
‘of the particle d. It was observed experimentally that the drag force acting on the
particle is a function of the Reynolds number. Only at low Reynolds numbers

(less than unity) is the drag force correctly given by Stokes’ law. The viscous force
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acting on the particle can be considered proportional to the viscosity, the velocity
gradient at the surface, and the surface area—that is, to x(U/d) d*. The inertial
forces acting on the particle can be considered proportional to the mass and
deceleration of the fluid “impacting™ on the particle,—that is, to Ud*p - U(a
cylinder of fluid of volume U d? is decelerated an amount proportional to U in
unit time by the resistance of the particle). The ratio between inertial and viscous
forces is, therefore, proportional to U? d?p/U dp, or U dp/u, which is the Reynolds
number in this case. Thus the Reynolds number can be interpreted as being pro-
portional to the ratio between inertial and viscous forces.

In other cases, a different choice must be made for the representative length
and velocity. For flow in pipes, for example, the Reynolds number can be defined
as R, = UDp/u, where D is the diameter of the pipe and U is the average velocity
of flow through the pipe. It was in experiments on the flow through pipes that
Osborne Reynolds first discovered another aspect of the significance of the Rey-
nolds number. Reynolds was able to show, by making use of pipes of different
diameters and different types of fluids flowing at different velocities, that there
is a fundamental difference in the type of flow in the pipe at Reynolds numbers
less or greater than a certain critical yalue. At Reynolds numbers less than about
2000, flow is laminar; that is, the different layers or partlcles of fluid appear to
slide smoothly past each other and there are no irregular eddies producing diffusion
from one layer of fluid to another. At Reynolds numbers greater than about 2000,
however, flow is furbulent with eddies producing diffusion of fluid (and also of
anything that is carried by the fluid, such as dye or sediment) from one layer to
another.

The critical value of the Reynolds number for the transition from laminar
to turbulent flow depends on the choice of representative length and velocity and
on the geometry and some other properties of the flow system. In the case of flow
past a settling spherical particle, flow is laminar and does not “separate” from the
surface of the sphere up to a Reynolds number of 24. Above this value a wake
filled by a single ring eddy is formed in the lee of the particle. The patterns of flow
observed at progressively higher Reynolds numbers are shown in Fig. 4-3. At
first the eddy in the wake has a regular geometry, but the eddy gradually becomes
more irregular in nature until the wake is fully turbulent (R, > 1000).

The Froude number is analogous to the Reynolds number in that it, too, can
be considered a ratio between two types of forces: in this case, inertial and gravity
forces. For a unit mass of fluid moving with a velocity U, the inertial force is equal
to the force required to decelerate the mass to rest, in a distance that can be arbi-
trarily chosen as proportional to some characteristic length L. The time required
is thus proportional to L/U; consequently, the rate of deceleration, or force acting
on unit mass, is proportional to U/t = U?*/L. The gravity force acting on unit
mass is equal to g; so the ratio of inertial to gravity forces is proportional to U?/gL.
The Froude number is defined by most engineers as the square root of this quan-
tity—that is, F, = U//gL.

In the special case of water of depth D flowing in an open channel, the Froude
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Fig. 4-3 Progressive development of a wake in the lee of a sphere with
increasing Reynolds number (R,) of the flow. (a) At R, < 0.1, flow is laminar
and drag on the sphere is dominated by viscosity. (b) Formation of a wake (by
“flow separation’) begins at R, = 24. At first, flow within the wake remains
laminar and consists mainly of a single, ring-shaped vortex, which becomes
more elongate as R, increases. At R, > 100, the ring vortex becomes unstable.
(c) At R, > '000, the wake becomes fully turbulent : the drag is due mainly to
pressure disti.. 'tion (inertial rather than viscous forces), and Cp is almost
constant at a value of 0.4 (see Fig. 3-10).
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number is therefore U/./gD, where U is the average velocity. It can be shown that
the velocity of gravity waves whose wavelength is long compared with the depth
of water is equal to ./gD. This suggests another significant aspect of the Froude
number: If the number is greater than unity, it is not possible for waves to travel
upstream because the downstream velocity of flow is greater than the upstream
velocity of the waves. For this reason, there are some. fyndg%l ¢
in the type of flow (called tranquil, streaming, oL al) fou nd at Froude
numbers less than unity and the type of flow (called rapzd sh oting, or supercri-
tical) at Froude numbers greater than unity. The transition from tranquil to rapid
flow (frequently observed at a point where the channel becomes steeper) may be
smooth, but the opposite transition (from rapid to tranquil flow) is always accom-
panied by a “hydraulic jump”—that is, by a sudden increase in depth accompanied
by much turbulence.

Scale Models

In the phenomenon of settling, the particle is completely enclosed by the
fluid. The only role played by gravity is in causing the particle to move. Gravity
does not affect the motion of the fluid directly. In this case, therefore, only the
Reynolds number need be the same in the original and in the scale model for com-
plete dynamic similarity. In flow in open channels all three forces (gravity, inertial,
and viscous) are important and so both the Froude and Reynolds numbers must
be the same for perfect dynamic similarity.
if the length scale is to be. changed, the Froude and Reynolds numb
can constant by changmg the properties of the fluid from the 0r1g1 nal
to the model¥ In practice, doing so is generally not feasible, so. models do not
achieve perfect dynamic. similarity. Experience _has _shown. that it _is. ge
much more important to scale the Frou" e number correctly than to attemp to
scale the Reynolds number. In any case, the Reynolds numbers of large natural
flows are far greater than can be achieved in the laboratory. Fortunately, a reason-
able degree of dynamic similarity is possible in small-scale models, provided that
the Reynolds number is kept high enough to achieve fully turbulent flow in the
model.

In studying models of sediment transport, however, further complications
arise. Ideally, not only must the overall aspects of the flow be correctly modeled
but also the interaction of the flow and the sediment particles. In Sec. 4.4 it is shown
that many different variables affect the interaction of the flow with the sediment;
this interaction, in turn, affects the geometry of the channel boundaries so that
true-to-nature small-scale models are almost never possible. The realization of
this fact has led experimenters to construct very large models. For example, the
large tilting flume operated by the U.S. Geological Survey at Fort Collins, Col-
orado, is 8 feet wide and about 200 feet long and very large wave channels are
found in several hydraulics laboratories. Even the largest models cannot reproduce
all the phenomena observed in nature.




