A PRIMER ON STATISTICS

AND PSYCHOMETRICS

We conquer the facts of nature when we observe and experi-
ment upon them. When we measure them we have made
them our servants. A little statistical insight trains them for
invaluable work.

—~Edward L. Thorndike, American psychologist (1874-1949)
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This chapter is designed to enable you to do the following:

* Become familiar with basic statistical concepts and
procedures

* Become familiar with the meaning of reliability and the
procedures for evaluating it

* Understand the different forms of validity
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CHAPTER 4 A PRIMER ON STATISTICS AND PSYCHOMETRICS

This chapter will introduce you to basic statistical and psy-
chometric concepts that are used for assessment. A knowl-
edge of statistical and psychometric concepts will enhance
your understanding of psychological tests and other clinical
procedures and research reports. The basic concepts reviewed
in this chapter will also help you understand the material cov-
ered in other chapters of this text as well as other areas of
psychology and other sciences. Note that the Resource Guide
contains a glossary of measurement terms.

THE WHY OF PSYCHOLOGICAL
MEASUREMENT AND STATISTICS

Measurement in psychology is usually different from physi-
cal measurement. In our everyday experience, we assign num-
bers to the physical characteristics of objects—such as height,
weight, or length—that we perceive directly. Although physi-
cal measurement may be more precise than psychological mea-
surement because psychological characteristics are likely to
be intangible, both types of measurement are important. Both
psychological measurement and physical measurement consist
of (a) identifying and defining a dimension (e.g., height) or
behavior (e.g., cooperativeness), (b) determining the relevant
measurement tool and operations, (c) specifying the rules of
measurement, and (d) using a scale of units to express the
measurement. Psychological measurement attains the preci-
sion of physical measurement when we measure such things as
reaction time or how close someone comes to a target. Psycho-
logical measurement conveys meaningful information about
people’s attributes, such as their intelligence, reading ability,
adaptive behavior, interests, personality traits, and attitudes,
through test scores or ratings that reflect such attributes.
Statistics make life easier by reducing large amounts of
data to manageable size, allowing us to study individuals and
groups. Statistics also help us to communicate information
about test scores, draw conclusions about those scores, and
evaluate chance variations in test scores. Only by using statis-
tics can we determine, for example, whether a child’s scores
on a test administered at two different times differ signifi-
cantly, whether a child’s scores on two different tests differ
significantly, or whether the scores of different groups of
children on the same test differ significantly. These kinds of
determinations are important in evaluating progress and com-
paring ability levels both within an individual and between
individuals. Individual differences are an important focus in
the field of psychology. People differ: Some are bright and
talented, others less bright and less talented; some are en-
ergetic, others lethargic; some are extraverted, others intro-
verted; some are well adjusted, others less well adjusted; and
some are good readers, others poor readers. Measurement
helps us describe this variability in human characteristics.
Remember that test scores are imperfect and statistics help
us determine the amount of error in test scores. Yet conclusions
based on statistical analysis of test scores can never be abso-
lute. Statistics tell us nothing about how the scores were ob-

tained, what the scores mean, what effect the testing conditions
had, or how motivated the child was. Other kinds of informa-
tion, obtained through observation and test interpretation, can
shed light on these questions. Still, measurement enables us to
compare and contrast many psychological phenomena.

Measurement is a process of assigning quantitative values
to objects or events according to certain rules. In physical
measurement, the use of a ruler or a scale ensures that ev-
eryone follows agreed-on rules in measuring the length or
weight of an object. In psychological measurement, a formal
test, a rating scale, and/or a human observer plays a role simi-
lar to that played by a physical instrument. For example, after
observing a child on the playground for 10 minutes, a human
observer might use a five-point rating scale (e.g., from 1 =
very uncooperative to 5 = very cooperative) to rate the child’s
level of cooperativeness. Although the human observer is fol-
lowing a rule to measure behavior, he or she must estimate
variables without the help of a physical instrument.

SCALES OF MEASUREMENT

A scale is a system for assigning values or scores to some
measurable trait or characteristic. The four most common
scales—nominal, ordinal, interval, and ratio scales—are
described below. Nominal and ordinal scales (referred to as
lower-order scales) are used with discrete variables. Discrete
variables are characterized by separate, indivisible categories,
with no intermediate values (e.g., gender, color, or number
of children in a family). Statistics known as nonparametric
statistics, such as chi square and phi coefficient, are used to
analyze the data obtained from nominal and ordinal scales.
Interval and ratio scales (referred to as higher-order scales)
are used with continuous variables. Continuous variables are
characterized by an infinite number of possible values of the
variable being measured (e.g., temperature, age, or height).
Interval and ratio scales possess all the properties of nominal
and ordinal scales but have additional properties (see Table
4-1). Parametric statistics, such as the ¢ test and Pearson’s
product-moment correlation (r), are used to analyze the data
obtained from interval and ratio scales.

Nominal Measurement Scale

At the lowest level of measurement is a nominal measure-
ment scale. Nominal means “name.” A nominal measure-
ment scale consists of a set of categories that do not have a
sequential order and that are identified by a name, number,
or letter for each item being scaled. The names, numbers, or
letters usually represent mutually exclusive categories, which
cannot be arranged in a meaningful order and are merely
labels or classifications. An example of nominal scaling is
the assigning of numbers to baseball players (the numbers do
not reflect the players’ abilities) or the assigning of names or
numbers to schools. Although nominal scales are of limited
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. Table 4—1
" Propertles of Scales of Measurement
Property
Arithmetical
Scale | Classification | Order | Equalintervals | True zero operations possible Examples of variables
Nominal X — — — None possible; scale useful | Gender, ethnicity,
only for classification marital status
Ordinal X X — - Greater than or less SES, movie ratings,
than operations intelligence test scores
Interval X X X — Addition and subtraction of | Temperature, sea level
scale values
Ratio X X X Multiplication and division Height, weight, age,
of scale values length

Note. Scores on intelligence tests are often considered to be on an interval scale, but in fact they are on an ordinal scale.

usefulness because they allow only for classification, they are
still valuable. Some variables, such as gender, ethnicity, and
geographic area, can be described only by nominal scales.

Ordinal Measurement Scale

At the next level of measurement is an ordinal measure-
ment scale. Like a nominal measurement scale, an ordinal
measurement scale classifies items, but it has the additional
property of order (or magnitude). The variable being mea-
sured is ranked or ordered along some dimension, without
regard for the distances between scores. One example of ordi-
nal scaling is the ranking of students from highest to lowest,
based on class standing. An ordinal scale tells us who is first,
second, and third; it does not tell us, however, whether the
distance between the first- and second-ranked scores is the
same as the distance between the second- and third-ranked
scores or the nineteenth- and twentieth-ranked scores. The
difference between the first- and second-ranked grade point
averages could be .10 (e.g., 3.30 versus 3.20), and the dif-
ference between the nineteenth- and twentieth-ranked grade
point averages could be .20 (e.g., 2.00 versus 1.80). Another
variable that can be measured using an ordinal scale is socio-
economic status (SES). For example, 1 could represent the
lowest income level and 7 the highest income level. A third
type of ordinal scale is a Likert rating scale, such as

No Mild  Moderate Severe  Extreme
Anxiety  Anxiety Anxiety Anxiety  Anxiety
1 2 3 4 5

One cannot assume that a one-point increase in anxiety any-
where along this five-point scale equals a one-point increase
anywhere else on the scale. Finally, standardized intelligence
test scores that are designed to follow a normal distribution
(see the discussion later in the chapter), such as the Wechsler
Intelligence Scale for Children, Fourth Edition (WISC-1V),
use ordinal measurement scales, even though intelligence

test scores are often said to use interval measurement scales
(Thomas, 1982). For example, a 15-point increase in IQ score
from 100 to 115 may not mean the same thing as a 15-point
increase from 115 to 130.

Interval Measurement Scale

At the third level of measurement is an interval measurement
scale. 1t classifies, as a nominal scale does, and orders, as
an ordinal scale does, but it adds an arbitrary zero point and
equal units between points. An example of an interval mea-
surement scale is the Fahrenheit scale, which measures tem-
perature. On the Fahrenheit scale, the interval between 10°F
and 20°F is the same as the interval between 60°F and 70°F.
However, the zero point on such a scale is arbitrary, because a
temperature reading of 0°F does not mean a complete lack of
temperature. In addition, there are numbers below zero (e.g.,
—10°F) as well as above zero.

Ratio Measurement Scale

At the highest level of measurement is a ratio measurement
scale. It has a true zero point, has equal intervals between
adjacent units, and allows ordering and classification. Be-
cause there is a meaningful zero point, there is true equal-
ity of ratios between measurements made on a ratio scale.
Weight is one example of a characteristic measured on a ratio
scale; someone who weighs 150 pounds is twice as heavy as
someone who weighs 75 pounds. Like weight, reaction time
is measured on a ratio scale with a true zero point and equal
ratios; a reaction time of 2,000 milliseconds is exactly twice
as long as one of 1,000 milliseconds. Ratio scales are rarely
used in psychology, because most psychological character-
istics do not have an absolute zero point. Often we must be
content with interval scales or the statistically weaker ordinal
and nominal scales.
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Tablea-2 s , SR
Common Statistical and Psychometric Symbols and Abbreviations
Symbol Definition Symbol Definition

a Intercept constant in a regression equation SEM, SE_, Standard error of measurement

b Slope constant in a regression equation SE ear Sine :

c Any unspecified constant Sm® Smeas?

) ors

CA Chronological age . e Hest

of Cumulative freruen:y " T T score; standard score with a mean of 50 and

DQ Developmental quotien standard deviation of 10

! Frequency . . x Deviation score (X — X); indicates how far a

F Test statistic in analysis of variance particular score falls above or below the mean
or covariance of the group

1Q Intelligence quotient X Raw score

M Mean (see also X) X Mean (see also M)

MA Mental age Y A second raw score

MdnorMd | Median 2 z score; standard score with a mean of 0 and

n Number of cases in a subsample standard deviation of 1

N Number of cases in a sample o Standard deviation of a population

P Probability or proportion a2 Variance of a population

P Percentile . h> “Sum of"

Q Semi-interquartile range; half the difference X “Sum of X*; X means to add up all the Xs
between Q, and Q, (scores)

2, First quartile score (25th percentile score) X2 Sum of squared Xs (square first, then add)

0, Third quartile score (75th percentile score) (£x)2 Squared sum of Xs (add first, then square the

r Pearson correlation coefficient total)

92 Coefficient of determination; the proportion of Xy Sum of cross products of X and Y (multiply each
variance in Y attributable to X X x Y, then add)

Tob Point biserlal correlation coefficient ¢ Phi coefficient; a correlation coefficient fora 2 x 2

roorp Spearman rank-difference correlation contingency table
coefficient (also referred to as rho) x2 Chi square

T, Reliability coefficient < Less than

Iy Validity coefficient (x represents the test score | > Greater than
and y the criterion score) 2 Greater than or equal 1o

R Coefficient of muitiple correlation < Less than or equal to

rel. f Relative frequency % Plus or minus

S, 5, or 8D Standard deviation of the sample ' Square root

§2 Variance of the sample # Not equal to

SEg, SE Standard error of estimate :

DESCRIPTIVE STATISTICS Measures of Central Tendency

Descriptive statistics summarize data obtained about a
sample of individuals. Examples of descriptive statistics are
frequency distributions, normal curves, standard scores, mea-
sures of central tendency, and measures of dispersion, corre-
lation, and regression. Some descriptive statistics are covered
below; others are discussed later in the chapter.

Table 4-2 shows symbols and abbreviations commonly
used in statistics and psychometrics. These symbols are short-
hand for important characteristics of a test or norm group.
(The list is for reference; it is not necessary to memorize the
symbols.) As you gain experience in the field, the symbolis
will become more familiar to you.

Measures of central tendency identify a single score that
best describes the scores in a data set. The three most com-
monly used measures of central tendency are the mean, the
median, and the mode. These statistics describe the average,
the middle, and the most frequent score(s) of a set of scores,
respectively.

Mean. The mean (M or X) is the arithmetic average of all
the scores in a set of scores. To compute the mean, divide the
sum of all the scores by the total number of scores in the set
(N). The formula is
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X
M=—=
N
where M = mean of the scores
¥X =sum of the scores

N = number of scores

Example: The mean for the four scores 2, 4, 6, and 8 is 5:

M= 2+4+6+8=§=5
4 4

The mean depends on the exact position of each score in
a distribution, including extreme scores. However, it may
not be the best measure of central tendency if there are too
many scores that deviate extremely from the other scores in
the set (such extreme scores are referred to as outliers). For
example, three people with incomes of $30,000, $40,000, and
$2,000,000 have an average income of $900,000. Yet it is un-
likely that any of them have anywhere near a $900,000 life
style. When there are few outliers in a distribution of scores,
the mean is the preferred measure of central tendency. It can
be calculated for both interval and ratio scale data.

Median. The median (Mdn or Md) is the middle point in a
set of scores arranged in order of magnitude. Fifty percent of
the scores lie at or above the median, and 50% of the scores
lie at or below the median. If there are an even number of
scores, the median is the number halfway between the two
middlemost scores and, therefore, may not be any of the
actual scores, unless the two middlemost scores are the same.
If there are an odd number of scores, the median is simply the
middlemost score.

To compute the median, arrange the scores in order of mag-
nitude from highest to lowest. Then count up (or down) through
half the scores. Table 4-3 illustrates the procedure for calculat-
ing the median of an even number and an odd number of scores
in a distribution. In the first column, there are eight scores. To
obtain the median, count up four scores from the bottom and
then calculate the number halfway between the fourth and fifth
scores (the two middlemost scores). In the second column,

Table 4-3
Calculation of the Median
X X
(even number of scores) (odd number of scores)
130 130
128 128
125 125
124 124 « 124 median
« 123.5 median

3 123
120 120
110 110

108

there are seven scores. To obtain the median, count up four
scores from the bottom; the median is the fourth score. The
median divides a distribution into two equal halves; the number
of scores above the median is the same as the number below.

When a distribution is “skewed” (i.e., most of the scores
are at either the high end or the low end of the set), the median
is a better measure of central tendency than the mean. The
median is not affected disproportionately by outliers and is an
appropriate measure of central tendency for ordinal, interval,
or ratio scale data. Suppose we wished to compare salaries
at Harvard University with those at the University of Min-
nesota. The median salary would be a better single measure
of the salaries of all employees at a university than the mean,
because the salaries include those of professors, janitors, and
all others.

Mode. The mode is the score that occurs most frequently
in a set of scores. If there is only one score that occurs most
frequently, we say the distribution is unimodal. If two scores
occur with the same frequency and more often than any other
score, we say that the distribution is bimodal—there are two
modes in the set. When more than two scores occur with the
same frequency and more frequently than any other score,
we say that the distribution is multimodal—there are multiple
modes in the set.

The mode tells us what score is most likely to occur and
is therefore useful in analyzing nominal scale data (e.g.,
“What was the most frequently occurring classification in the
group?”’). However, it is greatly affected by chance and has
little or no mathematical usefulness.

Measures of Dispersion

Dispersion refers to the variability of scores in a set or dis-
tribution of scores. The three most commonly used measures
of dispersion are the range, the variance, and the standard
deviation.

Range. The range is the difference (or distance) between
the highest and lowest scores in a set; it is the simplest mea-
sure of dispersion. To compute the range, subtract the lowest
score in the set from the highest score. The formula is

R=H-L

where R =range
H = highest score
L =lowest score

Example: The range for the distribution 50, 80, 97, and 99
is 49:
R=99-50=49
The range is easily calculated; however, it is an insensi-
tive measure of dispersion because it is determined by the

locations of only two scores. The range tells us nothing
about the distribution of scores located between the high
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and low scores, and a single score can markedly increase
the range. Still, the range can be useful. It provides a pre-
liminary review of a distribution and a gross measure of the
spread of scores.

Variance. The variance (52) is a measure of the amount of
variability of scores around the mean—the greater the vari-
ability, the greater the variance. Unlike the range, the vari-
ance takes into account every score in a group. When two
different sets of scores have the same mean but different vari-
ances, it means that the scores in one set are more widely dis-
persed than the scores in the other. The variance is obtained
by comparing every score in a distribution to the mean of the
distribution. The variance is the average squared deviation of
scores from the mean. To compute the deviation of an individ-
ual score (i.e., how far an individual score is from the mean
of the group), subtract the mean from that score. Scores that
have values greater than the mean will yield positive values,
whereas scores that have values less than the mean will yield
negative values. To compute the variance of a sample, use the
following formula:

$2= Z(X_X)2
N-1

where  $2 = variance of the scores

X =sum
X =raw score
X = mean

N = number of scores

Example: The variance for the four scores 2, 4, 6, and 8 is
6.67:

52 =(2—5)2+(4—5)2+(6—5)2+(8—5)2

4-1
_9+1+1+49_20_
= -3—6.67

Squaring the distance from the mean has two important
benefits: It makes all the variances positive so that they can be
summed (rather than canceling each other out), and it gives
greater weight to values farther from the mean and thereby
signals the accuracy and precision of the mean (i.e., how far
scores fall from their central indicator). This is a quality cap-
tured by the standard error of measurement, a concept dis-
cussed later in the chapter.

Standard deviation. The standard deviation (SD, S, or s)
is also a measure of how much scores vary, or deviate, from
the mean. It is the square root of the variance, representing
the average distance of the data values from the mean. The
standard deviation is always a positive number (or zero) and
is measured in the same units as the original data. The stan-
dard deviation is often used in the field of testing and mea-

surement. To compute the standard deviation of a sample, use
the following formula:

=4 ’ I(x-X)?
SD = N1
Example: The standard deviation for the four scores 2, 4,

6, and 8 is 2.58:
Sz:(2—5)2+(4—5)2+(6—5)2+(8—5)2

4-1
_9+1+14+9 20 _
= =3 =6.67=2.58

Normal Curve

The normal curve is a frequency distribution that, when
graphed, forms a bell-shaped curve (see Figure 4-1). It is also
called a Gaussian distribution, after Carl Friedrich Gauss, who
developed it in 1809 (see Figure 4-2). Many human character-
istics—such as height, weight, intelligence, and personality
traits—have normal distributions. You can often assume that
human characteristics follow a normal curve, even though the
characteristics do not always fit the curve perfectly.

Let’s look at some features of the normal curve. First, the
normal curve is a symmetrical distribution of scores with an
equal number of scores above (to the right of) and below (to
the left of) the midpoint of the curve. Second, there are more
scores close to the middle of the distribution than at the ends
of the distribution. Third, the mean, median, and mode of a
normal curve are the same. Fourth, specific percentages of
scores fall at precise distances (measured in standard devia-
tion units) from the mean. This enables us to calculate exactly
how many cases fall between any two points under the normal
curve (see below). Finally, tables in statistics books present
the proportion of scores above and below any point on the
abscissa (i.e., the value of a coordinate on the horizontal, or
X, axis), expressed in standard deviation units.

Figure 4-1 shows the precise relationship between the
standard deviation and the proportion of cases under a normal
curve. It also shows the percentages of cases that fall within
one, two, and three standard deviations above and below the
mean. In a distribution of scores that follows a normal curve,
approximately 68% of the cases fall within +1 SD and -1 SD
of the mean (approximately 34% of the cases are between the
mean and 1 SD above the mean, and approximately 34% of
the cases are between the mean and 1 SD below the mean).
As we move away from the mean, the number of cases di-
minishes. The areas between +1 SD and +2 SD and between
-1 8D and -2 SD each contain approximately 14% (13.59%)
of the cases. Between +2 SD and +3 SD and between —2 SD
and -3 SD, there are even fewer cases—each area represents
approximately 2% (2.14%) of the cases. The areas beyond +3
8D and -3 SD represent only .13% of the cases.

These percentages are also useful because the scores along
the abscissa can be translated into percentile ranks (discussed
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Figure 4-1. Relationship of the normal curve to various types of standard scores.

later in the chapter). Thus, a score of 115 in a distribution with
M =100 and SD = 15 represents the 84th percentile rank. And
a score of 85 represents the 16th percentile rank. A score of
115 is +1 SD above the mean, while a score of 85 is -1 SD
below the mean. Other percentile ranks can be computed in a
similar manner. Table BC-1 on the inside back cover gives the
percentile ranks associated with standard scores in a distribu-
tion with M = 100 and SD = 15. We will return to the normal
curve when we consider standard scores.

CORRELATION

Correlation coefficients (r) tell us about the degree of rela-
tionship between two variables, including the strength and di-
rection of their relationship. The strength of the relationship is
expressed by the absolute magnitude of the correlation coef-

ficient. The sign of the coefficient reflects the direction of the
relationship. A positive correlation (+) indicates that higher
scores on one variable are associated with higher scores on
the second variable (e.g., more hours spent studying are as-
sociated with a higher GPA) and thus that lower scores on
one variable are associated with lower scores on the second
variable (e.g., fewer hours spent studying are associated with
a lower GPA). Conversely, a negative correlation (-) signifies
an inverse relationship—that is, high scores on one variable
are associated with low scores on the other variable (e.g., a
large number of days absent tends to be associated with a low
GPA). Correlation coefficients range in value from —1.00 to
+1.00.

Correlations are used in prediction. The higher the correla-
tion between two variables, the more accurately we can pre-
dict the value of one variable when we know the value of the
other variable. A correlation of +1.00 (or —1.00) means that
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Figure 4-2. Gauss, a great mathematician, honored by Germany on their 10 Deutsche mark bill (note the normal curve

to the left of his picture).

we can perfectly predict a person’s score on one variable if
we know the person’s score on the other variable (e.g., weight
in pounds perfectly predicts weight in kilograms). In contrast,
a correlation of .00 indicates that knowing the score on one
variable does not help at all in predicting the score on the
other variable (e.g., comparing weight and annual income).
Finally, a correlation of .50 indicates that knowing the score
on one variable partially predicts the score on the other vari-
able (e.g., comparing IQ and GPA).

It is important to distinguish between the strength of the
correlation and the direction of the correlation. A correlation
above .50, either negative or positive, indicates a moderate to
strong relationship between the two variables. When we con-
sider only the strength of the relationship, it doesn’t matter
whether the correlation is positive or negative (e.g., whether r
=+.50 or r=-.50). However, we also need to know the direc-
tion of the relationship between the scores—that is, whether
it is positive or negative.

Variables can be related linearly or curvilinearly. A linear
relationship between two variables can be portrayed by a
straight line. A curvilinear relationship between two vari-
ables can be portrayed by a curve. If two variables have a
curvilinear relationship, a linear correlation coefficient will
underestimate the true degree of association.

Variables can also be continuous or discrete. A continu-
ous variable is divisible into an infinite number of parts (e.g.,
temperature, height, age). In contrast, a discrete variable has
separate, indivisible categories (e.g., the number of heads in
a series of coin tosses). A dichotomous variable is a discrete
variable that has two possible values (e.g., head or tail, pass

or fail, male or female). As discussed earlier in the chapter,
the scale of measurement used will depend on whether the
variables being measured are continuous or discrete. Essen-
tially, variables must be continuous in order for ratio and in-
terval scales of measurement to be used; ordinal and nominal
scales of measurement must be used with discrete variables.

Figure 4-3 shows scatterplots (plots of individual scores
on a graph) of eight different relationships. A scatterplot
presents a visual picture of the relationship between two vari-
ables. Each point in a scatterplot represents a pair of scores
for one individual on two different variables (e.g., height and
weight). That is, a data point represents a single score on the
X variable and a single score on the Y variable.

Graph (a) in Figure 4-3 shows a perfect positive linear
relationship between X and Y (r = +1.00); the dots fall in a
straight line from the lower left (low X, low Y) to the upper
right (high X, high Y). Graph (b) shows a perfect negative
linear relationship (r = —1.00); the dots fall in a straight line
from the upper left (low X, high Y) to the lower right (high X,
low Y). Graphs (c) through (f) show varying degrees of rela-
tionship between X and Y. Graph (g) shows a totally random
relationship (i.e., no relationship) between X and Y (» = .00).
And graph (h) shows a nearly perfect curvilinear relationship
between X and Y; the dots fall along a curved line.

The most common correlation coefficient is the Pearson
correlation coefficient, symbolized by r Pearson’s r should
be used only when the following conditions are met: (a) The
two variables are continuous and normally distributed,
(b) there is a linear relationship between the variables, and
(¢) the predictor variable predicts as well at the high-score
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Figure 4-3. Scatter diagrams illustrating various degrees
of relationship.

ranges as at the low-score ranges. Note that the Pearson cor-
relation coefficient, which is calculated on the assumption
that two variables are linearly related, would incorrectly indi-
cate that there was no relationship between the two variables
shown in graph (h) of Figure 4-3. When the conditions for

using Pearson’s r cannot be met (e.g., the data are ordinal),
the Spearman r, (rank-difference) method can be used (see
Table 4-4). This method uses the ranks of the scores instead
of the scores themselves. A rank is a number given to a score
to represent its order in a distribution. For example, in a set
of 10 scores, the highest score receives a rank of 1, the fifth
score from the top receives a rank of 5, and the lowest score
receives a rank of 10.

The following are useful terms to describe the strength of
a correlation:

* .20t0.29: low

¢ .30 to .49: moderately low
* .50 to .69: moderate

» .70 to .79: moderately high
* .801t0.99: high

When the sample size is large, a correlation coefficient may
be statistically significant but reflect only a weak association
between the two variables. For example, a Pearson correlation
coefficient of .20 may be significant when the sample size is
100, but the level of variance explained is low (.20 = 4%). In
contrast, a Pearson correlation of .70 may not be significant
when the sample size is small, but the level of variance ex-
plained is high (.70 = 49%). Correlations also can be lower
when there is a restriction of range—that is, when scores are
very close to each other (e.g., 20, 21, 22, 24, 26, as opposed
to 4, 6, 8, 22, 25, 30) and thus have less variability—or when
there is a large amount of measurement error. (We will discuss
measurement error in a later section.) Outliers are scores that
are extreme, atypical, and infrequent and that unduly influence
the size and direction of the correlation coefficient (i.e., such
scores markedly increase or decrease the size of the correla-
tion coefficient and its direction, either positive or negative).
A single outlier can have a powerful effect on the correlation
coefficient when the sample size is small.

Sometimes test publishers (or researchers) attempt to
minimize the effect of measurement error by correcting for
attenuation. This correction results in an estimate of what the
correlation between two variables would be if both variables
were perfectly reliable. However, an estimated r based on a
correction for attenuation may not give a true picture of the
relationship between the variables (e.g., it may inflate the re-
lationship), because variables are never perfectly reliable.

Correlations should not be used to infer cause and effect.
For example, although there is a correlation between hot,
wet climates and the occurrence of malaria, climate is not
the cause of malaria; the relationship between hot climates
and malaria is only an indirect one. For a long time, people
believed that “bad air”” caused malaria. (The ancient Romans
named the disease for this reason: Mal aria means “bad air”
in Latin.) We now know that the disease is actually carried by
mosquitoes, which flourish in stagnant water in hot climates.

When we want to know how much variance in one vari-
able is explained by its relationship to another variable, we
must square the correlation coefficient. The resulting value,
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Table 4-4
" Formulas for Computing a Variety of Correlation Coefficients
Name Description of variables Formula
Pearson product-moment Both variables continuous (on N ZXY - (ZX)(ZY)

correlation coefficient (r)

interval or ratio scale)

VIN ZX2 - EX)2N 22 - (ZY))

where  r= correlation coefficient
= number of paired scores
IXY = sum of the products of the paired X
and Y scores
= sum of the X scores
= sum of the Y scores
TX2= sum of the squared X scores
(ZX)2 = square of the sum of the X scores
X¥2 = sum of the squared Y scores
(ZY)? = square of the sum of the ¥ scores

Spearman rank-difference
correlation coefficient
(Spearman 1, r,, or p)

Both variables on an ordinal scale
(rank-ordered)

_ 63D
s N(N2-1)

where D = difference between ranks for each
person
N = number of paired scores

Point biserial correlation
coefficient (rpb)

One variable continuous (on
interval or ratio scale), the other
genuinely dichotomous (usually on

Formula for r can be used (see above). The
dichotomous variable can be coded 0 or 1. For
example, if sex is the dichotomous variable, 0 can

nominal scale)

be used for females and 1 for males (0 = females,
1 = males), or vice versa.

Phi (¢) coefficient
nominal scales)

Both variables dichotomous (on 1 BD-AD

¢= \(A +B)C +D)A +C)B+D)

where A, B, C, and D are the four cell
frequencies in a contingency table

2
2 oo

where %2 = chi square
N = total number of observations

12, is known as the coefficient of determination. For example,
if we want to know how much variance in school grades is
accounted for by knowing the scores on a measure of intel-
ligence, we first compute a correlation coefficient for the two
measures. Let’s say r = .60. Squaring r gives .36, or 36%.
Consequently, we can say that knowing the scores on the
measure of intelligence allows us to account for 36% of the
variance in school grades. This value may not seem large,
but given that other factors (such as the student’s motivation,
effort, and previous instruction in various subject areas) ac-
count for some of the variance in school grades as well, a
score on a measure of intelligence is a significant predictor
of academic achievement. However, like a correlation coef-
ficient, the coefficient of determination only describes an
association between two variables. It does not establish a
cause-and-effect relationship between the two variables.

REGRESSION
Regression Equation

You can use the correlation coefficient, together with other
information, to construct a linear equation for predicting the
score on one variable when you know the score on another
variable. A linear equation describes a linear relationship be-
tween variables, as discussed earlier in the chapter. This type
of relationship can be represented on a graph by a straight
line that fits all of the scores in that graph. This equation,

_ called the regression equation, has the following form:

Ypred =bX +a

where Y . =predicted score on Y
pre L
b = slope of the regression line
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e

X = known score on X
a =Y intercept of the regression line
The slope of the regression line, b, is defined as
SD,,
SDy
where  r = Pearson correlation between
the X and Y scores

SD,, = standard deviation of the Y scores
SD,, = standard deviation of the X scores

b=r

The formula for calculating b directly from raw data is

b= NZIXY-(ZX)(ZY)
NZIX?-(ZX)?

where N = number of paired scores

The intercept a, or regression constant, is determined as

follows:
a=Y-bX

where ¥ = mean of the Y scores
b = slope of the regression line
X = mean of the X scores

Example: To find the regression equation and correlation
coefficient for the following pairs of scores (X, Y), we first
calculate X% Y2 and XY.
X2 Y2 XY
49 81 63
4 9 6
36 16 24
36 25 30

-2 _1 _3
134 132 126

X =480 Y=4.40
The slope of the regression line is then given by

_5(126)-24(22)  630-528 102 _ 1.09
T 5(134)-(24)2 T 670-576 — 94 ~

Rl o o o w
S'—-u\.x;u\o =~

b

and the regression constant is given by
a=4.40-1.09(4.80)=4.40-5.23 =-83

These values can now be substituted into the regression

equation:
Y rea = 1.09X - .83

The Pearson correlation coefficient (see Table 4-4 for for-
mula) for these data is
re 5(126) — 24(22)
VI5(134) - (24)?)[5(132) - (22)?)

102 102 _ 102 _ .9

B \94(176) T V16544 12862

| think that Harvey
hears the beat of
a different drum.

Scatterplot: n =21; r = +0.63
The Outlier

Courtesy of David Likely.

Standard Error of Estimate

A measure of the accuracy of the predicted Y scores in a re-
gression equation is the standard error of estimate:

SEes(=SDY“ -;XY

where SD, = standard deviation of the Y scores

r2, = square of the correlation between the X and Y
scores

The standard error of estimate is the standard deviation of the
error scores, a measure of the amount by which the observed
or obtained scores in a sample differ from the predicted scores.
The higher the correlation between X and Y, the smaller the
standard error of estimate and, hence, the greater the average
accuracy of the predictions. When you have a perfect correla-
tion between scores (that is, r = +1.00), the standard error of
estimate becomes zero, as you can see by substituting 1.00 for
r in the above equation. Thus, a +1.00 correlation coefficient
means that you can make perfect predictions of Y if you know
X. A .00 correlation means that knowledge of X does not im-
prove your prediction of Y. In this case, the standard error of
estimate is exactly the same as the standard deviation of the ¥
scores, and the best you can do is simply to guess that each Y
score falls at the mean of the score distribution.

Example: The standard error of estimate for a test with a
standard deviation of 15 and a .60 correlation between X and

Yis
SE,, = 15V1 = (.60)?
=15V1-.36

=15(.80)=12
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This means that we can say at a 68% confidence level that
the predicted score ¥ will be within £12 of the actual value
of Y. We will return to this measure again when we discuss
confidence levels.

MULTIPLE CORRELATION

Multiple correlation is a statistical technique for determining
the relationship between one variable and two or more other
variables. An example is predicting a student’s GPA based on
his or her 1Q plus the average number of hours spent daily on
homework. The symbol for the coefficient of multiple correla-
tion is R, and its values range from .00 to +1.00. When we use
several variables for a prediction, the prediction is likely to
be more accurate and powerful than if we based it on a single
variable only. A principal drawback to using multiple corre-
lation, however, is that large samples are generally required
when several variables are used in the analysis—usually over
100 individuals or at least 20 individuals per variable. Thus,
if 10 variables were being studied, we would need 200 indi-
viduals to arrive at a stable prediction equation.

One example of the use of multiple correlation is in the
prediction of college performance. High school grades, intel-
ligence test scores, and educational attainment of parents are
measures that correlate positively with performance in col-
lege. Another example is in the prediction of success in coun-
seling. Personality test scores, teacher ratings of behavior
pathology, and intelligence test scores correlate with success-
ful outcomes. By using these measures in a multiple correla-
tion, we can predict the outcome of academic performance
or therapy with more accuracy than by using any individual
measure alone.

NORM-REFERENCED MEASUREMENT

In norm-referenced measurement, a child’s performance on
a test is compared with the performance of a representative
group of children, referred to as a norm group or a standard-
ization sample. Norms are needed because the number of cor-
rect responses the child makes is not very meaningful in itself.
For example, knowing that a child obtained a raw score of 21
on a 30-item test (i.e., answered 70% of the items correctly)
is of little use unless we also know how other children per-
formed on the same test; we need a relevant normative popu-
lation. We could compare the child’s score with scores from
a representative population of children in the United States,
with scores from children in the child’s school, or with scores
from a special population. Such comparisons are made by
converting the child’s raw score into some relative measure,
called a derived score. A derived score indicates the child’s
standing relative to the norm group and allows us to compare
the child’s performance on one measure with his or her per-
formance on other measures. Norm-referenced tests are also
called “standardized tests,” because they require standard-

ized administration and scoring procedures and the scores are
transformed, or “standardized,” relative to the norm group.
Four concepts related to norm-referenced measurement
are population, representative sample, random sample, and
reference group. The population is the complete group or
set of cases. A representative sample is a group drawn from
the population that represents the population accurately. A
random sample is a sample obtained by selecting members
of the population based on random selection (such as the flip
of a coin) so that each person in the population has an equal
chance of being selected. And the reference group is the norm
group that serves as the comparison group for computing
standard scores, percentile ranks, and related statistics.

Representativeness

The representativeness of a norm group reflects the extent to
which the group’s characteristics match those of the population
of interest. For psychological and psychoeducational assess-
ment, the most prominent of these characteristics are typically
age, grade level, gender, geographic region, ethnicity, and so-
cioeconomic status (SES). SES is usually determined by as-
certaining the educational attainment and/or occupational level
of the client or of the client’s parents if the client is a child. We
also need to know when the norms were established in order to
determine whether the norms are still relevant.

U‘WS Elo)

"I could have done better, but I didn't want
to depart too far from the accepted norm."

Courtesy of Germaine Vanselow, Cartoonist, Bill Vanselow.
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Size

A norm group should be large enough to ensure that the test
scores are stable and representative of the population—that
is, that the subgroups in the population are adequately rep-
resented. Usually, the larger the number of individuals in the
norm group, the more stable and representative the norms. If
a test is going to be used for several age groups, then ideally
the sample should contain at least 100 individuals in each
age group.

Relevance

To interpret the relevance of a child’s scores properly, an ex-
aminer needs a reference group against which to evaluate the
scores. For most assessment purposes, large nationally repre-
sentative samples are preferred, because they provide stable
and reliable scores against which to compare a child’s test
scores. If you use a reference group that is different from the
customary one, clearly say so in your report.

DERIVED SCORES

The major types of derived scores used in norm-referenced
measurement are standard scores, percentile ranks, normal-
curve equivalents, stanines, age-equivalent scores, grade-
equivalent scores, and ratio IQs. As the following discussion
indicates, the various derived scores differ in their usefulness.

Standard Scores

Standard scores are raw scores that have been transformed so
that they have a predetermined mean and standard deviation.
They are expressed as an individual’s distance from the mean
in terms of the standard deviation of the distribution. Once
transformed, a child’s score can be expressed as a value on
this standardized scale.

One type of standard score is a z score, which has M =0
and SD = 1. Almost all z scores lie between —3.0 and +3.0.A z
score of —2.5 would indicate that a raw score fell 2V standard
deviations below the mean. We frequently convert z scores
to other standard scores to eliminate the + and — signs. For
example, a T score is a standard score from a distribution with
M =50 and SD = 10. T scores almost always fall between 20
and 80; a z score of 0 is equivalent to a 7 score of 50.

Table 4-5 shows formulas for computing various standard
scores. A general formula for converting standard scores from
one system to another is

Xold ~ Mold
New standard score = (W)SDMW +M

new

where X,y = score on old system
M4 = mean of old system

SD,,4 = standard deviation of old system

SD,.,, = standard deviation of new system
M, = mean of new system
Example: A standard score of 60 in a T distribution (M =
50, SD = 10) is converted to a standard score in a distribution
with M = 100 and SD = 15 as follows:

60 - 50

New standard score = 0 15+ 100
10
=(—13)115+100=(l)15+100=115

Percentile Ranks

Percentile ranks are derived scores that permit us to deter-
mine an individual’s position relative to the standardization
sample or any other specified sample. A percentile rank is a
point in a distribution at or below which the scores of a given
percentage of individuals fall. If 63% of the scores fall at or
below a given score, then that score is at the 63rd percentile
rank. That is, a student at the 63rd percentile rank on a par-
ticular test performed as well as or better than 63% of the
students in the norm group and not as well as the remaining
37% of the students. Quartiles are percentile ranks that divide
a distribution into four equal parts, with each part containing
25% of the norm group. Deciles, a less common percentile
rank, contain 10 bands, with each band containing 10% of the
norm group. Exhibit 4-1 shows some procedures for calculat-
ing percentile ranks.

Interpretation of percentile ranks is straightforward. For
example, a child with a percentile rank of 35 on a measure of
memory has scored as high as or higher than 35% of the chil-
dren in the norm sample. However, the psychometric proper-
ties of percentile ranks limit their usefulness in data analysis.
A major problem with percentile ranks is that we can’t assume
that the units along the percentile-rank distribution are equal.
Raw score differences between percentile ranks are smaller
near the mean than at the extremes of the distribution. For ex-
ample, the difference between a person at the 51st percentile
rank and one at the 55th percentile rank may be very small.
However, there are fewer cases at the extremes (people are
more spread out), and so here small differences in percentile
ranks (e.g., between the 95th and 99th percentile ranks) may
be meaningful (see Figure 4-1). Percentile ranks cannot be
added, subtracted, multiplied, or divided. In order to use them
in statistical tests, you must normalize percentile ranks by
converting them to another scale. Percentile ranks are often
used in discussing results with parents, but you must always
keep this problem of imprecise units in mind.

Normal-Curve Equivalents

Normal-curve equivalents (NCEs) are standard scores with
M = 50 and SD = 21.06. NCEs divide the normal curve into
100 equal units (see Table BC-1 on the inside back cover).
Unlike percentile ranks, which cannot be used for statistical
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Formulas for Computing Varlous Standard Scores

Score Example
z score The z score for an individual with a raw score of 50 in a group
x-X having a mean of 30 and standard deviation of 10 is calculated
1 — as follows:
SD
2= 50-30_,
where z = zscore corresponding to the individual raw score X 10
X = individual raw score

X = mean of sample
SD = standard deviation of sample

The T score for an individual with a z score of 2 is calculated as

T score
T=10(z) + 50 follows:
where T = T score corresponding to the individual raw T=102)+50=70
score X Thus, the T score for this individual is 70.
10 = standard deviation of the T distribution
z = zscore corresponding to the individual raw
score X
50 = mean of the T distribution
Standard score The standard score for an individual with a z score of 2 is
S5 = 15(z) + 100 calculated as follows:
where S$S = standard score corresponding to the individual 5§ =15(2) +100=130
raw score X Thus, the standard score for this individual is 130.

15 = standard deviation of the standard score distribution
z = z score corresponding to the individual raw score X
100 = mean of the standard score distribution

analyses, NCEs can be used for such purposes because they
can legitimately be added, subtracted, multiplied, and di-
vided.

Stanines

Stanines (a contraction of “standard nine”) provide a
single-digit scoring system with M = 5 and SD = 2. Stanine
scores are expressed as whole numbers from 1 to 9. When we
convert scores to stanines, the shape of the original distribu-
tion is converted into an approximately normal curve. The
percentages of scores at each stanine are 4, 7, 12, 17, 20, 17,
12, 7, and 4, respectively (refer to Figure 4-1). Stanines have
drawbacks, such as loss of information associated with large
categories and categories that are not equal intervals.

Age-Equivalent Scores
and Grade-Equivalent Scores

Age-equivalent scores are obtained by computing the average
raw scores obtained on a test by children at different ages.
(Other terms for age-equivalent scores are fest-age equivalent,
test age, and mental age, or MA.) For example, if the average
raw score of a group of 10-year-old children on a test is 15

items correct out of 25, any child obtaining a raw score of 15
receives an age-equivalent score of 10-0 (10 years, 0 months).
Similarly, grade-equivalent scores are obtained by comput-
ing the average raw scores obtained on a test by children in
different grades. If the average score of seventh graders on
an arithmetic test is 30, we say that a child with a score of
30 has arithmetical knowledge at the seventh-grade level (or
a grade-equivalent score that equals the seventh-grade level).
_Grade-equivalent scores are expressed in tenths of a grade
(e.g., 5.5 refers to average performance of children at the middle
of the fifth grade). This is in contrast to age-equivalent scores,
which are expressed in years and months. A grade-equivalent
score, therefore, refers specifically to the performance of an
average student at that grade level on that test. It is important to
note that the score does not mean that the performance of the
student who achieved it is consistent with all curricular expec-
tations for that grade level at his or her particular school. Note
that a hyphen is usually used for age equivalents (e.g., 10-0)
and a decimal for grade equivalents (e.g., 5.5).
Age-equivalent and grade-equivalent scores must be in-
terpreted carefully, because they can be misleading for the
following reasons:

1. Scores in age-equivalent or grade-equivalent distributions
may not represent equal units. For example, the differ-
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' Exhibit 4-1
Calculatlng Percentile Ranks
:The following formula i is used to deterrmne the percenllle rank _10+55 %100
‘ forascoreina distribution: 90
65
(x m) fw + Sfb =5g X100
Percentile rank = i N x 100
S =.72x 100
where X = raw score The percentile rank is the 72nd percentile, or 72. Thus, a score
Il = lower real limit of the target interval or score of 110 exceeds 72% of the scores in the distribution. :
.~ i = width of the target interval or score The formula given here for calculating percentile rank can
fw = frequency within the target interval or score be used with both grouped (organized into classes of more than
=fb = sum of frequencies (number of scores one value) and ungrouped (organized into classes of single
occurring) below the target interval or score values) data. When, the distribution is ungrouped and all the in-
N = total number of scores tervals are 1, a simplified version of the formula can be used:

To compute the lower real Ilmit of a whole number, simply
_ subtract .5 from lhe number to get the upper real limit, add .5
" to the number. The width of the target interval or score (j) is

obtamed by sublractmg the lower real limit from the upper real
i llmit.

: Example 1 :
Let's compute the percentile rank for a score of 110 in the fol-
lowing distribution:

X /
120 - 5
119 10
Target interval forasoore of 110> 110 . 20
. 100 40
90 10
‘ . N=80 -
where 1l = 1095 '
L
Bl I=72.°
Zfb =55
N =90 ; _
Substilutlng lhese_values into the percentile rank formula
yields the followlng TEPY :
e
. ‘Percenuletauk = N x lOO
(=100 ;wé) wass
om0
(—]5-) 20455 '
x 100

-90

S Sfw+Lfb
N

Pewenule rank = x 100

Example 2

Let us compute the percentile rank for ascore of 4 ln the follow-
ing dlslnbulion : :

... 5 3

Target interval for a scoreof4 » 4 5

‘ 3 4

2 3

1 2

N=17
where fw = 5
T Eb=9
N=17

‘Substituting these values into the percenlile rank formula for un-
grouped data with intervals of 1 ylelds R

.5fw+)2fb % 100 ;‘ -

Percentile rank = N
,}“_,(5w+9 -
e 7 x 100

'125+9

= Vlﬂl
Lo 1S o
e,g7h17*lm’_
o= 68x100

The percentlle rank Is the 68th percentile, or 68. Thus. ascore
ol 4 exceeds 68% of the scores in the distnbution

ence between second grade—equivalent and third grade-
equivalent scores may not be the same as the difference
between eleventh grade-equivalent and twelfth grade-
equivalent scores. This happens because many skills (such

as vocabulary and visual-motor skills) are acquired more
rapidly at younger ages than at older ages.

2. Because many grade equivalents are obtained by inter-
polation (estimating a value between two given values or
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to talk to anyone outside
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points) and extrapolation (extending norms to scores not
actually obtained in the standardization sample), particu-
lar interpolated or extrapolated scores may not actually
have been obtained by any children.

3. Grade equivalents sometimes encourage comparison
with inappropriate groups. For example, we should not
say that a second grader who obtains a grade equivalent
of 4.1 in arithmetic is functioning in all ways like a fourth
grader; fourth graders are the wrong comparison group.
The second-grade student shares with the average fourth
grader the number of items right on the test—not other
attributes associated with fourth-grade mathematical
skills. A grade equivalent of 4.1 on a specific test should
be interpreted only in reference to the child’s second-
grade comparison group.

4. ldentical grade-equivalent scores on different tests may
mean different things. For example, grade-equivalent
scores of 4.6 on two different tests of mathematics may
mean that the child has mastered different mathematical
content assessed by the two tests.

. Expressing student performance in terms of grade equiv-
alents could be seen as suggesting that growth is constant
throughout the school year, an assumption that may not
be warranted.

6. At junior and senior high school levels, age equivalents
and grade equivalents may have little meaning for school
subjects not taught at those levels or for skills that reach
their peak at an earlier age.

7. Grade equivalents exaggerate small differences in per-
formance: a score slightly below the median may result
in a grade level equivalent one or two years lower.

wn

8. Grade equivalents vary from test to test, from subtest to
subtest within the same test, and from percentile to per-
centile, thereby complicating any type of comparison.

9. Grade-equivalent scores depend on promotion practices
in different schools and on the particular curricula being
used in different grades and in different schools.

10. Age-equivalent and grade-equivalent scores tend to be
based on ordinal scales that cannot support the computa-
tion of important statistical measures, such as the stan-
dard error of measurement.

Age-equivalent and grade-equivalent scores are psycho-
metrically impure; nevertheless, they may be useful when
you discuss assessment findings. Age-equivalent and grade-
equivalent scores place performance in a developmental
context, and they provide information that consumers of the
findings (e.g., parents and the public) can easily understand.
If age-equivalent and grade-equivalent scores are used, con-
sumers should be educated in their use. The Administration
Manual of the WISC-IV and the Wechsler Preschool and Pri-
mary Scale of Intelligence-II1 (WPPSI-III), and the Exam-
iner’'s Manual of the Stanford-Binet Intelligence Scale: Fifth
Edition present test-age equivalents of total raw scores for
each of their subtests.

Ratio Intelligence Quotients

Intelligence tests designed during the early part of the twen-
tieth century used ratio 1Qs. Ratio IQs were defined as ratios
of mental age (MA) to chronological age (CA), multiplied by
100 to eliminate the decimal: IQ = MA/CA x 100. For exam-
ple, substituting an MA of 12 and a CA of 10 into the formula
yields a ratio 1Q of 120 (IQ = 12/10 x 100 = 120). Mental age
represented the age of the group of children who obtained,
on average, the given number of raw score points. Thus, for
example, if 87 raw score points was the average obtained by
12-year-old children in the standardization sample of a test,
then all children subsequently tested with the instrument who
scored 87 were assigned a mental age of 12-0.

Ratio 1Qs are problematic for at least two reasons. First,
because raw scores on intelligence tests increase linearly with
age only up to about 16 years, the conversion of raw scores to
a mental age beyond age 16 years is problematic. And we still
do not know precisely when mental development reaches a
ceiling level. Second, ratio 1Qs for different ages are not com-
parable because the standard deviation of the ratio IQ distri-
bution does not remain constant with age. The same ratio 1Q
has different meanings at different ages.

Contemporary intelligence tests do not use mental age
to calculate 1Q. Instead, the IQ represents a standard score
and, in most cases, has a mean of 100 and a standard de-
viation of 15 (see the section on standard scores later in the
chapter). Standard scores avoid the two problems described
above. However, as noted above, some current intelligence
tests do provide age equivalents, which also can be thought
of as mental-age scores.
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We do not recommend the use of ratio IQs except when
standard scores are not available and it is necessary to make
a crude approximation of a child’s level of ability. This may
happen, for example, when the child being assessed is chron-
ologically too old for one test and mentally too young for
another test. A ratio 1Q would allow you to conclude, for ex-
ample, that a child with a CA of 10-0 and an MA of 12-0 has
performed at an above-average level, whereas a child with
a CA of 10-0 and an MA of 8-0 has performed at a below-
average level.

Relationships Among Derived Scores

All derived scores are obtained from raw scores. The different
derived scores are merely different expressions of a child’s
performance. Which derived score is used in a given field is
more or less an arbitrary historical convention:

« Scores on cognitive measures tend to be expressed as stan-
dard scores with M = 100 and SD = 15.

« Scores on personality and behavioral measures tend to be
expressed as T scores with M = 50 and SD = 10.

o Scores on other assessment measures, such as those used
by occupational therapists, tend to be expressed as z scores
withM=0and SD=1.

The mathematical formulas described in this section make
it easy to transform one type of derived score to another. The
most frequently used conversion in the area of intelligence
testing is from standard scores to percentile ranks (see Figure
4-1). Although standard scores are the preferred derived
scores, percentile ranks—and, on occasion, age equivalents—
also are useful, as they can help describe a child’s perfor-
mance to parents or teachers. Percentile ranks, however, are
often misinterpreted as indicating the percentage of questions
that the child answered correctly. Do not use the abbrevia-
tion “%” or “%tile” for “percentile rank” because these ab-
breviations may be understood as “percent correct.” Instead,
we recommend that you spell out the words percentile rank
in your report.

Figure 4-1 shows the relationships among various derived
scores. If a test has a standard score mean IQ of 100, a stan-
dard deviation of 15, and scores that are normally distributed,
we can precisely determine the percentile ranks associated
with each IQ. To illustrate, we will determine the percentile
ranks associated with Wechsler IQs at several standard devia-
tion points.  °

Let’s begin by determining the percentile rank associated
with an IQ of 115. An IQ of 115 is at the point that is +1
SD away from the mean. Although there are mathematical
procedures for computing percentile ranks precisely, you
can simply look at Figure 4-1 and determine the percentile
rank associated with an IQ of 115—the 84th percentile—by
adding 34% to 50%. The 50% is the proportion of the popu-
lation below the mean of 100, and the 34% is the proportion
of the population between the mean and +1 SD away from
the mean. The key is to recognize that an IQ of 115 is +1 SD

above the mean because 15 is the standard deviation of the
distribution in this example.

You can also look at Figure 4-1 to determine the percentile
ranks of other IQs. Note that an IQ of 130 is +2 SD away
from the mean. We know that the area below the mean repre-
sents 50% of the population, the area from the mean to +1 SD
represents approximately 34% of the population, and the area
from +1 SD to +2 SD represents approximately 14% of the
population. To find the percentile rank for an IQ of 130, we
add 50 + 34 +14 to get the 98th percentile rank.

To figure out the percentile rank associated with an 1Q
of 85, subtract 34 from 50, because an IQ of 85 corresponds
to the point that is =1 SD away from the mean. The answer
is the 16th percentile rank. An 1Q of 70 is associated with
the second percentile rank (50 — 34 - 14 = 2). Note that the
above examples hold only for tests with M = 100 and SD=15
(e.g., WISC-1V, WPPSI-II, WAIS-1I1, and SB5). A glance
at Table BC-1 on the inside back cover will show you the
percentile ranks associated with IQs based on M =100 and
SD=15.

INFERENTIAL STATISTICS

Inferential statistics are used in drawing inferences about a
population based on a sample drawn from the population.
Consider an experiment in which the scores obtained on a
fluency reading test by 100 children who were enrolled in a
10-week speed-reading program were 25 points higher than
those of 100 children who were not enrolled in the program.
Is the difference significant or is it just due to chance? And
what about the real difference for the population—how much
larger or smaller is it likely to be than the 25 points found
in the sample? These are questions that can be answered by
inferential statistics.

Statistical Significance

When we want to know whether the difference between two
or more scores can be attributed to chance or to some system-
atic or hypothesized cause, we run a test of statistical signifi-
cance. Statistical significance refers to whether scores differ
from what would be expected on the basis of chance alone.
Statisticians have generally agreed that a reasonable criterion
for deciding that something is not a chance occurrence is that
it would happen by chance only 5% of the time or less. The
expression p < .05 means that the results have a probability
level of less than .05 (or 5 or fewer times in 100) of occurring
by chance, whereas the expression p > .05 means that the
results have a probability level of greater than .05 (or more
than 5 times in 100) of occurring by chance. By convention,
the first is considered statistically significant; the second is
not. Thus, the .05 significance level indicates that we can
have confidence that an observed difference would occur by
chance only 5% of the time.
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There also are more stringent levels of significance, such
as the .01 (1 time in 100) and the .001 (1 time in 1,000) levels.
Researchers choose a more or less stringent level of signifi-
cance depending on how confident they need to be about re-
sults. Tests of significance are used to evaluate differences
between two or more means, differences between a score and
the mean of the scale, and differences of correlations from
zero (or chance).

Effect Size

Tests of significance, although highly useful, don’t tell us the
complete story. Because tests of significance are highly de-
pendent on sample size, larger sample sizes are more likely
to provide statistically significant results. Consequently, two
seemingly similar studies will yield apparently inconsistent
outcomes if one study uses a small sample and the other a
large sample.

We need to consider not only statistical significance, but
also the values of the means, the degree to which the means
differ, the direction of the mean difference, and whether the
results are meaningful—that is, whether they have important
practical or scientific implications. The difference between
the means of two groups may be statistically significant and
yet have no practical significance. For example, if one group
of 200 individuals has a mean of 100 and another group of
similar size has a mean of 101, the significance test may yield
a p value less than .05 because the groups are large, but the
difference of only 1 point may have little practical meaning.
In another study, if one group of 20 individuals has a mean of
100 and the other group of 20 has a mean of 110, the signifi-
cance test may yield a p value larger than .05 (nonsignificant)
because the groups are small, yet the difference of 10 points
could be meaningful.

Effect size (ES) is a statistical index based on standard devi-
ation units, independent of sample size. It measures the degree
or magnitude of a result—that is, the difference between two
group means (or treatment effects)—rather than the probability
that the result is due to chance. Effect size statistics provide a
standard context for interpreting “meaningful” results indepen-
dent of sample size and statistical significance. We recommend
that both effect size and statistical significance tests be reported
in research reports. Effect size is also used in meta-analysis,
which is discussed later in the chapter.

Cohen’s d. Cohen’s d, a statistic in standard deviation
units, provides one way to compute effect size (Cohen, 1988).
This statistic represents the distance between the means of
two groups in standard deviation units. To compute d, use the
following formula:

M, -M,

SD, pooled

where M| = mean of group 1
M, = mean of group 2
SD01eq = Square root of the average of the two squared
standard deviations, or

d=

SDZ+ SD%
SDjaciea \}__2—"

Cohen (1988) defined effect size as small if d = .20,
medium if d = .50, and large if d = .80, although not all re-
searchers agree with these descriptive terms (e.g., Hopkins,
2002). You may want to consider using the following terms
to describe the strength of effect sizes based on their cor-
responding correlation coefficients (see the formula for con-
verting r to d later in the chapter):

2.68 or higher: very high
1.51 to 2.67: strong

.88 to 1.50: moderate
42 to .87: low

41 or lower: very low

Because effect size values are in standard deviation units,
we can use the normal curve to find out how many percentile
points are represented by any effect size. (Note that most sta-
tistics books have a table that shows the areas of the normal
curve.) Let’s take three examples:

1. An effect size of .60 represents a difference of 23 percen-
tile points (the area covered in a normal curve between
0.00 and .60 standard deviation units is .2257).

2. An effect size of 1.34 represents a difference of 41 per-
centile points (the area covered in a normal curve between
0.00 and 1.34 standard deviation units is .4099).

3. An effect size of 2.00 represents a difference of 48 per-
centile points (the area covered in a normal curve between
0.00 and 2.00 standard deviation units is .4772).

Let’s look at an example. A psychologist wants to deter-
mine whether a new speed-reading program improves read-
ing comprehension scores. She randomly assigns children
with reading problems to a speed-reading program group and
to a control group. Pre- and post-tests are administered. She
finds that both groups had similar scores at the beginning of
the study, whereas at the end of the study the mean score of
children who took part in the speed-reading program was 11
points higher than the mean score of the control group. This
difference was significant (p < .05). In addition, she finds
an effect size of .60, which is a medium effect by Cohen’s
criteria (but a low effect based on the correlation coefficient
related to it), and she concludes that the program made some-
what of a difference by improving mean reading comprehen-
sion by 23 percentile points.

Now let’s compare effect size statistics with traditional
significance test statistics for a study designed to improve
written expression skills. Suppose that 60% of the children
in the study were at grade level in written expression at the
beginning of the study. Of a sample of 1,000 children, 65%
would need to be at grade level (an increase of 5 percentage
points) at the end of the study in order to produce a statisti-
cally significant finding. However, if the sample size were 50,
then 79% would need to be at grade level (an increase of 19
percentage points) at the end of the study to reach this same



s s L s

RELIABILITY 109

level of significance. In contrast, if the improvement goal
were to meet a minimum effect size of d = .2, the increase
needed to reach this level is 10 percentage points (to 70%),
regardless of whether the sample size was 50 or 1,000.

Correlation coefficient (r). Significance testing for cor-
relation coefficients also doesn’t tell the whole story. In addi-
tion to indicating the coefficient’s level of significance, r can
also be used to evaluate effect size (Hunter & Schmidt, 2004).
The correlation coefficient can be converted to d by use of the
following formula:

2r

d=

y

RELIABILITY
Theory of Reliability of Measurement

If we administer the same test to children on several occa-
sions, they will likely earn different scores. Sometimes the
scores change systematically (i.e., there is a regular increase
or decrease in scores), and sometimes the scores change ran-
domly or unsystematically (i.e., there is no discernable pat-
tern to the increase or decrease in scores). A reliable test is
one that is consistent in its measurements. In contrast, a test
is unreliable if scores are subject to large random, unsystem-
atic fluctuations; obviously, a test is not dependable if the
scores change significantly on re-administration after a short
time during which children receive no intervention. Techni-
cally, reliability of measurement refers to the extent to which
random or unsystematic variation affects the measurement of
a trait, characteristic, or quality.

According to classical psychometric theory, a test score
is composed of two components: a true score and an error
score. (The word true refers to the measurement process, not
to the underlying content of the test.) A true score represents
a combination of all the factors that lead to consistency in
measurement of a characteristic. A child’s true score is a hy-
pothetical construct; we cannot measure it precisely. How-
ever, we can hypothesize that if we repeatedly gave the child
the same test, his or her scores would be distributed around
the true score. The mean of this assumed normal distribution
would approximate the true score. An error score represents
random factors that affect the measurement of the true score.
The theory assumes that (a) the child possesses stable traits,
(b) errors are random, and (c) the observed test score is the
sum of the true score and the error score. The reliability coef-
ficient is the ratio of the true score variance to the observed
score variance.

Reliability Coefficients

The reliability coefficient, which expresses the degree of con-
sistency in the measurement of test scores, is denoted by the
letter r with a subscript consisting of identical letters (e.g., T
or r,,). Reliability coefficients range from 1.00 (indicating per-

fect reliability) to .00 (indicating the absence of reliability).
The four major types of reliability are internal consistency
reliability, test-retest reliability, alternate-forms reliability,
and interrater reliability. We use the Pearson product-moment
correlation formula (see Table 4-4) to compute test-retest and
alternate-forms reliability coefficients, specialized formulas
to compute internal consistency reliability coefficients, and
several different methods to compute interrater reliability co-
efficients. Table 4-6 shows some procedures for determining
reliability.

Reliability is essential in a psychological measure. Low
levels of reliability signify that unknown but meaningful
sources of error are operating in the measure and that the
measure is not stable across time or consistent across situ-
ations. Test results need to be reliable—that is, dependable,
reproducible, and stable. Imagine the chaos if, when a student
took two equivalent forms of the SAT on the same day, the
student scored at the 85th percentile rank on one form and
at the 40th percentile rank on the “equivalent” second form.
Clearly the reliability value of such a test would not be satis-
factory. Reliabilities above .80 are preferred for tests used in
individual assessment; reliabilities should be at or above .90
for test results to be used in decision making.

The following are useful ways to describe reliability coef-
ficients (Murphy & Davidshofer, 2005):

* .00 to .59: very low or very poor reliability

* .60 to .69: low or poor reliability

* .70 to .79: moderate or fair reliability

« .80 to .89: moderately high or good reliability
* .90 to .99: high or excellent reliability

Internal consistency reliability. Internal consistency
reliability is based on the scores that individuals obtain during
a single administration of a test. The most general measure of
reliability is Cronbach’s coefficient alpha, which can be used
for different scoring systems and is based on the variance of
the test scores and the variance of the item scores. Coefficient
alpha measures the uniformity, or homogeneity, of items
throughout the test (see Table 4-6). The values obtained by
using the Kuder-Richardson formula 20 coefficient, a special
case of coefficient alpha, are useful for tests whose items are
scored as pass/fail or right/wrong. The values obtained from
the Spearman-Brown correction formula, used to estimate re-
liability by the split-half method, are interpreted in the same
way as coefficient alpha. (The split-half method involves cor-
relating pairs of scores obtained from equivalent halves of a
test administered only once.) Internal consistency reliability
estimates are not appropriate for timed tests, and they do not
take into account changes over time. Generally, the size of the
internal consistency coefficient increases with test length; the
longer the test, the higher the coefficient.

Test-retest reliability. Test-retest reliability is computed
from the scores that individuals obtain on the same test on
two different occasions. The obtained correlation—some-
times called the coefficient of stability—provides an index of
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Tabled-6
" Some Procedures Used to Determine Reliabllity

Procedure

Description

Cronbach’s coefficient alpha (a) formula

b
"= n—1 S,2

where  r, = coefficient alpha refiability estimate
n = number of items on the test
3,2 = variance of the total scores on the test
IS§? = sum of the variances of individual item scores

An internal consistency reliability formula used when
a test has no right or wrong answers. This formula
provides a general reliability estimate. It is an efficient
method of measuring internal consistency. Coefficient
alpha essentially indicates the average intercorrelation
between test items and any set of items drawn from
the same domain.

Kuder-Richardson formula 20 (KR,,)
;= (L)(é’-_iﬂ)
T \n-1 s?

where  r, = reliability estimate
n = number of items on the test
§?2 = variance of the total scores on the test
Xpg = sum of the product of p and q for each item
p = proportion of people getting an item correct
q = proportion of people getting an item incorrect

An internal consistency reliability formula used for
calculating the reliability of a test in which the items
are scored 1 or O (or right or wrong). It is a special
form of the coefficient alpha formula for use with
dichotomous items.

Spearman-Brown correction formula

o
"nn = T4 (k= Dy

where  r,, = estimated reliability coefficient

n

k = number of items on the revised version of the test divided

by number of items on the original version of the test
r,, = reliability coefficient before correction

An internal consistency reliability formula used to
evaluate the effect that lengthening or shortening a
test will have on the reliability coefficient. The formula
increases the reliability estimate when the test is
lengthened.

Product-moment correlation coefficient formula
See Table 4-4 for the formula.

A formula used to estimate test-retest reliability or
parallel-forms reliability

the consistency, or replicability, of test scores over relatively
short intervals, during which scores would not be expected
to change. The test-retest method is useful for evaluating the
reliability of ability tests; it is less useful with behavioral
checklists and scales, observational procedures, and related
forms of measurement. Because the latter instruments tend
to provide different readings each time measurement is con-
ducted, lower test-retest reliability coefficients may result
when they are re-administered. This does not necessarily
mean that the instruments are faulty—that is, that there is
measurement error. Rather, the behaviors being measured
may have changed. Consequently, you should carefully con-
sider whether low test-retest reliabilities are associated with
poorly designed instruments or with actual changes (as a
result of life changes, tutorials, or interventions) in children’s
behavior, attitudes, temperament, or other characteristics
being measured.

Test-retest correlation is affected by factors associated
with the specific administrations of the test and with what
children remember or have learned in the interim. Any vari-
ables that affect children’s performance on one occasion but

not on the other will affect the test-retest reliability. Typical
influencing variables include differences in administration
(e.g., different examiners, different rooms, different times
of the day) and differences in the children themselves (e.g.,
fatigue, mood, motivation). Generally, the shorter the retest
interval, the higher the reliability coefficient, because within
a shorter span of time there are fewer such reasons for chil-
dren’s scores to change. With individual intelligence tests,
test-retest reliabilities are generally higher when the retest in-
terval is less than 10 months and when the children are older
adolescents (Schuerger & Witt, 1989).

Alternate-forms reliability. Alternate-forms reliability
(also referred to as parallel-forms reliability or equivalent-forms
reliability) is determined by creating two different but parallel
forms of a measure and administering the two forms to the
same group of children. The extent of agreement of a group’s
scores on the two forms, sometimes referred to as a coefficient
of equivalence, is used as an index of reliability. For example,
two forms of a measure of intelligence might be created, with
different items in the two forms measuring the same construct.
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The two forms would then be given to a large sample. Half of
the sample would receive form A followed by form B, and the
other half of the sample would receive form B followed by
form A. Scores from the two forms would then be correlated,
yielding a reliability coefficient.

If the two forms of a test are equivalent, they should yield
the same means and variances, be highly correlated, and have
high reliability coefficients (.80 or higher). If there were no
error in measurement, children should earn the identical score
on both forms of the test. For the forms to be truly parallel,
each equivalent item on the two forms should have the same
response split (number of individuals answering each item
right or wrong) and the same correlations with other tests.
This level of test equivalence is difficult, if not impossible,
to achieve.

Alternate-forms reliability coefficients are subject to some
of the same influences as test-retest reliability coefficients,
such as decreased reliability as the interval between the tests
increases. Because children are not tested twice with the same
items, however, there is less chance than with the test-retest
method that memory for specific item content will affect the
scores. Constructing alternate forms is usually easier for tests
that measure intellectual ability or specific academic abilities
than for those that measure personality, temperament, or mo-
tivation, as the latter constructs are more difficult to define.

Interrater Reliability

Interrater reliability (also called examiner reliability or scorer
reliability) refers to the degree to which the raters agree. The
most common measure of interrater reliability is percentage
agreement. This statistic tells us the percentage of items on
which two or more raters gave the identical rating to the be-
havior or criterion being judged (e.g., raters gave the same
rating to 80% of the items). Percentage agreement is not a re-
liability coefficient, because it provides no information about
the measurement procedure itself. Furthermore, percentage
agreement does not take into account that chance alone would
lead to some agreement. However, because percentage agree-
ment does indicate the extent to which two or more raters gave
the same score or rating, it contributes to our understanding
of the objectivity of the scoring, a factor related to reliability.
Other ways to evaluate interrater reliability are with kappa
and the intraclass correlation coefficient—both of which ac-
count for chance agreement—and the product-moment cor-
relation coefficient.

Factors Affecting Reliability

The following factors affect the reliability of a test (also see
the discussion of repeated evaluations and practice effects
later in the chapter):

1. Test length. The more items there are on a test, the
greater the internal consistency reliability is likely to be.

2. Homogeneity of items. The more homogeneous or simi-
lar to each other the items on a test are, the greater the reli-
ability is likely to be.

3. Test-retest interval. The smaller the interval between
administration of two tests, the smaller the chance of change
in the child taking the test and, hence, the higher the test-
retest reliability is likely to be.

4. Variability of scores. The greater the variance of scores
on a test, the higher the reliability estimate is likely to be.
Small changes in performance have a greater impact on the
reliability of a test when the range, or spread, of scores is
narrow than when it is wide. Therefore, on a given test, homo-
geneous samples (those with a small variance) will probably
yield lower reliability estimates than heterogeneous samples
(those with a large variance).

5. Guessing. The less guessing that occurs on a test (i.e.,
the less often children respond to items randomly), the higher
the reliability is likely to be. Even guessing that results in cor-
rect answers introduces error into the score.

6. Variation in the test situation. The fewer variations
there are in the test situation, the higher the reliability is
likely to be. Child factors, such as misunderstanding instruc-
tions, illness, and daydreaming, and examiner factors, such as
misreading instructions and making scoring errors, introduce
an indeterminate amount of error into the testing procedure.

7. Sample size. Reliability coefficients are more meaning-
ful when the sample represents a large group, as well as when
the children closely resemble the sample on which the reli-
ability coefficient was based. Although the standard error of
measurement (see below) is not directly related to reliability,
the sampling error associated with the reliability coefficient
will be smaller when the sample size is large. For example,
a reliability estimate of .80 based on a sample of 26 yields
an estimated standard error of .07, whereas one based on a
sample of 201 yields an estimated standard error of .03, a
value less than half as large. Larger samples thus provide a
more dependable estimate of reliability.

Standard Error of Measurement

The standard error of measurement (SEM), or standard error
of a score, is an estimate of the amount of error inherent in
a child’s obtained score. It is important to consider this es-
timate, because some measurement error is associated with
every test score and thus there is almost always some uncer-
tainty about a child’s true score. The standard error of mea-
surement directly reflects the reliability of a test: the lower
the reliability, the higher the standard error of measurement;
conversely, the higher the reliability, the lower the standard
error of measurement. Large standard errors of measurement
reflect less stable measurements. Of course, the size of the
SEM is also related to the standard deviation of the metric
(or standard of measurement): the larger the standard devia-
tion, the larger the SEM. Thus, for example, the SEM will be
larger when the total score has a mean of 100 and a standard
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deviation of 15 than when the total score has a mean of 50
and a standard deviation of 10.

The standard error of measurement represents the stan-
dard deviation of the distribution of error scores. You can also
think of the SEM as an estimate of how one person’s repeated
scores on the same measure tend to be distributed around his
or her true score. We compute the SEM by multiplying the
standard deviation (SD) of the test by the square root of 1
minus the reliability coefficient (r,,) of the test:

SEM=SDVN1 -7,

This equation indicates that as the reliability of a test in-
creases, the standard error of measurement decreases. With a
reliability coefficient of 1.00, the standard error of measure-
ment would be zero. With a reliability coefficient of .00, the
standard error of measurement would be equal to the standard
deviation of the scores in the sample.

Confidence Intervals for Obtained Scores

When we report a test score, we also should report a confi-
dence interval—a band, or range, of scores around the ob-
tained score that likely includes the child’s true score. The
confidence interval may be large or small, depending on the
degree of certainty we desire (how likely we want it to be that
the interval around the child’s obtained score contains his or
her true score). Traditionally, we select points that represent
the 68%, 95%, or 99% level of confidence, although we also
can use the 85% or 90% level. A 95% confidence interval can
be thought of as the range in which we will find a child’s true
score 95% of the time. With a 95% confidence interval, the
statistical chances are only 5 in 100 that a child’s true score
lies outside the range encompassing the obtained score. It is
not possible to construct a confidence interval within which a
child’s true score is certain to lie unless the entire distribution
of scores is known.

Although you can usually use confidence intervals for
various scores obtained by a child on a test (such as subtest
scaled scores), we recommend that you use confidence in-
tervals primarily for the overall score, such as the WISC-TV
Full Scale 1Q, because the overall score is usually the score
used for diagnosis and classification. Individuals who use the
test findings need to know that the IQ and other major scores
used to make decisions about a child are not perfectly ac-
curate because they inherently contain measurement error.
Consequently, you should report confidence intervals associ-
ated with the IQ and other similar total or overall scores.

There are two methods for obtaining confidence intervals.
One is based on the child’s obtained score and the conventional
standard error of measurement. The other is based on the es-
timated true score and the standard error of measurement as-
sociated with the estimated true score (also called the standard
error of estimate). The following guidelines will help you to
determine which type of confidence interval to use. Note that

in all of the examples in this section, the confidence intervals
have been rounded up to the next whole number.

Confidence interval based on obtained score
and conventional standard error of measurement
(SEM). When you base the confidence interval solely on
the child’s obtained score, without reference to his or her es-
timated true score, use the SEM for obtained scores.

You obtain the confidence interval by using the following
formula:

Confidence interval = obtained score * (2)(SEM)

The formula shows that two values are needed in addition to
the child’s test score: the z score associated with the confi-
dence level chosen and the standard error of measurement.
You can obtain the z score from a normal distribution table,
found in most statistics textbooks. We used a normal distri-
bution table to obtain the following values for the five most
common levels of confidence:

68% level, z=1.00
85% level, z=144
90% level, z=1.65
95% level, z=1.96
99% level, z=2.58

You can usually find the SEM in the manual that accom-
panies a test, or you can compute it using the formula given
previously. You compute the upper limit of the confidence
interval by adding the product (z)(SEM) to a child’s score,
and the lower limit by subtracting the product from a child’s
score (thus the plus-or-minus symbol, +, in the equation for
the confidence interval).

Here is an example of how to construct a confidence inter-
val, given a standard error of measurement of 3 and an IQ of
100. First we need to select a confidence level. Let’s say that
we select the 95% level. The z score associated with the 95%
level is 1.96. To obtain the confidence interval, we multiply
this value by the standard error of measurement, 3, and add a
+ sign to the result to represent the upper and lower limits of
the interval. Thus, the confidence interval is approximately
100 + 6. The value 6 is then added to and subtracted from
the obtained score to determine the specific band, or interval,
associated with the obtained score. The upper limit of the in-
terval is given by

Confidence interval upper limit = 100 + 1.96(3)
=100+6=106

and the lower limit of the interval is given by

Confidence interval lower limit = 100 — 1.96(3)
=100-6=94

Because the z score we used was associated with the 95%
level, we can say that the chances that the child’s true score is
between 94 and 106 are about 95 out of 100.

For an IQ of 100 (with SEM = 3), the interval would be
100 = 3 (97 to 103) at the 68% confidence level, 100 + 4 (96
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to 104) at the 85% confidence level, 100 = 5 (95 to 105) at
the 90% confidence level, and 100 < 8 (92 to 108) at the 99%
confidence level. The latter band indicates that the chances
that the child’s true score is between 92 and 108 are about 99
out of 100. Notice that we must increase the band width to
increase our level of confidence (or degree of certainty).

As another example, let’s construct several confidence in-
tervals for a child who obtains an IQ of 80 on a test for which
SEM = 5. We complete the equation for the 90% level of
confidence in the following way:

Confidence interval = obtained score % (z)(SEM)
80 + 1.65(5)
80+8=721088

For the 99% level of confidence, the equation is as follows:

Confidence interval = 80 * 2.58(5)
= 80%13=671t093

Appendixes A, B, C, and F in the Resource Guide show
the confidence intervals for the Composites for the WISC-IV
(Table A-1), the WPPSI-III (Table B-1), the WAIS-III (Table
C-1), and the SB5 (Table F-1), based on the obtained score and
the conventional standard error of measurement—that is, with-
out recourse to the estimated true score or the standard error
of estimate. Use of a child’s specific age group in these tables
allows you to obtain the most accurate confidence interval.

Confidence interval based on estimated true score
and its standard error of estimate. When you base the
confidence interval on the child’s obtained score with refer-
ence to his or her estimated true score, use the standard error
of estimate for estimated true scores. This confidence interval
will be based on statistics that take into account the effects of
regression toward the mean.

Because the WISC-1V is widely used, it will be used in
this section to illustrate how confidence limits are obtained
with reference to the estimated true score. Table D-2 in Ap-
pendix D in the Resource Guide shows the confidence inter-
vals, by age, for the WISC-IV Composites and Full Scale,
based on the estimated true score and the appropriate standard
error of measurement. You simply apply the confidence inter-
vals in Table D-2 to the obtained score on the WPPSI-III, the
WAIS-III, the SBS, and any other test with M = 100 and SD
= 15 that has a reliability coefficient of .85 to .98.

The formula used to obtain the estimated true score is

T=rxx(X—)-() +X

where T = estimated true score
r.. = reliability of the test
X = obtained score
X =mean of the test

Thus, the estimated true score for an obtained WISC-IV Full
Scale IQ of 60 (where r,, =.97) is

T = .97(60 - 100) + 100
-39 + 100 = 61

The formula used to obtain the standard error of estimate
(SE,) is as follows:

SE, = r SEM

where SE, = standard error of estimate (or standard error
of measurement of the true score)
r . =reliability of the test

XX
SEM = standard error of measurement of the test

If, in our example, the SEM was 2.68, the standard error of
estimate would be

SE,,, = 97(2.68) = 2.60

Because the confidence intervals are centered around
the estimated true score, the intervals become asymmetri-
cal when applied to the obtained score. The asymmetry is
greater for values farther from the mean, because regression
to the mean increases at the extremes of the distribution. In
fact, for scores at or near the mean, there is no asymmetry
at all—the confidence intervals are equal around the mean.
For example, as Table 4-7 shows, for the WISC-IV Verbal
Scale at age 16 (Section O) at the 95% confidence level, the
confidence interval for an IQ of 40 is from 40 -3 t0 40 + 9
(37 to 49), whereas the confidence interval for an IQ of 91 is
from 91 - 6 to 91 + 7 (85 to 98). The procedure used to obtain
the confidence intervals in Table D-2 in Appendix D in the
Resource Guide is the same one used by The Psychological
Corporation in the construction of the confidence intervals in
the WISC-IV Administration Manual.

To use Table D-2 in Appendix D in the Resource Guide,
follow this procedure. First, use the list at the beginning of the
table to find which section of the table applies to the child’s
age, the appropriate test (WISC-IV, WPPSI-III, WAIS-III,
or SB5), and the appropriate Composite. Then select one
confidence level from the columns labeled 68%, 85%, 90%,
95%, and 99%. The values in the table under the appropri-
ate confidence level will allow you to calculate the lower (L)
and upper (U) limits of the confidence interval for the ob-
tained IQ. If the value is positive (when no sign precedes the
value, the + sign is understood), add the absolute value to the
obtained IQ. If the value is negative (a — sign precedes the
absolute value), subtract the absolute value from the obtained
1Q. Usually, you will find the lower limit by subtracting an
absolute value from the obtained IQ, and you will find the
upper limit by adding an absolute value to the obtained IQ.

For example, to calculate the confidence interval for a
12-year-old child who obtains a WISC-IV Full Scale IQ of
46, see Table D-2, Section O, in Appendix D in the Resource
Guide. Section O shows that the values at the 68% confidence
level for the lower and upper limits of the confidence inter-
val are 0 and 6, respectively. (Table 4-7 shows the Section O
part of Table D-2.) Because both values are positive, you can
obtain the lower and upper limits of the confidence interval
by adding the absolute values to the obtained IQ. The result-
ing confidence interval is 46 to 52 (lower limit is 46 + 0 = 46;
upper limit is 46 + 6 = 52).
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Table 4-7 , ’ »
Part of Table D-2 in Appendix D in the Resource Guide Showing Confidence Intervals Based on the Estimated True Score.
for Wechsler Scales and Stanford-Binet Fifth Edition for r, = .95 :

0.r,=.95

WISC-IV: Verbal Comprehension Index, Ages 12, 14, 15, and 16

WPPSI-II: Verbal 1Q, Ages 2'%, 3, 3%, Average for Ages 2'%-3/12, 4, 4%, 5%,7, and Average for Ages 4-7%
WPPSI-Iil: Performance 1Q, Age 7

WPPSI-II: Full Scale 1Q, Ages 2%, 3, and Average for Ages 2%-31h2

WAIS-1II: Performance Scale IQ, Ages 25-29, 55-64, and 70-74

SB5: Nonverbal IQ, Ages 2, 4, 5, 9, 14, 30-39, and Average

SB5: Verbal 1Q, Ages 2, 7,10, and 13

68% 85% 90% 95% 99%

Q L U Q L U Q L U Q L U Q L u
40-46 0 6 40-41 [ -2 | 8 40-44 | -2 8 40-45 | -3 | 9 40-45 -5 11
47-53 | -1 6 42-58 | -2| 7 45-55 | -3 8 46-54 | -4 | 9 46~54 -6 1
54-66 | -1 5 59-61 | -3 | 7 5664 | -3 7 55-65 | -4 | 8 556-65 -6 10
67-73 | -2 5 62-78 | -3 | 6 .65-756 | -4 7 66-74 | -5 | 8 66-74 | -7 10
74-86 | -2 4 79-81 | -4 | 6 76-84 | —4 6 75-85 | -5 | 7 75-85 -7 9

- 87-93 | -3 4 82-98 | -4 | 5 85-95 | -5 6 86-94 | -6 | 7 86-94 -8 9
94-106 | -3 3 99-101 | -6 | 5 96-104 | -5 5 95-1056 | -6 | 6 95-105 -8 8
-107-113 | -4 3 |102-118 | -5 | 4 | 105-115 | -6 5 106-114 | -7 | 6 | 106-114 -9 8
114-126 | -4 2 119-121 | -6 | 4 | 116-124 | -6 4 115-126 | =7 | 65 | 115-125 -9 7
"127-133 | -5 2 122-138 | -6 | 3 | 125135 | -7 4 126-134 | -8 | 5 | 126-134 | -10 7
134-146 | -5 1 139-141 | -7 | 3 | 136-144 | -7 3 135-145 | -8 | 4 | 135-145 | -10 6
147-163 | -6 1 142-158 | -7 | 2 | 145-155 | -8 3 146-154 | -9 | 4 | 146-154 | - 11 6
154-160 | -6 0 |[159-160 | -8 | 2 | 156-160 | -8 2 155-160 | -9 | 3 | 155-160 | — 11 5

Note. L = lower confidence interval; U = upper confidence interval.

Note that, although you calculate the values for the confi-
dence intervals for the estimated true score, they are applied
to the obtained score. Also note that you do not provide the
estimated true score in the report; it is used only to generate
the confidence interval.

Table D-2 in Appendix D in the Resource Guide is based
on the child’s age and not on average values for the total
sample; in contrast, confidence intervals in the WISC-IV
Administration Manual are based on the total sample. Use of
the child’s specific age group allows you to obtain the most
accurate confidence interval.

Comment on confidence intervals. In clinical and
psychoeducational assessments, questions usually center on
how a child is functioning at the time of the referral. There-
fore, we recommend that you use the confidence interval
based on the child’s obtained score, without recourse to the
child’s estimated true score. If you follow this recommenda-
tion, use the confidence interval for the obtained score and
the conventional standard error of measurement—see Table
A-1 in Appendix A in the Resource Guide. Be aware that the
WISC-IV Administration Manual does not provide a similar

table. However, when you want to know how a child might
perform over a longer period in relation to a specific reference
group, use the confidence interval based on the estimated true
score—see Table D-2 in Appendix D in the Resource Guide.
Again, the confidence intervals shown in Table D-2 are more
appropriate than those shown in the WISC-IV Administra-
tion Manual because they are based on the child’s specific
age and not on the total sample. For most purposes, we rec-
ommend using confidence intervals at the 95% level of confi-
dence. Note again that confidence bands will be broader with
higher levels of confidence (e.g., 95% vs. 68%).

Confidence Intervals for Predicted Scores

Earlier in the chapter we discussed regression equations and
the standard error of estimate associated with the predicted
score. The standard error of estimate allows us to establish a
confidence interval around a predicted score. This confidence
interval is obtained in the following way:

Confidence interval = Y, . * (2)(SE,)
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The confidence interval for predicted scores is similar to
the confidence interval for obtained test scores. If we use a
z score of 1, then the standard error of estimate tells us that
we can expect the predicted score to fall within the range
bounded by the standard error of estimate about 68% of the
time. If we want to have more confidence in the prediction,
we can use a z score associated with, for example, the 95%
confidence level (z = 1.96) or the 99% confidence level (z =
2.58). However, with higher levels of confidence, we expand
the band (or range) around the predicted score.

The following three examples illustrate how to establish
confidence intervals. In each case, let’s assume that SE,, =
Sand Y, 4= 8s.

» For the 68% level of confidence, the confidence interval is
85 = 1.00(5). Thus, the confidence interval associated with
the predicted score of 85 is 80.00 to 90.00 (there is a 68%
chance that Y falls within this range).

» For the 95% level of confidence, the confidence interval is
85 + 1.96(5). Thus, the confidence interval associated with
the predicted score of 85 is 75.20 to 94.80 (there is a 95%
chance that Y falls within this range).

¢ For the 99% level of confidence, the confidence interval is
85 + 2.58(5). Thus, the confidence interval associated with
the predicted score of 85 is 72.10 to 97.90 (there is a 99%
chance that Y falls within this range).

Repeated Evaluations and Practice Effects

When a test is re-administered, retest scores may differ from
those obtained on the initial test. Let’s look at some findings
on such changes in retest scores, known as practice effects.

1. Practice effects may be related to prior exposure to the
test. Children may be particularly likely to obtain higher retest
scores on items that require speed of performance, especially
when the retest interval is short. Scores may also change if,
between tests, children look up answers that they were unsure
of during the first testing.

2. Practice effects may occur because of intervening
events between the two administrations. Retest scores might
be affected by such factors as a different examiner, setting, or
time of day; traumatic events in the child’s life and family; or
changes in the child’s health, motivation, or attention.

3. Practice effects may not occur to the same extent in
all populations. Practice effects typically seen among chil-
dren with average ability may not occur among children with
mental retardation or children who are gifted. Practice effects
may also differ as a function of the child’s age or other vari-
ables, such as cultural and linguistic backgrounds.

4. Practice effects vary for different types of tasks. Non-
verbal tasks (such as those found on the Wechsler Perceptual
Reasoning Composite) usually show more practice effects
than do verbal tasks (such as those found on the Wechsler
Verbal Comprehension Composite; see Chapters 9 through

11 for a discussion of the Wechsler tests). Even tasks within
the same performance or verbal area may show different
practice effects.

5. Practice effects may be affected by regression toward
the mean. Regression toward the mean is a statistical phe-
nomenon whereby students with low scores on a first test tend
to get higher scores on retest and students with high scores on
a first test tend to get lower scores on retest. The idea of re-
gression toward the mean is captured in everyday expressions
such as “the law of averages,” “things will even out,” or “we
are due for a good day after a string of bad ones.” Regression
toward the mean occurs because, on the first test, the low
scores probably have negative errors of measurement (i.e.,
have been depressed) and the high scores probably have posi-
tive errors of measurement (i.e., have been inflated). Regres-
sion toward the mean does not affect scores at the center of
the distribution because these scores probably have an equal
number of negative and positive errors of measurement.

6. Practice effects may be difficult to interpret when the
initial test and the retest are different. If you measure intel-
ligence with test A on the first occasion and with test B on
the second, changes in IQ may occur because of differences
between the two tests, not because of changes in the child.
An understanding of the properties of different tests, includ-
ing how they are related to each other, is critical in evaluating
retest changes.

7. Practice effects may depend on the item content cov-
ered throughout the test. A test of ability that covers a wide
age range may actually tap different abilities at different
ages, even though the test is said to measure only one ability
or skill. For example, an intelligence test that covers ages 2
years through 18 years will usually measure different compo-
nents of intelligence at 2 years than at 18 years. In such cases,
it will be difficult to compare test results at these two ages
and know precisely what any changes in test scores mean.

When a child obtains higher scores on retest, we don’t
know for sure whether the improvement was due to prior ex-
posure to the material or to the child’s improved cognitive
functioning. When a child is expected to show gains on retest
but does not, he or she may have a subtle learning deficit.
This can happen, for example, with children who are brain
injured or who are being reevaluated after brain surgery or
chemotherapy.

For the results of repeated evaluations to be most useful,
we need data on the differential effects of practice in relation
to such factors as item content, age, gender, ability level, and
illness (type, location, and chronicity). A database that pro-
vided normative retest changes on various tests for diverse
normal and clinical populations would be extremely help-
ful in evaluating practice effects. Any clinical significance
attributed to changes in test scores should be corroborated
by other assessment and clinical data; validity data would be
particularly important in this regard. Until such data become
available for each test that you use, be careful in interpreting
retest findings.
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ITEM RESPONSE THEORY

Test developers traditionally look at certain values for each
item on a test to see whether the item is performing prop-
erly, a process referred to as irem analysis. One value is
item difficulty: the percentage of children who answer an
item correctly. It ranges from 0.0 for an item with maximum
difficulty (everyone in the sample answers incorrectly) to
+1.0 for an item with no difficulty (everyone in the sample
answers correctly). A second value is item discrimination:
how an item discriminates between children who do well on
the test as a whole and those who do poorly. It ranges from
—-1.0 to +1.0. A value of +.8 for an item reflects excellent
discrimination, whereas values from —.2 to +.2 indicate poor
discrimination. A negative value, such as —.9, indicates that
an item is a reverse discriminator—children who perform
poorly on the test answer the item correctly more often than
children who do well on the test. This may occur when the
item is keyed incorrectly, when there is more than one cor-
rect answer (as in a multiple-choice test), or when the item
is ambiguous.

In addition to item discrimination and item difficulty, item
response theory (IRT), or the latent trait model (LTM), adds
a third parameter: a “guessing” parameter, which reflects the
probability that a correct response will occur by chance. A
test developer places information on responses into math-
ematical equations, which then guide the construction of a
test. IRT provides useful information about the relationship
between the attribute being measured and the test responses.
The mathematical relationship can be illustrated graphically
with an item characteristic curve—a line representing the
probability of passing the item for children with different
total scores on the construct being measured.

Figure 4-4 shows item characteristic curves for two items
on an intelligence test. Curve a reflects a good item; children
with higher total test scores are more likely to answer that
item correctly than are children with lower scores. In con-
trast, Curve b reflects a difficult item that has less discrimi-
nating power, because children with low total test scores are
almost as likely to pass the item as are those with high total
test scores. The slope of the curve tells you how effective the
item is. A positive slope (i.e., one that rises from the lower
left to the upper right) means that the item is a good discrimi-
nator, whereas a flat slope means that the item is a poor dis-
criminator.

Here is an example of an application of an item character-
istic curve:

Item characteristic curves can be useful in identifying items that
perform differently for different groups of children. For example,
suppose a test developer was concerned that some reading-compre-
hension items dealing with farms might measure different processes
for rural children than for urban children. To examine this question,
the test developer would administer the test to groups of rural and
urban children and determine the item characteristic curve for each
item in each group. If an item is measuring the same thing in both
groups, the item characteristic curves for that item should look the
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Figure 4-4. Two item characteristic curves.

same in both groups. If the item is measuring different things in
the two groups, the item characteristic curves can appear different.
Items whose item characteristic curves are substantially affected by
the group membership of the children can be revised or deleted from
the test. (Adapted from Allen & Yen, 1979, pp. 129-130)

Item response theory is also useful in adaptive testing:

One of the most important applications of item response theory is to
be found in computer-administered adaptive testing, also described
as individualized, tailored, and response-contingent testing. This
procedure adjusts the items to be administered to the responses ac-
tually given by each child to the preceding items. As the child re-
sponds to each item, the computer chooses the next item on the basis
of the child’s previous responses up to that point. Essentially each
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child takes a test-item sequence and mix of items that is tailor-made
to fit his or her performance. The test stops when enough informa-
tion is available to reach a pass-fail level on the items. The child’s
test score is based not on the number of items passed, but on the pre-
determined score of each of the items passed, as determined by its
difficulty level, discriminative value, and susceptibility to guessing.
The item “score” represents the best estimate of the ability level at
which the likelihood of passing the item is 50-50. Adaptive testing is
thus made possible by the use of item response theory in developing
the item pool. (Adapted from Anastasi, 1989, p. 479)

DIFFERENTIAL ITEM FUNCTIONING

The assessment of differential item functioning (DIF) is a
statistical procedure designed to reveal whether test items
function differently in different groups (Zumbo, 1999). The
procedure is based on the principle that if different groups of
children have the same level of ability, they should perform
similarly on individual test items, regardless of their group
membership. Differential item functioning occurs when chil-
dren from different groups show differing probabilities of
success on a test item after the groups have been matched on
the underlying ability (i.e., overall score on the test) that the
item is intended to measure.

Differential item functioning can occur uniformly or non-
uniformly. It occurs uniformly if the difference in the prob-
ability of success is consistent across all levels of ability (e.g.,
the item favors all females regardless of ability). It occurs
nonuniformly if the difference in the probability of success
between the groups is not constant across ability levels—that
is, if there is an interaction effect (e.g., the item favors females
of low ability and males of high ability). The assessment pro-
cedure is useful for detecting item bias, but it is based on
several questionable assumptions: that the test item measures
a single trait, that the overall test is fair, and that the abilities
measured by the test are equivalently distributed across all
groups. Removing items judged as biased may not result in a
fairer test if the groups being compared are not equal in the
underlying construct being measured (Camilli, 1993).

VALIDITY

The validity of a test refers to whether it measures what it
is supposed to measure. Validity determines the appropriate-
ness of inferences or conclusions that are based on the test
results. We use test results for such purposes as educational
placements, program training, job qualification, and diagno-
sis. However, a test can’t be used with confidence unless it is
valid for the purpose for which it is used. Because tests are
used for many different purposes, there is no single type of
validity that is appropriate for all assessment purposes.
Validity is more difficult to define than reliability (Messick,
1989a, 1989b, 1995). Unlike reliability, validity has no single
definition. A related problem is that the terminology used in

the literature on validity is inconsistent. We will employ one
set of terms in our discussion, but you should understand that
these terms are not universal (although the definition of con-
struct validity given below is widely accepted).

A good way to determine the validity of a test is to under-
stand what it measures and then decide what measures should
and should not be correlated with it. For example, a valid
test of memory might have a negligible correlation with a
measure of social intelligence, a moderate correlation with
a measure of anxiety, and a high correlation with a measure
of attention.

Two issues are addressed in validating tests: what a test
measures and how well it measures it. Below, we will con-
sider procedures that reflect different strategies for analyzing
validity. Recognize that no test is valid for all purposes or
valid in the abstract; a test is valid only for a specific pur-
pose. Furthermore, validity is not a matter of all or nothing,
but a matter of degree. When you evaluate a test, consider
the various lines of evidence that support its validity. Select
tests that are valid for your purposes. For example, to select
the best applicants for a job, use a test with the best available
criterion-related validity for that occupation. Or, to measure
achievement, select a test with good content validity. Studies
of test validity should continue long after publication of the
test. The test publisher is responsible for furnishing evidence
that the test is valid for specific purposes, and the examiner is
responsible for the appropriate use of test results, for evalu-
ating the publisher’s evidence, and for studying subsequent
research on the test. Let’s now consider various types of va-
lidity: content validity, face validity, construct validity, and
criterion-related validity.

Content Validity

Content validity refers to whether the items within a test or
other measure represent the domain being assessed. In evalu-
ating content validity, we must consider the appropriateness
of the type of items, the completeness of the item sample, and
the way in which the items assess the content of the domain
involved. Questions relevant to these considerations include
the following: (a) Does the test measure the domain of inter-
est? (b) Are the test questions appropriate? (c) Does the test
contain enough information to cover appropriately what it
is supposed to measure? (d) What is the level of mastery at
which the content is being assessed? If we can answer these
four questions satisfactorily, the test has good content valid-
ity. For example, a mathematics test designed for children
from ages 6 to 17 years quite likely would have good content
validity if the test systematically sampled the material found
in several mathematics books used in preschool through be-
ginning college level.

The concept of content validity applies not only to intel-
ligence and achievement tests but also to rating scales, check-
lists, and observational measures. We might ask, for example,
whether the content of a behavioral rating scale designed to



o)

118 CHAPTER 4 A PRIMER ON STATISTICS AND PSYCHOMETRICS

measure aggressive behavior actually corresponds to a gener-
ally recognized definition of the aggression construct.

We can build content validity into a test by including only
items that measure the trait or behavior of interest. Content
validity does not require that a test measure all possible ele-
ments of a content area, just representative ones. The initial
part of the validation process for any educational or psycho-
logical test is to determine the representativeness of the test
items in the test.

Although some achievement tests are based on a detailed
chart of objectives that can be used to assess validity, con-
tent validity is usually evaluated through relatively subjec-
tive and unsystematic procedures. That is, we examine the
content of a measure and attempt to determine whether it cor-
responds with our understanding of the concept it measures.
This is a good starting point in assessing a measure, but more
systematic procedures are also required to evaluate a mea-
sure’s validity; these include assessing construct validity and
criterion-related validity.

To define the domain of interest (what is to be measured),
test developers may ask experts to nominate items and/or to
rate items as to their acceptability and then test these items.
Items are administered to a sample and evaluated for such
factors as content, clarity, complexity of language, readabil-
ity level, and cultural and gender bias. Items are then modi-
fied as needed and administered to another sample. Items
are evaluated again on criteria including their difficulty level
(i.e., percentage of examinees passing each item) and their
discriminative power (i.e., ability to differentiate between
high and low achievers). Discriminative ability is studied by
evaluating, for example, whether the proportion of the high-
est 27% in the sample who answered a particular item cor-
rectly is greater than the proportion of the lowest 27% in the
sample who answered the item correctly.

Face Validity

Face validity refers to whether a test looks valid “on the face
of it”” In evaluating face validity, we are asking whether ex-
aminers and those taking the test perceive the instrument as a
reasonable measure of what it is supposed to measure. This in-
volves judgment, but face validity is important if an individual
is to be motivated to participate in the assessment process. For
example, employers sometimes run into resistance in employ-
ment screening situations because potential employees believe
that the assessment tools have no relevance to the job in ques-
tion. However, face validity is the least important form of va-
lidity, because its assessment requires a subjective judgment,
does not depend on established theories for support, and may
give the respondent a false sense of what the test measures.

Construct Validity

Construct validity establishes the degree to which a test mea-
sures a specified psychological construct (i.e., an inferred

entity) or trait. For example, what does a score in the gifted
range on an intelligence test tell us about the intellectual
functioning of the child? Similarly, what does it mean to say
that a child has a low or high competence score on a teacher
rating measure? What does the score tell us about the child’s
functioning? These are the kinds of questions that arise in
connection with construct validity. Examples of cognitive
constructs are intelligence, concept formation, short-term
memory, speed of information processing, developmental
delay, nonverbal reasoning, and mechanical aptitude.

Two components of construct validity are convergent va-
lidity and discriminant validity. Convergent validity refers to
how well measures of the same domain in different formats—
such as tests in multiple-choice, essay, and oral formats—
correlate with each other. Discriminant validity, sometimes
called divergent validity, refers to the extent to which mea-
sures of different domains do not correlate with each other.
Discriminant validity is the flip side of convergent validity.
When you assess a test’s construct validity, you need to con-
sider both convergent validity and discriminant validity along
a continuum,

Although construct validity is important, it is difficult to
evaluate because constructs are difficult to define and empiri-
cal procedures for evaluating them are limited. Still, we have
some useful ways to evaluate how the items in a test relate to
the theoretical constructs that the test purports to measure.
They include specifying the meaning of the construct, distin-
guishing the construct from other constructs, and specifying
how measures of the construct relate to other variables.

Following are some examples of ways we can obtain evi-
dence for construct validity.

« We find a relationship between test scores and a theory re-
lated to how the test items were selected. For example, we
can say that a test of intelligence has construct validity if,
compared to children who have low scores, children who
obtain high scores on the test also have better recall, under-
standing of concepts, imagination, grades in school, teacher
ratings of scholarship, and parental ratings of intelligence.

+ We find that scores from one test correlate with related
measures. For example, suppose we give a test of leader-
ship quality to a sample of college students, place them
in groups of six students, and give each group a task to
perform. We then have raters who are unfamiliar with the
students’ leadership test scores rate each student on his or
her leadership qualities. A positive correlation between the
test scores and the observers’ ratings provides evidence
that the test has construct validity.

« We find that scores from a test correlate very highly with
related measures (the test has convergent validity) and not
highly with unrelated measures (the test has discriminant
validity). Thus, for example, when a test of reading cor-
relates very highly with other tests of reading and does not
correlate highly with tests of mathematics, we say that the
reading test has convergent and discriminant validity.
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o We conduct a factor analysis and find that the test mea-
sures the constructs underlying it. If we intercorrelate the
subtests in a test and conduct a factor analysis, the re-
sults will provide information about which subtests share
common variance or communality (described below) and
thus measure the same construct. For example, suppose a
factor analysis of the WISC-IV indicated that the subtests
in the test share common variance and that the test has
meaningful verbal comprehension, perceptual reasoning,
working memory, and processing speed components; this
finding would support the use of separate Verbal Compre-
hension, Perceptual Reasoning, Working Memory, and
Processing Speed Composites (see Chapter 9).

» We show that there are developmental changes in scores
derived from a measure of a trait or skill by finding in-
creases in magnitude with age or experience. For example,
suppose we develop a 20-item vocabulary test with items
ordered according to their difficulty level. To do this, we
select words from first-, second-, third-, fourth-, fifth-, and
sixth-grade reading books. We then test 100 children from
first through sixth grades. If the percentage passing each
item (i.e., defining words correctly) increases with grade
level, we have shown that the test reflects developmental
changes.

Criterion-Related Validity

Criterion-related validity is based on how positively test
scores correlate with some type of criterion or outcome (such
as ratings, classifications, or other test scores). The criterion,
like the test, must possess adequate psychometric properties:
It should be readily measurable, reliable, and relevant to the
purposes of the test. The test and the criterion should have
a complementary relationship; otherwise, the criterion could
not be used to determine whether the test measures the trait or
characteristic it was designed to measure. The two forms of
criterion-related validity are concurrent validity and predic-
tive validity.

Concurrent validity is based on correlations of scores on
one measure with those on a related measure. To establish
concurrent validity, we administer the two measures to the
same group of people, one right after the other. We might,
for example, administer a measure of phonics ability and a
measure of reading ability. If the phonics measure has good
concurrent validity, people who obtain high scores on it will
also obtain high scores on the measure of reading ability.
Likewise, people who obtain low scores on the phonics mea-
sure will also obtain low scores on the measure of reading
ability. If a measure has low concurrent validity, there will be
an erratic and unpredictable relationship between scores on it
and scores on the related measure.

Predictive validity is based on correlations of scores on
one measure with those on a criterion measure taken at a later
time. For example, we might compare scores on a reading

readiness test administered at the beginning of the first grade
(the predictor measure) to scores on a measure of reading
ability administered at the end of the first grade (the criterion
measure). If the reading readiness test possesses high predic-
tive validity, children who score high on it will perform well
on the later criterion measure. Likewise, those scoring low
on the initial test will perform poorly on the later criterion
measure. If the predictive validity of a test is low, there will
be an erratic and unpredictable relationship between the two
sets of scores.

Results from criterion-related validity studies are usually
expressed as correlation coefficients. For example, a relation-
ship between a teacher rating measure of social maturity and
scores on a standardized social maturity test might be ex-
pressed as r = .53, p < .01. The correlation of .53 provides us
with information about the degree of association between the
predictor and the criterion, and the confidence index (p value)
tells us that there is less than 1 chance in 100 of obtaining an
association of that magnitude by chance (given a particular
number of observations). Applying the formula for effect size
given earlier, we find that d = 1.25, which is a moderate effect
for the predictive association.

Predictive Power

Predictive power is a special type of predictive validity. It as-
sesses the accuracy of a decision made on the basis of a given
measure. Thus, predictive power refers the extent to which a
test (or another measure, such as a rating scale or an observa-
tion form) agrees with an outcome criterion measure used to
classify individuals in a particular category or to determine
whether or not they have a particular trait or condition. For
example, suppose a preschool inventory (the test criterion)
is administered to a group of children at 5 years of age. The
cut-off score selected by the investigator for classifying chil-
dren as “at risk” for reading problems is the 15th percentile
rank. Those falling at or below the 15th percentile rank are
assigned to the “at risk” category, and those falling above the
15th percentile rank are assigned to the “not at risk” category.
Three years later, at the end of the third grade, the children
are given an achievement test (the outcome criterion). The in-
vestigator again selects the 15th percentile rank as the cut-off
score for determining which children should be classified as
having reading problems. The predictive power of the pre-
school inventory administered to the 5-year-old children is
determined by how well the inventory predicts categorization
based on the achievement test. For screening instruments in
particular, it is valuable to have information about both pre-
dictive validity and predictive power.

All predictions must be compared to the base rate of a con-
dition, an attribute, or a disease in a specific population. Base
rates are important, because they are the rates against which
we judge the accuracy of a prediction. The utility of a mea-
sure depends on whether it improves predictions beyond what
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would be expected from predictions using base rates alone. For
example, if the base rate of a condition is 90%, we could be
90% accurate by simply predicting the presence of the condi-
tion for every person. Or, if the base rate of a condition is 1%,
we could be 99% accurate by simply predicting the absence
of the condition each time. When base rates are either very
high or very low, the accuracy of predictions using base rates
alone is high. When a base rate nears 50%, the accuracy of pre-
dictions using the base rate alone can potentially be improved
greatly by using a relevant measure. The further away the base
rate gets from 50%, the more difficult it becomes to develop
measures that will increase the accuracy of predictions.

We compute the predictive power of a test by determining
the percentages of correct and incorrect classifications that it
makes. To do this, we might assign individuals to either an “at
risk” or a “not at risk” category based on their test scores, and
to a “poor outcome” or a “good outcome” category based on
their scores on an outcome criterion measure. As in the above
example, let’s choose the 15th percentile rank for the test cri-
terion and the outcome criterion. We can depict the results in
a 2 x 2 matrix, as shown in Figure 4-5.

The four cells in the matrix represent the following types
of agreement (alternative terminology for agreement type is
shown in parentheses):

(a) True positive (hit). The test classified the child as being
at risk of having a poor outcome (referred to as the positive
classification); the outcome criterion measure indicated that
the child actually did have a poor outcome. Thus, the out-
come criterion measure confirmed the way the test classified
the child. Positive here means that the child is classified as
being at risk for having problems (or a poor outcome). In
medicine, a true positive result occurs when a diagnostic test
returns a positive result (indicating that a condition is present)
and the condition is in fact present.

(b) False positive (false alarm). The test classified the
child as being at risk for having a poor outcome; however,

the child had a good outcome on the outcome criterion mea-
sure. Thus, the outcome criterion measure disconfirmed the
way the test classified the child. In medicine, a false positive
result occurs when a diagnostic test returns a positive result
(indicating that a condition is present) but in fact the condi-
tion is not present.

(c) False negative (miss). The test classified the child as
not being at risk for having a poor outcome (referred to as the
negative classification); however, the child had a poor out-
come on the criterion outcome measure. Thus, the outcome
criterion measure disconfirmed the way the test classified the
child. Negative here means that the child is classified as not
being at risk for having problems (or a poor outcome). In
medicine, a false negative result occurs when the diagnostic
test returns a negative resuit (indicating that a condition is not
present) but the condition is in fact present.

(d) True negative (correct rejection). The test classified the
child as not being at risk for having a poor outcome; the out-
come criterion measure indicated that the child actually did
have a good outcome. Thus, the outcome criterion measure
confirmed the way the test classified the child. In medicine,
a true negative result occurs when a diagnostic test returns a
negative result (indicating that a condition is not present) and
the condition is in fact not present.

Combinations of individual cells in Figure 4-5 provide the
following 10 different measures of predictive power.

1. True positive rate, al(a + c). The true positive rate
reflects the probability that a test correctly identifies people
who will have a poor outcome. This is the rate at which people
predicted by the test to have a poor outcome in fact did have a
poor outcome. It is also referred to as the index of sensitivity,
the valid positive rate, or the hit rate.

2. False positive rate, b/(b + d). The false positive rate
reflects the probability that a test incorrectly identifies people
who will have a poor outcome. This is the rate at which people

Outcome criterion
Poor cutcome | Good outcome Total
True positive False positive
At risk (hit) (false alarm) a+b
Test criterion (@ )
False negative True negative
Not at risk (miss) (correct rejection) c+d
(c) (d)
Total a+c b+d a+b+c+d=N

Figure 4-5. Model for assessing the predictive utility of a test.
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predicted by the test to have a poor outcome instead had a
good outcome. It is also referred to as the false alarm rate.

3. False negative rate, c/(a + c). The false negative rate
reflects the probability that a test incorrectly identifies people
who will have a poor outcome. This is the rate at which
people predicted by the test to have a good outcome instead
had a poor outcome. It is also referred to as the miss rate or
the underreferral rate.

4. True negative rate, d/(b + d). The true negative rate
reflects the probability that a test correctly identifies people
who will have a good outcome. This is the rate at which people
predicted by the test to have a good outcome did in fact have a
good outcome. It is also referred to as the index of specificity,
the valid negative rate, or the correct rejection rate.

S. Positive predictive power, al(a + b). The positive pre-
dictive power reflects the proportion of people whom the test
correctly identified as being at risk for having a poor out-
come. It is also referred to as the efficiency rate.

6. Negative predictive power, di(c + d). The negative
predictive power reflects the proportion of people whom the
test correctly identified as not being at risk for having a poor
outcome.

7. Overall accuracy rate, (a + d)/N. The overall accu-
racy rate reflects the proportion of people in the total sample
whom the test correctly identified as being either at risk (true
positive) or not at risk (true negative) for having a poor out-
come. It is also referred to as the overall hit rate, the correct
classification rate, the observed proportion of overall agree-
ment, or the effectiveness rate. Although useful and informa-
tive, the overall accuracy rate does not distinguish between
the number of true positive ratings and the number of true
negative ratings.

8. Overall inaccuracy rate, (b + c)/N. The overall in-
accuracy rate reflects the proportion of people in the total
sample whom the test incorrectly identified as being either at
risk (false positive) or not at risk (false negative) for having a
poor outcome. It is also referred to as the overall error rate,
the incorrect classification rate, the observed proportion of
overall disagreement, or the misclassification rate. Although
useful and informative, the overall inaccuracy rate does not
distinguish between the number of false positive ratings and
the number of false negative ratings.

9. Base rate, (a + c)/N. The base rate reflects the propor-
tion of people in the total sample who had a poor outcome. It is
also referred to as the prevalence rate or the true proportion.

10. Odds ratio, ad/bc. The odds ratio is the ratio of the
odds of individuals with a poor outcome being identified as
at risk to the odds of individuals with a good outcome being
identified as at risk. The odds ratio provides an index that
is not influenced by the base rate of individuals with a poor
outcome.

Table 4-8 summarizes the 10 different measures of predictive
power.

Let’s look at how to compute the overall accuracy rate, the
overall inaccuracy rate, and the base rate. If the four cells had

Table 4-8
Different Measures of Predictive Power

Measure Calculation
True positive rate (index of sensitivity) alla+c)
False positive rate (false alarm rate) bi(b+ d)
False negative rate (miss rate) clla+c)
True negative rate (index of specificity) di(b+ d)
Positive predictive power (efficiency rate) alla+ b)
Negative predictive power df(c+ d)
Overall accuracy rate (overall hit rate) (a+ d/N
Overall inaccuracy rate (overall error rate) | (b+ ¢)/N
Base rate (a+ /N
Odds ratio ad/be

the frequencies a = 45, b = 15, ¢ = 5, and d = 35, these rates
would be as follows:

- 45+35
Overall accuracy rate = 571575435 =.80, or 80%
Overall inaccuracy rate = —b+S .20, or 20%
45+15+5+35 ’
Base rate = 45+5 = .50, or 50%

45+ 15+5+35

We can measure whether a test adds to predictive accuracy
by determining whether the ratio of the base rate of the poor
outcome (the rate of occurrence) to the base rate of the good
outcome (the rate of nonoccurrence) exceeds the ratio of the
rate of false positives to the rate of true positives. Using the
labels in Figure 4-5, this relationship can be expressed as a/d
> bia. For the frequencies in the previous example (a = 45, b
=15, ¢ =5, d = 35), the relationship is as follows:

Increase in predictive accuracy = 45%/35% vs. 15%/45%
1.29 vs. .33

Because 1.29 is considerably greater than .33, using a test
with the indicated frequencies would lead to more correct de-
cisions than merely following the base rate predictions. That
is, the test adds to predictive accuracy.

Factors Affecting Validity

Validity coefficients are affected by the same factors that
affect correlation coefficients, as well as by other factors such
as the following:

1. Range of attributes being measured. Narrowing the
range of scores of either the test or the criterion measure will
reduce the size of the validity coefficient; this is referred to as
restriction of range. For example, math achievement test scores
would have a higher correlation with intelligence test scores in
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a general population sample than in a sample composed of only
children who are gifted or children with mental retardation.

2. Length of the interval between administration of the
test and of the criterion measure. Lengthening the time inter-
val tends to lower the size of the validity coefficient.

3. Range of variability in the criterion measure. If there
were no variability in the criterion measure used to assess the
validity of an intelligence test (e.g., all students obtained 90%
accuracy on the achievement test), the validity coefficient for
the intelligence test would be zero; however, this would be
a poor test of validity. We cannot say that an intelligence
test is not valid when the achievement test scores have no
variability—it is a case of trying to predict the unpredictable
or of trying to predict differences where none exist. What is
needed in order to find out whether the intelligence test is
valid is a more heterogeneous sample. However, there are
also instances when the criterion group may be too hetero-
geneous. For example, if we administer the criterion measure
to a group that is more heterogeneous than the population for
which a test in intended, validity estimates will be spuriously
(falsely) high. Suppose we use a random sample of school
children to validate a test of artistic ability that is designed
to screen children nominated by their teachers as showing
artistic talent; the random sample will be more heterogeneous
than the group for whom the test was originally intended (i.e.,
children nominated for having artistic talent). The resulting
validity coefficient is likely to be spuriously high, showing
that the test has good discrimination (i.e., that it differentiates
children who have artistic ability from those who do not). We
can determine the amount of overestimation by comparing
the validity coefficient obtained by using the random sample
with the one obtained by using a sample of children nomi-
nated for their artistic talent.

Judging the Validity of an Individual
Child’s Test Scores

The validity of a child’s test scores can be affected by such
factors as the child’s test-taking skills, anxiety, fatigue, tran-
sient medical conditions, confusion, limited attention, degree
of rapport with the examiner, motivation, speed, understand-
ing of test instructions, physical handicaps, temporary hear-
ing impairments, language skills, educational opportunities,
and familiarity with the test material. Deficiencies in any of
these areas will decrease validity. Thus, for example, test re-
sults are not valid when children are uncooperative or highly
distractible, when they don’t understand the test instructions
or the wording of the test questions, when they have physical
handicaps that interfere with their ability to take the tests (and
no adjustments have been made by the examiner), or when
they have limited comprehension of English.

Validity can also be affected by intervening events and
contingencies. You will need to consider everything you know
about a child in evaluating different types of validity. For ex-
ample, does an emotionally disturbed child have an acute or a

chronic condition? An acute disturbance might lower his or her
performance on an intelligence or achievement test, resulting
in nonrepresentative test results. If an intervention—such as
drugs, psychotherapy, placement in a foster home, or environ-
mental manipulation—improves the child’s performance, the
validity or representativeness of the initial test results is likely
questionable. However, if a child has a chronic condition, such
as irreversible brain damage or an autistic disorder, his or her
test results may not be invalid, because in such cases the child’s
level of ability may not change over time.

Deficiencies in the robustness of the criterion might affect
the validity of tests. For example, achievement test scores, a
popular criterion, may be affected by the quality of the teach-
ing, of textbooks, and/or of the curriculum. Scores also might
be affected by the children’s levels of ability, effort, class-
room behavior, study skills, relationships with teachers and
peers, and home environment (e.g., parent encouragement,
study facilities, and resources in the home such as a computer
and access to the Internet).

If you have any reason to question the validity of test re-
sults (even though you have used a psychometrically sound
test), state your reservations in the psychological report. And
if you seriously question the validity of the results, consider
destroying the test protocol or writing /nvalid on the face
sheet. The fact that a child deviates from some earlier level
of functioning may not invalidate the results—his or her cur-
rent level of functioning may be different from the earlier
level. In some cases, you may need to estimate the earlier
level of functioning based on prior test results, school grades,
or parental reports. In cases of brain injury, the earlier level
of functioning is referred to as the premorbid (or preinjury)
level—that is, the level at which the child was functioning
prior to the brain injury.

META-ANALYSIS

A single study seldom provides definitive answers to research
questions. Instead, scientific progress is achieved through the
accumulation of findings from numerous studies on a particu-
lar issue. Traditionally, researchers relied on narrative literature
reviews to help them arrive at generalizations. However, these
reviews were often flawed: Narrative reviews of the same body
of research sometimes led to different conclusions because of
subjective judgments, preferences, and reviewer bias.

Meta-analysis is an alternative to the narrative literature
review and avoids many of its flaws. It summarizes the re-
sults of many studies. Meta-analysis uses rigorous research
techniques (including quantitative methods) to sum up and
integrate the findings of a body of studies covering similar
topics. Because the individual studies reviewed are likely to
have used different statistical techniques, meta-analysis uses
a standard measure of effect size (usually Cohen’s d or 1, dis-
cussed in this chapter). Researchers have successfully applied
meta-analysis to studies in the social, behavioral, and bio-
medical sciences.
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Meta-analysis is particularly useful in validity generaliza-
tion studies. Researchers examine a large number of studies
that present evidence on the validity of a particular test. The
empirical findings from these validity studies (e.g., validity
coefficients and scores showing between-group differences)
are converted to a common metric and then evaluated for
consistency (i.e., generalizability or robustness) across dif-
ferent populations, test conditions, criterion measures, and
the like. Findings from meta-analyses highlight trends in data
and inform researchers and practitioners about the validity of
the test or other measure under study. Although meta-analysis
has many potential benefits and is widely used to synthesize
research findings, its conclusions may be compromised by
the variety of studies reviewed and their shortcomings, such
as poor design and inadequate sampling.

FACTOR ANALYSIS

Factor analysis is a mathematical procedure used to explain
the pattern of intercorrelations among a set of variables (such
as individual test items, entire tests, subtests, or rating scales)
by deriving the smallest number of meaningful variables or
factors. A factor is a statistically derived, hypothetical dimen-
sion that accounts for part of the intercorrelations among a set
of variables. The aim of factor analysis is to explain the pat-
tern of intercorrelations by identifying the smallest number of
meaningful underlying variables or factors that could account
for the observed intercorrelations. Identifying the minimum
number of factors reduces a mass of information to more
manageable proportions and is more economical than pro-
posing a different factor to explain every correlation.

Factor analysis is also used to delineate patterns in a com-
plex set of data (see Chapter 9), to discover the basic structure
in a data set, to develop an empirical typology, to develop
scales and weight factors in the scales, to test hypotheses,
to transform data, to explore new relationships in a data set,
and to construct theories (see Chapter 7). In constructing and
evaluating psychological tests and measures, factor analysis
focuses on the number of factors needed to explain the pattern
of relationships among the variables, the nature of the factors,
how well the hypothesized factors explain the observed data,
and how much purely random or unique variance each ob-
served variable includes.

Factor analysis is based on the assumption that a signifi-
cant correlation between two variables indicates a common
underlying factor shared by both variables. Factor analysis
starts with a correlation matrix that shows the intercorrela-
tions between several variables (see Table 4-9). Intercorrela-
tions are the correlations between all variables in the matrix.
For instance, if there are four variables in the matrix, the cor-
relations would be between a and b, aand ¢, a and d, b and c,
bandd, and c and d.

The first step in a factor analysis is to calculate the factor
loading of each variable on each factor, which reflects the
extent to which each variable “loads” on the factor (see the

group factors in Table 4-10). Factor loadings are simply the
correlation coefficients between variables and factors. The
loadings indicate the weight of each factor in determining per-
formance on each variable.

The next step is to name each factor. For example, sup-
pose a factor shows high loadings for variables involving vo-
cabulary, information, and knowledge of word similarities.
The theoretical factor underlying these three subtests, which
is assumed to be explained by a higher-order factor, might
be called “verbal ability.” Some variables may load on more
than one factor, and some variables may have minimal load-
ings on the factors. Different investigators and test publishers
might use different names for the same factor. For example,
one investigator might call a factor “verbal ability”; another
might use the term “lexical knowledge” or “crystallized in-
telligence.” Or, one investigator might label a factor “verbal
comprehension,” whereas another might identify it as “recep-
tive oral language.”

Factors, like the variables from which they are derived,
only describe the relationships observed in the data. There is
no implication that the observed scores are somehow caused
by the factors or vice versa. Factors do not represent underly-
ing causal entities.

The two major types of factor analysis are exploratory
factor analysis and confirmatory factor analysis. An explor-
atory factor analysis (EFA) is used to explore the underly-
ing structure of a collection of variables when there are no a
priori hypotheses about the factor structure. A confirmatory
Jactor analysis (CFA) is used to confirm a hypothesized factor
structure. The variables for a confirmatory factor analysis are
selected on the basis of prior theory.

Methods Used in Factor Analysis

There are different methods for extracting factors. Two
common ones are principal component analysis (PCA) and
principal factor analysis (PFA). When there are many factors,
the results of the two methods are somewhat similar. Principal
component analysis seeks the set of factors that can account
for all common and unique variance in a set of variables. In
contrast, principal factor analysis, which incorporates prior
communality estimates, seeks the smallest set of factors that
can account for the common variance in a set of variables.

Most factor analysis programs begin by extracting first the
factor that accounts for the largest proportion of variance, then
the factor that accounts for the next largest proportion, and so
on. Usually, the first unrotated factor is a general factor on
which most variables have high loadings. We find a general
Jactor—a factor on which all the variables load—when all
subtests overlap (e.g., are positively intercorrelated), such as
in an intelligence test. In an intelligence test, the first general
factor is considered to reflect general intelligence, called g. In
other cases, such as in a multidimensional test of personality,
there may be two or three important personality factors but no
single personality factor on which all variables load.
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Rather than attempting to interpret the original factors,
however, researchers usually rotate the matrix of factor load-
ings to make the factor structure clearer. The rotation re-
arranges the factors so that, ideally, for every factor there are
some variables with high loadings on the factor and other
variables with low loadings on the factor. The order in which
the factors were originally extracted is not always preserved
in the rotation; in particular, researchers usually cannot dis-
cern the first unrotated factor. One popular type of rotation is
varimax rotation, in which the factors are orthogonal—that
is, neither overlapping nor correlated. Another popular type
of rotation is oblim rotation, in which the factors are allowed
to be correlated. We call the factors resulting from the rota-
tion group factors. It is up to the researcher or test developer
to name or interpret each factor by looking at the contents of
the variables that have high loadings on the factor.

After all of the common factor variance has been extracted
and the rotation completed, there still may be a significant
amount of unanalyzed variance. Variance that is present in one
variable but not in the other variables under study is known as
specific factor variance, specific variance, or specificity.

Components of Variance

In a factor analysis, we can divide the variance associated
with a variable into three categories: communality, specific-
ity, and error variance.

Communality. Communality refers to that part of the total
variance that can be attributed to common factors (those that
appear in more than one variable). The formula for obtaining
communality is as follows:

2_ 2 2 a2
h,-a”+a,2+ +ag,

where h2= communality of test ¢
a?, ..., a%, =loading of test  on factor 1, ..., factor m

For the WISC-IV data in Table 4-10 in the next part of
the chapter, the communality estimate for the Similarities
subtest is

h? =732 +.092 +.042 + .012 = .54
Specificity. Specificity refers to that part of the total vari-
ance that is due to factors specific to a particular variable,
not to measurement error or common factors. We obtain the
proportion of specific variance in the following way:

si=r,~h?
where s; = variance specific to test 1
r,, = reliability of test 1
h? = communality of test ¢

The proportion of specific variance for the WISC-IV Simi-
larities subtest (see Table 4-10) is

s?=.86-.54=.32

Error variance. Error variance refers to that part of the
total variance that remains when we subtract the reliability of
the variable from the total variance. We obtain it by using the
following formula:

e,2=1—r"

where €2 = error variance of test 7

4
r,, = reliability of test ¢

Error variance for the Similarities subtest is
e2=1-.86=.14

When specific variance exceeds error variance, we can con-
clude that the variable has some specificity. In the example
above, we conclude that Similarities has adequate specificity.
This means that Similarities measures a specific construct not
measured by other subtests.

lilustration of Factor Analysis

Let’s examine how we might apply factor analysis to the
WISC-IV. Table 4-9 shows a partial set of WISC-IV subtest
intercorrelations (for 4 of the 15 WISC-IV subtests). These
correlations are based on the entire standardization group (N
= 2,200). If the WISC-IV measures general intellectual abil-
ity, children with an abundance of this ability should perform
well on each of the subtests and those with a small amount
of this ability should do poorly. With respect to the intercor-
relations in Table 4-9, this means that children who do well
on Similarities should also do well on Vocabulary and, to a
somewhat lesser degree, on Block Design and Picture Con-
cepts. In contrast, those who do poorly on Similarities should
also do poorly on Vocabulary and, to a lesser degree, on the
other two subtests. If children’s scores on the four subtests
are highly correlated, we can reasonably conclude that the
four subtests measure something in common.

Subtests correlate with each other to different degrees.
When specific abilities are more pronounced than general
or group abilities, the correlations among subtests should
be lower. Since the correlations in Table 4-9 are moderate to
strong, we might conclude that there is a general ability factor
in these four subtests of the WISC-IV. Something more than
a general factor may be present when the correlations are not
consistently high—when some abilities are important for
some subtests but not for others.

The factor analytic findings for the entire WISC-IV are
discussed in Chapter 9. They indicate that both a general
factor and group factors are present in the test. Addition-
ally, several subtests have adequate subtest specificity. Table
4-10 shows the median general factor and group factor load-
ings, reliability, communality, specificity, and error variance
for the Similarities, Vocabulary, Block Design, and Picture
Concepts subtests. Loadings of .70 and above on the general
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Table 4-9
Average Intercorrelations for Four WISC-1V Subtests

Subtest SI ’{® BD PCn
Sl — 74 .50 .50
VC .74 —_ 48 42
BD .50 .48 — 41
PCn .50 42 41 —_

Note. Abbreviations: Sl = Similarities, VC = Vocabulary,
BD = Block Design, PCn = Picture Concepts.
Source: Adapted from Wechsler (2003b, p. 51).

factor are considered substantial, as are loadings of .30 or .40
and above on the group factors. The loadings indicate that
Similarities, Vocabulary, and Block Design are good mea-
sures of the general factor and that Picture Concepts is a fair
measure of the general factor. Additionally, Similarities and
Vocabulary load highly on the Verbal Comprehension group
factor, Block Design loads highly on the Perceptual Reason-
ing group factor, and Picture Concepts loads moderately on
the Perceptual Reasoning group factor. None of these four
subtests loads highly on either the Working Memory group
factor or the Processing Speed group factor. Of the four sub-
tests, the Similarities, Block Design, and Picture Concepts
subtests have adequate specificity, because specific variance
(specificity) exceeds error variance on these three subtests.
In contrast, Vocabulary does not have adequate specificity,
because error variance exceeds specific variance.

Comment on Factor Analysis

Factor analysis is a complex statistical method. The same
set of data can yield different results depending on the factor
analytic method used, the number of factors retained, and the

rotations of the factors. In addition, the naming of factors is
arbitrary, as noted earlier in the chapter. Thus, although factor
analysis is a useful procedure, results obtained from it must
be interpreted very carefully.

OTHER USEFUL
PSYCHOMETRIC CONCEPTS

Occasionally, you will find that two or more tests believed to
measure the same ability give different results for the same
child. Different results might occur, for example, because
of characteristics of the child, testing conditions, examiner
characteristics, or the psychometric properties of the tests.
Chapter 6 discusses the first three issues in more detail. Here
we will discuss how the psychometric properties of two sup-
posedly similar tests might lead to different results (Bracken,
1987, 1988; Wasserman & Bracken, 2002):

1. Floor effect differences. The lower limits of scores
may differ on different tests. The test floor is the lowest pos-
sible score obtainable on a test. Floor effects thus refer to the
number of easy items available at the lowest level of a test to
distinguish among children with below-average ability. You
need to consider the test floor because it indicates how well
the instrument can discriminate among children in the lower
ranges of functioning; it tells you which populations can and
cannot validly be tested with the instrument. You also need to
consider whether the test floor is relevant to actual practice. If
it isn’t, the test scores should be questioned.

Let’s see how floor effects operate on the WISC-IV. The
lowest possible Full Scale 1Q obtainable on the WISC-1V is
40 (see WISC-IV Administration Manual, Table A.6, p. 239).
Thus, the WISC-IV does not provide IQs for children func-
tioning more than four standard deviations below the mean
of the test (which is 100). It is also important to consider the
subtest floors, especially for profile analysis (i.e., compar-
ing profiles of subtest scaled scores). For example, for a raw

Table 4-10
General Factor Loadings, Group Factor Loadings, Reliability, Communality, Specific Variance, and Error Variance for Four
WISC-IV Subtests
Group factors
Factor A, Factor B, Factor C, | Factor D,
WISC-IV | General Verbal Perceptual | Working | Process- | Reliability | Communality | Specificity | Error
subtests | factor | Comprehension | Reasoning | Memory | ing Speed {ryl (h?) (s2) (€?)
Sl .81 A3 .09 .04 .01 .86 .54 .32 14
vC .83 .90 .02 -.02 -.01 .89 .81 .08 a1
BD .70 -.02 .70 .08 .08 .86 .50 .36 14
PCn .61 15 .35 13 .07 .83 17 .66 A7

Note. Abbreviations: SI = Similarities, VC = Vocabulary, BD = Block Design, PCn = Picture Concepts.
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score of 1, subtest floors for the 15 WISC-IV subtests for the
age group 6 years, 0 months (6-0) to 6 years, 3 months (6-3)
vary between scaled scores of 1 and 4 (see WISC-IV Admin-
istration Manual, Table A.1, p. 204). Therefore, when you ex-
amine a WISC-IV profile of a child who is functioning at the
lower levels of the test, you must consider the available range
of subtest scaled scores. If you are concerned that WISC-IV
subtest floors are not adequate, consider using another instru-
ment that allows lower test scores.

2. Ceiling effect differences. The upper limits of scores
may differ on different tests. Analogous to the test floor, the
test ceiling is the highest possible score on a test. Ceiling ef-
fects thus refer to the number of difficult items available at
the highest level of a test to distinguish among children with
above-average ability. You need to consider the test ceiling
because it indicates how well the instrument discriminates
among children in the upper ranges of functioning and which
populations can and cannot validly be tested with the instru-
ment. You also need to consider whether the test ceiling is
relevant to actual practice. If it isn’t, the test scores should
be questioned.

Let’s now look at ceiling effects on the WISC-IV. The test
ceiling of the WISC-IV Full Scale IQ is 160 (see WISC-IV
Administration Manual, Table A.6, p. 240). This indicates
that the WISC-IV does not provide IQs for individuals func-
tioning more than four standard deviations above the mean
of the test. As with subtest floors, knowledge of subtest ceil-
ings is important for profile analysis. Subtest ceilings on the
WISC-IV show little variability—they are at a scaled score
of 19 for all subtests except Word Reasoning. On Word Rea-
soning, the highest scaled score is 18 at ages 14-0 years to

+ 15-11 years and 17 at ages 16-0 years to 16-11 years. There-

fore, when you examine a WISC-IV profile of a child who is
functioning at the upper limits of the test, you can compare
subtests using essentially the same range of scaled scores.
However, if you are concerned that the WISC-IV subtests
have a limited ceilin/g in a particular assessment, consider
using an instrument that has higher test ceilings.

3. Item gradient differences. Item gradients may differ on
different tests. Item gradients refer to the ratio of item raw
scores to standard scores, or the number of raw score points
required to earn 1 standard score point. In other words, item
gradients help us see “how rapidly standard scores increase as
a function of a child’s success or failure on a single test item”
(Bracken, 1987, p. 322). Item gradients tell us how steeply
items are arranged within a test. Tests with steep gradients
(that is, tests in which the difficulty level of items changes
rapidly, so a change of a single raw score point produces a
large change in the standard score) are less sensitive to small
or moderate differences in ability or skill development than
are tests with gradual gradients. This means that tests with
steep gradients are less effective in assessing a child’s abili-
ties or skills than tests with more gradual gradients (Bracken,
1987).

Now let’s look at both the WISC-IV and the WPPSI-III to
see how item gradients operate. We will use the Block Design

Y‘Table4-1‘l RIS
' Scalad—Score Equlvalents of Raw
* Scores on the WPPSI-II and w:sc-lv

Block Design Subtest fqra
~ 6-0-Year-Old Child o
WPPSI-ill | WISC-IV | Scaled
raw score raw score score
0-13 0 1
415 | 1 2
16-17 2 3
18-19 3 4
20 4 5
21-22 | 5 . 6.

Source: Adapted from Wechsler (2002a,
2003a).

subtest as an illustration. For the WISC-IV and WPPSI-
III Block Design subtest, Table 4-11 shows the raw scores
required to earn scaled scores of 1 to 6 (obtained from the
WISC-TV Administration Manual, Table A.5, p. 204 and from
the WPPSI-III Administration Manual, Table A.1, p. 227).
On the WISC-IV, a 6 year, 0 month child with one correct
answer obtains a scaled score of 2 and a child with three cor-
rect answers obtains a scaled score of 4. This means that the
WISC-IV Block Design subtest has a gradual gradient and
discriminates well among children who are functioning at the
low end of the subtest. The WPPSI-III shows a similar pat-
tern of item gradients, beginning with a scaled score of 2.
Every one-point or two-point increase in raw scores results in
an increase of one scaled score.

4. Norm table layout differences. Norm tables may have
different age-span layouts on different tests. For example,
age-span layouts may be in 1-month, 3-month, or 4-month
intervals; these differences may lead to divergent scores on
different tests for the same ages.

5. Age-equivalent or grade-equivalent score differences.
Age-equivalent or grade-equivalent scores on different tests
may not coincide, even though the standard scores are similar
on the two tests,

6. Reliability differences. Tests with low reliability will
produce less stable scores than tests with high reliability.

7. Differences in skill areas assessed. Different tests may
measure different skills, even though they have the same label
for a skill area (e.g., “reading”). One test may measure word
recognition (i.e., simply reading the word aloud), whereas
another test may measure reading comprehension (i.e., un-
derstanding what one reads).

8. Test content differences. Different tests may measure
the same skill area but contain different content. For example,
tests measuring arithmetic may sample different arithmetical
principles or concepts.
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9. Publication date differences. Tests published in differ-
ent years may yield scores that differ because of changes in
the abilities of the norm groups.

10. Sampling differences. Tests normed on different sam-
ples may yield different scores because the samples are not
comparable. For example, one sample might contain more
educated people than another, which would tend to make the
average score of that sample higher.

The above considerations indicate that you must carefully
study the psychometric properties of each test instrument you
consider using. You must also pay attention to psychometric
properties when you compare the results from two or more
tests.

CONCLUDING COMMENT

Despite all the effort devoted to developing reliable and valid
assessment instruments, all such instruments have their limi-
tations. Keep in mind the following:

« No instrument is completely reliable (i.e., without error).

« Validity does not exist in the abstract; it must be an-
chored to the specific purposes for which the instrument
is used.

» Every child’s behavior fluctuates from time to time and
from situation to situation (e.g., a child might perform dif-
ferently with different examiners).

* Any assessment instrument contains only a sample of all pos-
sible questions or items related to the domain of interest.

» Assessment instruments purporting to measure the same
construct may give different results for a particular child.

 Instruments measure samples of behavior or constructs at
one point in time.

» Assessment scores will likely change to some degree over
the course of a child’s development.

THINKING THROUGH THE ISSUES

1. Eventhough you will seldom compute standard deviations and
carry out significance tests when you administer and score as-
sessment measures, you will often use standard scores and
other statistical concepts to interpret results. How will knowl-
edge of statistics and psychometric concepts be useful to you
as a clinician?

2. Before you use a measure, how important is it that you become
familiar with its reliability, validity, and standardization?

3. Under what circumstances would you use measures that have
minimal reliability or validity?

SUMMARY

The Why of Psychological Measurement and Statistics

1. Measurement in psychology is usually different from physical
measurement.

2. Inour everyday experience, we assign numbers to the physical
characteristics of objects—such as height, weight, or length—
that we perceive directly.

3. Although physical measurement may be more precise than
psychological measurement because psychological characteris-
tics are likely to be intangible, both types of measurement are
important.

4. Psychological measurement conveys meaningful information
about people’s attributes, such as their intelligence, reading abil-
ity, adaptive behavior, interests, personality traits, and attitudes,
through test scores or ratings that reflect such attributes.

5. Statistics make life easier by reducing large amounts of data to
manageable size, allowing us to study individuals and groups.

6. Statistics also help us communicate information about test
scores, draw conclusions about those scores, and evaluate
chance variations in test scores.

7. Remember that test scores are imperfect and statistics help us
determine the amount of error in test scores.

8. Measurement is a process of assigning quantitative values to
objects or events according to certain rules.

Scales of Measurement

9. A scale is a system for assigning values or scores to some
measurable trait or characteristic.

10. The four scales most commonly used in psychology and edu-
cation are nominal, ordinal, interval, and ratio scales.

11. Nominal and ordinal scales (referred to as lower-order scales)
are used with discrete variables. Discrete variables are charac-
terized by separate, indivisible categories, with no intermediate
values (e.g., gender, color, or number of children in a family).

12. Interval and ratio scales (referred to as higher-order scales)
are used with continuous variables. Continuous variables are
characterized by an infinite number of possible values of the
variable being measured (e.g., temperature, age, or height).
Interval and ratio scales possess all the properties of nominal
and ordinal scales but have additional properties.

13. A nominal measurement scale consists of a set of categories
that do not have a sequential order and that are identified by a
name, number, or letter for each item being scaled. The names,
numbers, or letters usually represent mutually exclusive cat-
egories, which cannot be arranged in a meaningful order and
are merely labels or classifications.

14, An ordinal measurement scale classifies items, but it has the
additional property of order (or magnitude). The variable
being measured is ranked or ordered along some dimension,
without regard for the distances between scores.

15. An interval measurement scale classifies, as a nominal scale
does, and orders, as an ordinal scale does, but it adds an arbi-
trary zero point and equal units between points.

16. A ratio measurement scale has a true zero point, has equal in-
tervals between adjacent units, and allows ordering and classi-
fication. Because there is a meaningful zero point, there is true
equality of ratios between measurements made on a ratio scale.

Descriptive Statistics

17. Descriptive statistics summarize data obtained about a sample
of individuals.

18. Examples of descriptive statistics are frequency distributions,
normal curves, standard scores, measures of central tendency,
and measures of dispersion, correlation, and regression.
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19.

20.

21.
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23.

24.

25.

26.

27.

28.

29.

Measures of central tendency identify a single score that best
describes the scores in a data set.

The three most commonly used measures of central tendency
are the mean, the median, and the mode.

The mean is the arithmetic average of all the scores in a set of
scores.

The median is the middle point in a set of scores arranged in
order of magnitude.

The mode is the score that occurs most frequently in a set of
scores.

Dispersion refers to the variability of scores in a set or distri-
bution of scores.

The three most commonly used measures of dispersion are the
range, the variance, and the standard deviation.

The range is the difference (or distance) between the high-
est and lowest scores in a set; it is the simplest measure of
dispersion.

The variance is a measure of the amount of variability of scores
around the mean—the greater the variability, the greater the
variance.

The standard deviation is also a measure of how much scores
vary, or deviate, from the mean.

The normal curve is a frequency distribution that, when
graphed, resembles a bell-shaped curve.

Correlation

30.

31.
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33.
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Correlation coefficients tell us about the degree of relationship
between two variables, including the strength and direction of
their relationship.

The strength of the relationship is expressed by the absolute
magnitude of the correlation coefficient.

Correlations are used in prediction.

The higher the correlation between two variables, the more
accurately we can predict the value of one variable when we
know the value of the other variable.

Variables can be related linearly or curvilinearly.

A linear relationship between two variables can be portrayed
by a straight line.

A curvilinear relationship between two variables can be por-
trayed by a curve,

If two variables have a curvilinear relationship, a linear cor-
relation coefficient will underestimate the true degree of as-
sociation.

Variables can also be continuous or discrete.

A continuous variable is divisible into an infinite number of
parts.

A discrete variable has separate, indivisible categories.

A dichotomous variable is a discrete variable that has two pos-
sible values.

A scatterplot presents a visual picture of the relationship be-
tween two variables.

The most common correlation coefficient is the Pearson cor-
relation coefficient, symbolized by r.

Pearson’s r should be used only when the following condi-
tions are met: (a) The two variables are continuous and nor-
mally distributed, (b) there is a linear relationship between the
variables, and (c) the predictor variable predicts as well at the
high-score ranges as at the low-score ranges.

When the conditions for using Pearson’s r cannot be met, the
Spearman r, (rank-difference) method can be used.

46.

47.

48.

49.

50.
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When the sample size is large, a correlation coefficient may
be statistically significant but reflect only a weak association
between the two variables.

Sometimes test publishers (or researchers) attempt to minimize
the effect of measurement error by correcting for attenuation.
This correction results in an estimate of what the correlation
between two variables would be if both variables were per-
fectly reliable.

However, an estimated r based on a correction for attenuation
may not give a true picture of the relationship between the
variables, because variables are never perfectly reliable.
Correlations should not be used to infer cause and effect.
When we want to know how much variance in one variable
is explained by its relationship to another variable, we must
square the correlation coefficient. The resulting value, 72, is
known as the coefficient of determination.

Regression

52,

53.

You can use the correlation coefficient, together with other in-
formation, to construct a linear equation for predicting the score
on one variable when you know the score on another variable.

A measure of the accuracy of the predicted Y scores in a re-
gression equation is the standard error of estimate. The stan-
dard error of estimate is the standard deviation of the error
scores, a measure of the amount by which the observed or
obtained scores in a sample differ from the predicted scores.

Multiple Correlation

54.

55.

Mulitiple correlation is a statistical technique for determining
the relationship between one variable and two or more other
variables.

The symbol for the coefficient of multiple correlation is R.

Norm-Referenced Measurement

56.
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In norm-referenced measurement, a child’s performance on
a test is compared with the performance of a representative
group of children, referred to as a norm group or a standard-
ization sample.

Norms are needed because the number of correct responses
the child makes is not very meaningful in itself.

A derived score indicates the child’s standing relative to the norm
group and allows us to compare the child’s performance on one
measure with his or her performance on other measures.

Four concepts related to norm-referenced measurement are
population, representative sample, random sample, and refer-
ence group.

The population is the complete group or set of cases.

A representative sample is a group drawn from the population
that represents the population accurately.

A random sample is a sample obtained by selecting members of
the population based on random assignment so that each person
in the population has an equal chance of being selected.

The reference group is the norm group that serves as the com-
parison group for computing standard scores, percentile ranks,
and related statistics.

. The representativeness of a norm group reflects the extent to

which the group’s characteristics match those of the popula-
tion of interest.

For psychological and psychoeducational assessment, the
most salient of these characteristics are typically age, grade
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66.

67.

level, gender, geographic region, ethnicity, and socioeconomic
status (SES).

A norm group should be large enough to ensure that the test
scores are stable and representative of the population—that is,
that the subgroups in the population are adequately represented.
To interpret the relevance of a child’s scores properly, an ex-
aminer needs a reference group against which to evaluate the

scores.

Derived Scores
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The major types of derived scores used in norm-referenced mea-
surement are standard scores, percentile ranks, normal-curve
equivalents, stanines, age-equivalent scores, grade-equivalent
scores, and ratio IQs.

Standard scores are raw scores that have been transformed so
that they have a predetermined mean and standard deviation.
One type of standard score is a z score, which has M = 0 and
SD=1.

A T score is a standard score from a distribution with M = 50
and SD = 10.

Percentile ranks are derived scores that permit us to determine
an individual’s position relative to the standardization sample
or any other specified sample.

A percentile rank is a point in a distribution at or below which
the scores of a given percentage of individuals fall.

Quartiles are percentile ranks that divide a distribution into four
equal parts, with each part containing 25% of the norm group.
Deciles, a less common percentile rank, contain 10 bands,
with each band containing 10% of the norm group.

A major problem with percentile ranks is that we can’t assume
that the units along the percentile-rank distribution are equal.
Normal-curve equivalents (NCEs) are standard scores with M
=50 and SD = 21.06.

Stanines (a contraction of “standard nine”) provide a sin-
gle-digit scoring system with M = 5 and SD = 2. Stanine scores
are expressed as whole numbers from 1 t0 9.

Age-equivalent scores are obtained by computing the average
raw scores obtained on a test by children at different ages.
Other terms for age-equivalent scores are test-age equivalent,
test age, and mental age, or MA.

Grade-equivalent scores are obtained by computing the average
raw scores obtained on a test by children in different grades.
Age-equivalent and grade-equivalent scores are psychometri-
cally impure.

Ratio IQs were defined as ratios of mental age (MA) to chron-
ological age (CA), multiplied by 100 to eliminate the decimal:
IQ = MA/CA x 100.

All derived scores are obtained from raw scores. The different
derived scores are merely different expressions of a child’s
performance.

Inferential Statistics

85.

86.

Inferential statistics are used in drawing inferences about a
population based on a sample drawn from the population.
When we want to know whether the difference between two or
more scores can be attributed to chance or to some systematic
or hypothesized cause, we run a test of statistical significance.
Statistical significance refers to whether scores differ from
what would be expected on the basis of chance alone.

87.
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Statisticians have generally agreed that a reasonable criterion
for deciding that something is not a chance occurrence is that
it would happen by chance only 5% of the time or less.

We need to consider not only statistical significance, but also
the values of the means, the degree to which the means differ,
the direction of the mean difference, and whether the results
are meaningful—that is, whether they have important practical
or scientific implications.

Effect size (ES) is a statistical index based on standard devia-
tion units, independent of sample size. It is useful in determin-
ing whether the results of a study are meaningful.

Cohen’s d, a statistic in standard deviation units, provides one
way to compute effect size.

Reliability
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A reliable test is one that is consistent in its measurements.

A test is unreliable if scores are subject to large random, un-
systematic fluctuations.

Technically, reliability of measurement refers to the extent to
which random or unsystematic variation affects the measure-
ment of a trait, characteristic, or quality.

According to classical psychometric theory, a test score is com-
posed of two components: a true score and an error score.
The word true refers to the measurement process, not to the
underlying content of the test.

An error score represents random factors that affect the mea-
surement of the true score.

The reliability coefficient, which expresses the degree of consis-
tency in the measurement of test scores, is denoted by the letter
r with a subscript consisting of identical letters (e.g., 7, or r).
Reliability coefficients range from 1.00 (indicating perfect re-
liability) to .00 (indicating the absence of reliability).
Reliability is essential in a psychological measure.

Low levels of reliability signify that unknown but meaningful
sources of error are operating in the measure and that the mea-
sure is not stable across time or consistent across situations.
Internal consistency reliability is based on the scores that indi-
viduals obtain during a single administration of a test.

The most general measure of reliability is Cronbach’s coef-
ficient alpha.

Test-retest reliability is computed from the scores that indi-
viduals obtain on the same test on two different occasions.
Alternate-forms reliability (also referred to as parallel-forms
reliability or equivalent-forms reliability) is determined by
creating two different but parallel forms of a measure and ad-
ministering the two forms to the same group of children.
Interrater reliability (also called examiner reliability or scorer
reliability) refers to the degree to which the raters agree.
Several factors affect the reliability of a test, including test
length, homogeneity of items, test-retest interval, variability
of scores, guessing, variation in the test situation, and sample
size.

The standard error of measurement (SEM), or standard error
of a score, is an estimate of the amount of error inherent in a
child’s obtained score.

The standard error of measurement directly relates to the
reliability of a test: The lower the reliability, the higher the
standard error of measurement; conversely, the higher the reli-
ability, the lower the standard error of measurement.

The standard error of measurement represents the standard de-
viation of the distribution of error scores.
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When we report a test score, we also should report a confi-
dence interval—a band, or range, of scores around the ob-
tained score that likely includes the child’s true score.

The confidence interval may be large or small, depending on
the degree of certainty we desire (how likely we want it to be
that the interval around the child’s obtained score contains his
or her true score).

Individuals who use the test findings need to know that the 1Q
and other major scores used to make decisions about a child
are not perfectly accurate because they inherently contain
measurement error.

There are two methods for obtaining confidence intervals. One
is based on the child’s obtained score and the conventional
standard error of measurement. The other is based on the es-
timated true score and the standard error of measurement as-
sociated with the estimated true score.

In clinical and psychoeducational assessments, questions usu-
ally center on how a child is functioning at the time of the re-
ferral. Therefore, we recommend that you use the confidence
interval based on the child’s obtained score, without recourse
to the child’s estimated true score.

When you want to know how a child might perform over a
longer period in relation to a specific reference group, use the
confidence interval based on the estimated true score.

The standard error of estimate allows us to establish a confi-
dence interval around a predicted score.

When a test is re-administered, retest scores may differ from
those obtained on the initial test.

Practice effects may be related to prior exposure to the test.
Practice effects may occur because of intervening events be-
tween the two administrations.

Practice effects may not occur to the same extent in all
populations.

Practice effects vary for different types of tasks.

Practice effects may be affected by regression toward the
mean.

Practice effects may be difficult to interpret when the initial
test and the retest are different.

Practice effects may depend on the item content covered
throughout the test.

Response Theory

Item difficulty refers to the percentage of children who answer
an item correctly.

Item discrimination refers to how an item discriminates be-
tween children who do well on the test as a whole and those
who do poorly.

Item response theory uses three parameters to evaluate items:
item discrimination, item difficulty, and a “guessing” param-
eter, which reflects the probability that a correct response will
occur by chance.

An item characteristic curve is a line representing the prob-
ability of passing the item for children with different total
scores on the construct being measured.

Differential Item Functioning
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The assessment of differential item functioning is a statistical
procedure designed to reveal whether test items function dif-
ferently in different groups.

Validity
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The validity of a test refers to whether it measures what it is
supposed to measure.

Because tests are used for many different purposes, there is no
single type of validity appropriate for all assessment purposes.
Validity is more difficult to define than reliability. Unlike reli-
ability, validity has no single definition.

A related problem is that the terminology used in the literature
on validity is inconsistent.

A good way to determine the validity of a test is to understand
what it measures and then decide what measures should and
should not be correlated with it.

Two issues are addressed in validating tests: what a test mea-
sures and how well it measures it.

Content validity refers to whether the items within a test or
other measure represent the domain being assessed.

Face validity refers to whether a test looks valid “on the face
of it.”

Construct validity establishes the degree to which a test mea-
sures a specified psychological construct (i.e., an inferred
entity) or trait.

Convergent validity refers to how well measures of the same
domain in different formats—such as tests in multiple-choice,
essay, and oral formats—correlate with each other.
Discriminant validity, sometimes called divergent validity,
refers to the extent to which measures of different domains do
not correlate with each other.

Criterion-related validity is based on how positively test scores
correlate with some type of criterion or outcome (such as rat-
ings, classifications, or other test scores).

The two forms of criterion-related validity are concurrent va-
lidity and predictive validity.

Concurrent validity is based on correlations of scores on one
measure with those on a related measure.

Predictive validity is based on correlations of scores on one
measure with those on a criterion measure taken at a later time.
Results from criterion-related validity studies are usually ex-
pressed as correlation coefficients.

Predictive power is a special type of predictive validity. It as-
sesses the accuracy of a decision made on the basis of a given
measure. Thus, predictive power refers to the extent to which
a test (or another measure, such as a rating scale or an obser-
vation form) agrees with an outcome criterion measure used
to classify individuals in a particular category or to determine
whether or not they have a particular trait or condition.

All predictions must be compared to the base rate of a condi-
tion, an attribute, or a disease in a specific population. Base
rates are important, because they are the rates against which
we judge the accuracy of a prediction.

We compute the predictive power of a test by determining
the percentages of correct and incorrect classifications that it
makes. At least 10 different measures of predictive power can
be computed.

Validity coefficients are affected by the same factors that
affect correlation coefficients, as well as by other factors such
as range of attributes being measured, length of the interval
between administration of the test and of the criterion mea-
sure, and range of variability in the criterion measure.

The validity of a child’s test scores can be affected by such
factors as the child’s test-taking skills, anxiety, transient medi-
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151.

152.

cal conditions, confusion, limited attention, degree of rapport
with the examiner, motivation, speed, understanding of test
instructions, physical handicaps, temporary hearing impair-
ments, language skills, educational opportunities, and famil-
iarity with the test material.

Validity can also be affected by intervening events and contin-
gencies. Deficiencies in the robustness of the criterion might
affect the validity of tests.

If you have any reason to question the validity of test results,
state your reservations in the psychological report.

Meta-Analysis
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Meta-analysis uses rigorous research techniques (including
quantitative methods) to sum up and integrate the findings of
a body of studies covering similar topics.

Meta-analysis is particularly useful in validity generalization
studies. '

Conclusions from meta-analysis may be compromised by the
variety of studies reviewed and their shortcomings, such as
poor design and inadequate sampling.

Factor Analysis
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Factor analysis is a mathematical procedure used to explain
the pattern of intercorrelations among a set of variables (such
as individual test items, entire tests, subtests, or rating scales)
by deriving the smallest number of meaningful variables or
factors.

A factor is a statistically derived, hypothetical dimension that
accounts for part of the intercorrelations among a set of vari-
ables.

Factor analysis is based on the assumption that a significant
correlation between two variables indicates a common under-
lying factor shared by both variables.

An exploratory factor analysis (EFA) is used to explore the
underlying structure of a collection of variables when there are
no a priori hypotheses about the factor structure.

A confirmatory factor analysis (CFA) is used to confirm a hy-
pothesized factor structure.

Principal component analysis seeks the set of factors that can ac-
count for all common and unique variance in a set of variables.
Principal factor analysis, which incorporates prior communal-
ity estimates, seeks the smallest set of factors that can account
for the common variance in a set of variables.

Rather than attempting to interpret the original factors, re-
searchers usually rotate the matrix of factor loadings to make
the factor structure clearer. The rotation rearranges the factors
so that, ideally, for every factor there are some variables with
high loadings on the factor and other variables with low load-
ings on the factor.

In a factor analysis, we can divide the variance associated with
a variable into three categories: communality, specificity, and
€ITor variance.

Communality refers to that part of the total variance that can
be attributed to common factors (those that appear in more
than one variable).

Specificity refers to that part of the total variance that is due
to factors specific to a particular variable, not to measurement
€r7or or common factors.

167.

168.

Error variance refers to that part of the total variance that re-
mains when we subtract the reliability of the variable from the
total variance.

Factor analysis is a complex statistical method. The same set of
data can yield different results depending on the factor analytic
method used, the number of factors retained, and the rotations
of the factors. In addition, the naming of factors is arbitrary.

Other Useful Psychometric Concepts

169.

170.

Occasionally, you will find that two or more tests believed to
measure the same ability give different results for the same
child. Different results might occur, for example, because of
characteristics of the child, testing conditions, examiner char-
acteristics, or the psychometric properties of the tests.

The psychometric properties of two supposedly similar tests
might lead to different results because of floor effect differ-
ences, ceiling effect differences, item gradient differences,
norm table layout differences, age-equivalent or grade-
equivalent score differences, reliability differences, differences
in skill areas assessed, test content differences, publication
date differences, and sampling differences.

Concluding Comment

171.
172.

173.

174.

175.

176.

177.

No instrument is completely reliable (i.e., without error).
Validity does not exist in the abstract; it must be anchored to
the specific purposes for which the instrument is used.

Every child’s behavior fluctuates from time to time and from
situation to situation (e.g., a child might perform differently
with different examiners).

Any assessment instrument contains only a sample of all pos-
sible questions or items related to the domain of interest.
Assessment instruments purporting to measure the same con-
struct may give different results for a particular child.
Instruments measure samples of behavior or constructs at one
point in time.

Assessment scores will likely change to some degree during a
child’s development.
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STUDY QUESTIONS

1.

L

10.

11

12.

13.
14,
15.

16.

17.
18.

Discuss why psychological measurement and statistics are
useful.

Compare and contrast nominal, ordinal, interval, and ratio
scales.

Describe the three measures of central tendency.

Discuss measures of dispersion. Include in your discussion the
range, variance, and standard deviation.

Discuss the normal curve.

Explain the importance of correlation in psychological assess-
ment.

Discuss the regression equation.

What is the standard error of estimate?

What are some important features of norm-referenced
measurement?

Discuss derived scores. Include in your discussion types of de-
rived scores and relationships among derived scores.

Discuss inferential statistics. Include in your discussion the
concept of statistical significance and effect size.

Discuss the concept of reliability. Include in your discussion
the theory of reliability of measurement, reliability coeffi-
cients, internal consistency reliability, test-retest reliability, al-
ternate-forms reliability, interrater reliability, factors affecting
reliability, standard error of measurement, confidence intervals
for obtained scores, confidence intervals for predicted scores,
and repeated evaluations.

Discuss item response theory.

Discuss differential item functioning.

Discuss the concept of validity. Include in your discussion the
various types of validity, predictive power, and factors affecting
validity.

Discuss meta-analysis and describe its usefulness in validity
studies.

Discuss factor analysis.

Discuss other useful psychometric concepts.



