
COMP2001/COMP2401
Introduction to System Programming

Summer 2012, Assignment 3
Deadline : June14, 2012, at 19:00 PM, submitted via WebCT

Objectives:
You will write a program in C under Linux to create a system similar to Assignment 2 for
generating text-art works more efficiently. The goal is to be familiar with pointers, file
input/output, and program organization. By completing this assignment, you will be able to
- manipulate pointers;
- use linked lists as data structures;
- read and write files;
- use command line arguments;
- organize your program.
You MUST submit your source code (should be multiple .c files and .h files) and any other
files (readme.txt and Makefile) required to compile and run your program through WebCT.

All submitted files should be packaged as one single .tar or .zip file. TAs should be

able to compile and run your program under our SCS Linux machines. [Total 15 marks]

Description:
You are going to create a new interactive system to display text-based art works by placing
character-based shapes at specified locations, which is the same as assignment 2. BUT
there are some constraints to transform the old codes into a more efficient program.
(1) The array of 'allShapes' used in main function is replaced by a linked list. You should
implement a data structure for your linked list to store all of shapes. It might mean you
should modify according functions for printMap or other related functions because of using
linked lists.
(2) The initial 6 different shapes should be loaded by reading a text file called 'init.txt'.
(3) 'init.txt' is loaded by using command line arguments when you run your program. For
example, if your executable file is called TESTART, you should use 'TESTART init.txt' to load
your initial shapes.
(4) The new interactive system has five options in the menu and allows users to select [0 -
4] different options:
 - select 0: print out the space map displaying all those shapes,
 similarly as found in the sample output shown in assignment 2;
 - select 1: add a shape;
 - select 2: delete a shape;
 - select 3: save all shapes into a text called 'shapes.txt';

http://people.scs.carleton.ca/~hli1/Teaching/COMP2001-2004-summer2012/init.txt�

 - select 4: exit system.
(5) 'shapes.txt' is formatted as the 'init.txt' file.

Requirements:
1. You must define a data structure for your linked list to store all of your shapes.
2. There are four types of shapes constructed with capital letters ('A', 'C, 'D', and 'G') in
this program: ALINE, a vertical line of three 'A' characters; CCROSS, a cross with two
perpendicular lines intersected with each other at the middle point (there are 7 'C'
characters on each line); DSQUARE, a square of 2 by 2 'D' characters; and GRECTANGLE, a
rectangle of 8 by 2 'G' characters. It is the same as assignment 2.
3. You must use enumerated data type called PatternType to name the different shape
types, which is the same as assignment 2.
4. You have to organize your source codes into multiple .c files or .h files to make your
program clearly read.
5. You are not allowed to use global variables in this assignment.
6. You should provide Makefile and readme.txt file to guide TAs to compile and run your
program.
7. No memory leak.

Marking scheme:
1. Submission

• You must follow all the instructions exactly, or you will lose marks

2. Deductions

• 2 marks if the assignment is marked Late in WebCT (submitted between 19:00

and 19:30 PM)
• 15 marks if the assignment is marked Missed in WebCT (submitted after 19:30

PM)
• 3 marks if the code does not compile, if any submitted files are missing or corrupt

or in the wrong format, or if the program consistently crashes
• 1 mark for missing comments or other bad style (non-standard indentation,

improper funct/var names, etc)
• 2 mark if using global variables

• 4 marks if not loading the initial shapes through a text file called 'init.txt' by using

command line arguments

• 1 mark if using a single .c file without using multiple .c files to organize your

program

• 2 marks for memory leak

• 1 mark if not providing readme.txt and Makefile

3. Bonus Marks

• Up to 3 extra marks are available for fun and creative additional features.

