CHM320 EXAM #1 USEFUL INFORMATION

Constants

mass of electron: \(m_e = 9.11 \times 10^{-31} \) kg.

Rydberg constant: \(R_H = 109737.35 \text{ cm}^{-1} = 2.1798 \times 10^{-18} \text{ J} \).

speed of light: \(c = 3.00 \times 10^8 \text{ m/s} \)

Planck constant: \(6.626 \times 10^{-34} \text{ Js} \)

\(\kappa = \frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \text{ kgm}^3/c^2s^2 \)

charge of electron: \(e = 1.6 \times 10^{-19} \text{ C} \)

Bohr radius: \(a_0 = 52.9 \text{ pm} \)

Avogadro’s number: \(N_A = 6.02 \times 10^{23} \text{ mol}^{-1} \)

Unit Conversion

1 J = 1 kgm^2/s^2

1 eV = 1.6 \times 10^{-19} \text{ J}.

1 J = 5.03 \times 10^{22} \text{ cm}^{-1}

1 amu = 1.67 \times 10^{-27} \text{ kg}.

1 Å = 1.0 \times 10^{-10} \text{ m}.

1 N (newton) = 1 kg·m/s^2

Formula

(1) Energy of a particle in classical mechanics: \(E = \text{kinetic (} T \text{) + potential (} V \text{)} \)

\[E = T + V = \frac{p^2}{2m} + V \]

where \(p \) is the linear momentum \((p = \text{mv}) \). Force is related to the potential energy as \(F = -\nabla V \). For one-dimensional system, \(F = -\frac{dV}{dx} \).
(2) Electromagnetic wave (classical view):

\[E(x,t) = E_0 \sin(kx - \omega t) \]

where \(k = \frac{2\pi}{\lambda} \) (wavenumber) and \(\omega = 2\pi \nu \) (angular frequency). \(E_0 \) is called the amplitude of wave. The period of oscillation is \(\Gamma = \frac{1}{\nu} \). \(\lambda \) is the wavelength and \(\nu \) is the frequency of oscillation. The frequency and wavelength of light are related through the speed of light \((c) \) as

\[\nu = \frac{c}{\lambda} \]

(3) Photoelectric Effect:

\[T_e = E_{\text{photon}} - \Phi \]

where \(T_e \) is the kinetic energy of ejected electron and \(\Phi \) is the work function. The photon energy is given by

\[E_{\text{photon}} = h\nu = \frac{c}{\lambda} = h\tilde{\nu} \]

where \(c \) is the speed of light and \(\tilde{\nu} = \frac{1}{\lambda} \).

(4) Rydberg formula for hydrogen atom emission spectra:

\[\tilde{\nu} (\text{cm}^{-1}) = \frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \]

where \(n_2 > n_1 \) and \(R_H \) is the Rydberg constant in cm\(^{-1}\). Lymann, Balmer and Paschen series of emission lines involve \(n_1 = 1, 2, \) and \(3, \) respectively.

(5) de Broglie hypothesis:

\[\lambda = \frac{h}{p} \]

(6) Classical physics of angular motion:

1. angular momentum: \(l = pr \).
2. kinetic energy: \(T = \frac{p^2}{2mr^2} \)
3. centripetal force: \(F_{\text{cent}} = \frac{r^2}{mr^2} \)
(7) Bohr model of hydrogen atom:

Postulate: Angular momentum is quantized, \(l = n\hbar \)

\[
E_n = -\left(\frac{\kappa m_e e^4}{2\hbar^2} \right) \frac{1}{n^2} = -\frac{R_H}{n^2}, \quad n = 1, 2, 3, ..
\]

where \(\kappa = \frac{1}{4\pi\epsilon_0} \) and \(R_H \) is the Rydberg constant.

(8) Uncertainty Principle:

\[
\Delta x \Delta p = \hbar
\]

(9) Schrodinger Equation (1-dimensional):

\[
-\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x)
\]

(10) Probability:

Probability to find the particle with wavefunction \(\psi(x) \) between \(x = a \) and \(x = b \) is given by

\[
P = \int_a^b |\psi(x)|^2 dx
\]

Normalization condition: Since the particle should be found somewhere, sum of all probability must be equal to 1.

\[
\int_{-\infty}^{\infty} |\psi(x)|^2 dx = 1
\]

(11) Particle in a box (1-dimensional, \(0 < x < a \))

\[
\psi(x) = \sqrt{\frac{2}{a}} \sin \left(\frac{n\pi x}{a} \right)
\]

\[
E_n = \left(\frac{\hbar^2}{8ma^2} \right) n^2
\]

where \(a \) is the box length.
Math formula

(1) Integral formula:
\[\int \sin^2 ax \, dx = \frac{x}{2} - \frac{\sin(2ax)}{4a}, \quad \int \cos^2 ax \, dx = \frac{x}{2} + \frac{\sin(2ax)}{4a}, \]

(2) Trigonometric relation:
\[\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)] \]
\[\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B \]

(3) Gaussian integral:
\[\int_{-\infty}^{\infty} e^{-\alpha x^2} \, dx = \sqrt{\frac{\pi}{\alpha}} \]

(4) Integral formula:
\[\int_{0}^{\infty} x^2 e^{-ax} \, dx = \frac{2}{a^3} \]