
Proton Diffusion and T1 Relaxation in Polyacrylamide Gels:
A Unified Approach Using Volume Averaging

Brigita Penke,*,1 Stephen Kinsey,†,2 Stephen J. Gibbs,*,† Timothy S. Moerland,†,‡ and Bruce R. Locke*,†,3

*Department of Chemical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, Florida 32310-6046;
†Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Tallahassee, Florida;

and ‡Department of Biological Sciences, Florida State University, Tallahassee, Florida

Received January 13, 1998

The structure of polyacrylamide gels was studied using proton
spin–lattice relaxation and PFG diffusion methods. Polyacryl-
amide gels, with total polymer concentrations ranging from 0.25 to
0.35 g/ml and crosslinker concentrations from 0 to 10% by weight,
were studied. The data showed no effect of the crosslinker con-
centration on the diffusion of water molecules. The Ogston–Morris
and Mackie–Meares models fit the general trends observed for
water diffusion in gels. The diffusion coefficients from the volume
averaging method also fit the data, and this theory was able to
account for the effects of water-gel interactions that are not ac-
counted for in the other two theories. The averaging theory also
did not require the physically unrealistic assumption, required in
the other two theories, that the acrylamide fibers are of similar size
to water molecules. Contrary to the diffusion data, T1 relaxation
measurements showed a significant effect of crosslinker concen-
tration on the relaxation of water in gels. The model developed
using the Bloch equations and the volume averaging method
described the effects of water adsorption on the gel medium on
both the diffusion coefficients and the relaxation measurements. In
the proposed model the gel medium was assumed to consist of
three phases (i.e., bulk water, uncrosslinked acrylamide fibers, and
a bisacrylamide crosslinker phase). The effects of the crosslinker
concentration were accounted for by introducing the proton par-
tition coefficient, K eq, between the bulk water and crosslinker
phase. The derived relaxation equations were successful in fitting
the experimental data. The partition coefficient, K eq, decreased
significantly as the crosslinker concentration increased from 5 to
10% by weight. This trend is consistent with the idea that bisac-
rylamide tends to form hydrophobic regions with increasing
crosslinker concentration. © 1998 Academic Press

Key Words: polyacrylamide gels; PFGNMR; water self-diffu-
sion; T1 relaxation.

INTRODUCTION

A detailed understanding of the structure of hydrogels and
the dynamics of molecular motion of solutes in hydrogels is
important for a number of applications in biochemical separa-
tion, including gel permeation chromatography and gel elec-
trophoresis, and for biomedical drug delivery processes that
use hydrogels as carriers. In addition, hydrogels have potential
as experimental models of biological tissue. Hydrogel struc-
tures in general have been analyzed by a number of methods
including dynamic light scattering (1–3), electron microscopy,
laser light scattering (4), small angle X-ray scattering (3, 5),
osmotic swelling (6–8), atomic force microscopy (9), NMR
imaging (10), NMR T1 andT2 relaxation methods (11–14), and
magnetization transfer methods (15–17). Despite the wide
range and number of these studies, there remain some very
important unresolved issues concerning the structure of these
gels and the relationships between gel structure and diffusive
transport within the gel.

One of the most extensively used and studied hydrogels is
polyacrylamide. Polyacrylamide gels are synthesized by chem-
ical or photochemical crosslinking of the bifunctional
crosslinking agent, bisacrylamide, with the acrylamide mono-
mer. The structure of crosslinked hydrogels has been inter-
preted within the context of a random network of fibers fol-
lowing the early work of Ogston (18). Ogston’s original
analysis has been applied and extended extensively within the
gel electrophoresis and gel chromatography literature (19–23).
Gel structure also has been interpreted within a broader range
of structures to include distributions of variously shaped pores
(24, 25). Richards and Temple (26) applied and extended the
Ogston theory to the analysis of the structure of crosslinked
polyacrylamide gels in order to account for the effects of
crosslinker concentration on the microscopic structure of the
gel. They interpreted results on osmotic swelling and gel
permeation chromatography within the context of deviations
from an ideal gel where all functional ends of the monomers
and crosslinkers are fully reacted. Deviations from the ideal gel
lead to clustering and clumping of microscopic regions of the
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less water-soluble bisacrylamide. Further support for the exis-
tence of microscopic (i.e., on the nanometer length scale)
heterogeneities within polyacrylamide gels has been provided
by light scattering studies (3, 5, 6). These studies indicate the
existence of heterogeneous domains whose sizes vary with the
amount of crosslinker. As the crosslinker concentration in-
creases, the scattering results have been interpreted as either
the development of increasingly thicker fiber strands of acryl-
amide (5) or as increasing-diameter globular regions of less
water-soluble bisacrylamide (3). The exact nature of these
structures and the effects of crosslinker concentration on these
structures have not been fully confirmed.

Diffusive transport of large and small solutes in hydrogels
has been studied by gel permeation chromatography (27–29),
diffusion cells (30), light scattering (31, 32, 33), pulsed field
gradient NMR (34–37), and other methods (38). Diffusion of
solutes in hydrogels is expected to depend upon the size of the
probe relative to the size of the pore spaces in the gel, the
geometry of the gel structure, and various physical/chemical
interactions between the probe species and the gel matrix. In
order to account for probe size, the Ogston theory has been
extended to diffusion (and electrophoresis) (27, 28, 39)
whereby the partition coefficient has been equated to the ratio
of the diffusion coefficient in the gel to that in free solution.
Other approaches, including hindered transport theory (40, 41),
have also been used to describe the effects of solute size on
diffusion. Experimental data typically has been interpreted on
the basis of a stretched exponential equation (36, 42–44)
which can be justified theoretically through comparison with
Monte Carlo simulations or derived using a specific arrange-
ment of a unit cell. Despite these studies, a full range of
experimental measurements on probe diffusion in polyacryl-
amide gels as functions of gel composition, including
crosslinker density, has not been reported; in addition, the
effects of media geometry and solute–gel interactions have not
been incorporated within one comprehensive approach.

In order to account for the effects of media geometry and gel
interactions of small solutes diffusing in porous structures, the
method of volume averaging pioneered by Whitaker (45, 46)
can be used. The volume averaging approach also has been
applied to transport in porous media where the solute has
adsorptive interactions with the matrix (47–49). While adsorp-
tion effects may be expected to play a major role on diffusion
in gels, current theory indicates that diffusion in isotropic
media may be less sensitive to the exact arrangement of the
physical elements of the media (50, 51).

The present study seeks to address the specific effects of
probe interaction with the gel and gel structure on the diffusion
of water by applying the method of volume averaging to the
analysis of protonT1 relaxation and PFG water self-diffusion
data in polyacrylamide gels with various acrylamide and
crosslinker concentrations. A detailed model of the polyacryl-
amide structure is proposed whereby the gel contains three
regions: the acrylamide fibers, regions of concentrated bisac-

rylamide, and bulk water. The method of volume averaging is
applied to the Bloch equations (52) for the bulk magnetization
in the three domains. Transport in the bulk fluid and adsorption
of water to the acrylamide fibers and bisacrylamide domains
are included in the Bloch model, following the work of Cohen
and Mendelson (53–55). The averaging process leads to ex-
pressions for the effective diffusion and relaxation coefficients
as functions of the specific solute–gel interaction parameters
and the geometry of the gel matrix. The water self-diffusion
data obtained by NMR is compared to the above mentioned
theory as well as to several other theories found in the litera-
ture, andT1 relaxation data are interpreted in the context of
volume averaging theory.

MATERIALS AND METHODS

Gel Preparation

Polyacrylamide hydrogels were synthesized by copolymer-
ization of acrylamide with the tetrafunctional crosslinking
agent,N,N9-methylenebisacrylamide (Bis) by redox reaction,
using the reagents ammonium persulfate (APS) and tetrameth-
ylethylenediamine (TEMED). Gels were prepared from con-
centrated (30 or 40% (wt of polymer/100 ml)) stock solutions
of acrylamide and crosslinker (%T) (Bio-Rad) and appropriate
amounts of 500 mM tris(hydroxymethylaminomethane) (Tris)
buffer solution and deionized water. Buffer solution was pre-
pared by dissolving tris(hydroxymethylaminomethane) (Bio-
Rad) in deionized water and adding 6 N HCl to obtain pH 6.8.
The final concentration of buffer solution in the gels was 125
mM Tris.

For PFG diffusion measurements, the concentration of the
monomer was varied between 2.5 to 35 (%T) (weight of
acrylamide1 Bis/100 ml solution). For spin–lattice relaxation
measurements, the concentration of monomer was varied be-
tween 2.5 and 20 %T. The crosslinker concentration was varied
between 0 and 10 %C (weight percent of crosslinker/weight of
acrylamide1 bisacrylamide). Sample solutions were brought
to and maintained at room temperature (23°C) by water bath
incubation for 20 min prior to and during a 15-min vacuum
degassing. The reagents APS (0.1 g/ml) and TEMED were
added in microliter amounts immediately after the degassing.
All reagents were analytical grade and purchased from Bio-
Rad (Hercules, CA).

For PFG diffusion measurements gels were cast in micropi-
pette capillary tubes (#21-164-2H, Fisher Scientific, Pitts-
burgh, PA). For spin–lattice relaxation measurements, gels
were cast in Wilmad Glass (Buena, NJ) 5.0-mm-diameter
NMR tubes. Gelation in both the capillary and 5.0-mm tubes
occurred within 30 min at room temperature (23°C). Gels were
left overnight before any NMR measurements and were stored
at 4°C under high humidity. Gels used in this study were not
washed or soaked in water prior to the measurements. Thus,
they are considered to be incompletely swollen gels.
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Determination of Diffusion Coefficients Using PFG NMR

Diffusion of water molecules in polyacrylamide gels and
solutions were studied using a 600-MHz Bruker DMX spec-
trometer coupled with a 14-T 89 mm-bore Bruker/Magnex
magnet. The experiments were conducted at ambient temper-
ature (approximately 25°C). The diffusion measurements were
performed using the bipolar pulse pair (BPP) longitudinal
eddy-current delay (LED) stimulated-echo sequence (56–58)
which effectively eliminates the effects of eddy currents and
sample-induced background gradients. Diffusion coefficients
were obtained using (59)

y~dG , D ! 5 ln
A~G!

A~0!

5 2g2d2G2D ~D 2 d /3 2 t / 2! , [1]

whereA(g) andA(0) are the echo intensity in the presence and
absence of the gradients respectively,G is the gradient
strength,d/2 is the duration of the gradient pulse,D is the
diffusion coefficient,t is the time interval between the succes-
sive pulses, andD is the time interval between the successive
gradient pairs. The measurements were performed by varying
the gradient strengthG. The gradient pulse durationd was 2
ms, and the time intervalsD equal to 10, 50, 100, and 900 ms
were used with each gradient strengthG. Representative data
are shown in Fig. 1, which depicts the logarithm of normalized
magnetization intensity as a function ofg2d2G2(D–d/3–t/2) for
20% T/5% C gel withD equal to 10, 50, 100, and 900 ms.

Spin–Lattice Relaxation Measurements

1H spin–lattice relaxation measurements were performed on
a Bruker 270-MHz spectrometer coupled with a 7.05-T
(charged to 6.3 T) 89-mm-bore Bruker magnet. Experiments
were conducted at 28°C.T1 relaxation measurements were
obtained using the inversion-recovery pulse sequence. All
measurements were obtained using eight scans with an inter-
vening 15-s delay. A total of 30–40 data points were collected
as a function of recovery timet, which was varied between
0.001 and 13 s, and in general the increments were not equally
spaced.

Spin–lattice relaxation measurements were also obtained for
125 mM Tris buffer solution, which is the final concentration
of buffer in gels. The relaxation time,T1, for buffer solution
only was obtained using a three-parameter fit to the equation

M

M0
5 F1 2 k expS2

t

T1
DG , [2]

wherek is ideally equal to 2. Fitting the data for 125 mM Tris
solution to Eq. [2],k was equal to 1.89 andT1 was equal to
3.97 s.

DERIVATION OF MAGNETIZATION RECOVERY
EQUATIONS FOR PROTON RELAXATION

IN GEL MEDIA

Polyacrylamide gel is considered in the present study as a
three-phase porous medium, consisting of uncrosslinked poly-
acrylamide fibers, semipermeable clusters of the bisacrylamide
crosslinker, and free water in the void phase between the other
regions (Fig. 2). This model is based upon previously pub-
lished experimental and theoretical results (3, 5, 26) that indi-
cate that the crosslinker can form a separate, less water-soluble
phase.

The proton magnetizationMl, Mf, andMb within the bulk
water volume, on the surface of the fibers, and in the clusters
of crosslinker, respectively, are described using the Bloch
equations (52). The proton magnetization is directly propor-
tional to the spin densitiesNl, Nf, andNb in the bulk fluid, on
the surface of the fibers, and in the clusters of crosslinker,
respectively. The decay of proton magnetization occurs as a
result of spin relaxation in the bulk liquid phase, in the clusters
of crosslinker, and at the surface of the fibers, and is also due
to the diffusion in the bulk and in the crosslinker phases. As
shown in Fig. 2, the gel medium consists of two main phases:
the a phase, which is composed of bulk water and the acryl-
amide fibers, and theb phase, which consists of clusters of
crosslinker. In order to solve for the effective relaxation con-
stant in this medium, the volume averaging method developed
by Whitaker and co-workers (46, 50, 60–62) was applied to
the Bloch equations (52). This methodology allows for conve-
nient and rapid estimation of the effects of structure and

FIG. 1. Normalized echo intensity as a function of the gradient strength at
‚ 5 10, 50, 100, 900 ms.
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water-gel interactions on the observable properties of the
medium including the diffusion and effective relaxation
parameters. Thea phase (Fig. 2) is subdivided into two
‘‘microphases’’ consisting of uncrosslinked fibers of poly-
acrylamide,f, and bulk water,l. The appropriate Bloch equa-
tions (52) for this phase are

­Ml

­t
5 Dl ¹

2Ml 2
~Ml 2 Ml

`!

T1l
in Vl [3]

2nI lf z Dl ¹I Ml 5 s~PMl 2 Mf! atAlf [4]

­Mf

­t
5 Df¹

2Mf 2
~Mf 2 Mf

`!

T1f

1 s ~PMl 2 Mf ! at Alf . [5]

Cohen and Mendelson (53) considered a similar problem;
however, their approach did not utilize the volume averaging
method to derive the effective transport and relaxation param-
eters and they did not include thea phase equation in combi-
nation with the magnetization equations for the crosslinker
phase,b, introduced later. In Eqs. [3]–[5],Dl and Df are the
diffusion coefficients of protons in the bulk fluid and on the
surface of the fibers, respectively.T1l

21 and T1f
21 are the bulk

and surface relaxation times,s is the detachment rate per
proton of protons on the surface of the fibers, andP is the
adsorption coefficient to the surface of the fibers,Mf

eq/Ml
eq. Ml

`

andMf
` are the asymptotic magnetization values of the protons

in the bulk water and on the surface of the fibers, andnI lf is the
unit normal directed away from the surface. In Eq. [5] the first
term on the right-hand side is the surface diffusion term, the
second reflects the relaxation on the surface of the fibers, and
the third term reflects the proton transfer rate from the surface
of the fibers to the bulk fluid. Cohen and Mendelson (53) have
previously shown using order of magnitude estimates that the
fiber surface diffusion termDf¹

2Ml is small in comparison to
the rest of the terms in Eq. [5], and can be neglected.

In order to obtain a one-equation model for the entire sys-
tem, the above equations must be volume averaged in thea
phase (Fig. 2) and then combined with the averaged equations
in the b phase (Fig. 2). For theb phase, consisting of
crosslinker clusters, the governing equation contains the diffu-
sion and relaxation terms

­Mb

­t
5 Db¹Mb 2

~Mb 2 Mb
`!

T1b

in Vb , [6]

whereDb is the proton diffusion coefficient in the crosslinker
phase,T1b is the relaxation time (s), andMb

` is the asymptotic
magnetization. At the interface between the two phases, the
diffusion fluxes are equal as given by

2nI ba z Db¹I Mb 5 2nI ba z Deff
a ¹I Ma at Aab , [7]

wherenIba is the unit normal directed from theb phase into the
a phase.Deff

a is the effective diffusion coefficient in thea
phase, andMa is the magnetization in thea phase, obtained by
volume averaging the magnetization over the f and l phases.
Since theb phase is assumed to be permeable, at the interface
between the two phases the magnetization density difference
between thea andb phases is equal to the diffusive flux from
the b phase

2nI ba z Db¹I Mb 5 B~Mb 2 KeqMa ! at Aab , [8]

whereB is the rate coefficient for transfer into theb phase, and
Keq is the equilibrium distribution coefficient into theb phase.
When the governing equations for theb phase are combined
with the averaged equation for thea phase, the problem
becomes similar to that developed by Ochoaet al. (63) for
cellular media with reaction and diffusion in two phases.

In order to relate magnetization in thel and f phases to the
magnetization density of the entire sample, which is the mea-
sured quantity, the first step requires obtaining the average
magnetization in thea phase. For any point in thef and l
phases, there is an associated averaging volume,Va. The phase
average quantities are obtained by averaging the governing
equations. For thel phase, one has

FIG. 2. Gel medium model, composed of bulk water and fiber,a, phase,
and crosslinker cluster phase,b.
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1

Va
E

Vl

­Ml

­t
dV

5
1

Va
E

Vl

Dl ¹
2Ml dV 2

1

Va
E

Vl

~Ml 2 Ml
`!

T1l
dV in Vl . [9]

The length scales associated with the averaging volume are
discussed in detail by Carbonell and Whitaker (46). The main
requirement is that the radius of the averaging volume be large
in comparison to the lengths ofll and lf , and small in compar-
ison to the length scale,La, over which significant changes in
the average quantities occur:

l l ! r 0 ! La [10]

l f ! r 0 ! La [11]

Since the spin–lattice relaxation measurements are obtained
using various time delays (0.001–12 s) between the RF pulses,
ther0 value, usingr0 5 (2Dtdelay)

1/2, ranged from 2 to 230mm.
The half-length of the RF coil,La, surrounding the sample was
0.5 cm. The length of the fibers,lf , is of order of 1 nm (64).
Since the maximum crosslinker concentration was 10% C, the
space between the fibers,ll, is not expected to exceed 50 nm
(65). Thus, the constraints given by Eqs. [10] and [11] are fully
satisfied in the present study. It is very important to note that
the length scales for the averaging volume are on the micron
scale and thus information on the nanometer length scale
cannot be directly determined from this type of measurement.

The phase average magnetization density in thel phase is
defined as

^Ml& 5
1

Va
E

Vl

Ml dV in Vl . [12]

The phase averages are defined similarly at the surface of the
fibers. The phase averaged governing magnetization equation
in the l phase becomes

­^Ml&

­t
5 Dl ^¹

2Ml & 2 kl ^Ml 2 Ml
`& in Vl . [13]

Here, the bulk fluid relaxation time,T1l, is replaced by the
reciprocal ofkl, the relaxation rate constant, and subscript l is
dropped from this point on for convenience. The relaxation rate
constantkl and the diffusion coefficientDl are assumed to have
negligible variations in thel phase.

By applying the volume averaging theorem (45, 66) to the
governing magnetization equation in thel phase, the equation

e l

­ ^Ml &
l

­t

5 Dl ¹I z H¹I ~e l ^Ml &
l ! 1

1

Va
E

Alf

nI lf Ml dAJ
1 Dl

1

Va
E

Alf

nI lf z ¹I Ml dA 2 kl ~e l ^Ml &
l 2 Ml

`! in Vl

[14]

results, where the phase average magnetization density^Ml& is
replaced with the intrinsic average quantity,^Ml&

l:

^Ml & 5 e l ^Ml &
l in Vl . [15]

Hereel is the volume fraction of the bulk liquid phase, defined
as

e l 5
Vl

Va

. [16]

The asymptotic valueMl
` is a constant and does not change

within the averaging volume.
By following the solution methodology outlined by Ochoaet

al. (63), the one-equation model for thea phase can be shown
to be given by

~e l 1 P 2 e l P!
­Ma

­t

5 Dl¹I z He l ¹I Ma 1
e l

Vl
E

Alf

nI lf M̃l dAJ
2 ~kfP~1 2 e l ! 1 kl e l ! Ma 1 S A

Va
Dkf ~Mf

`! 1 kl ~Ml
`! ,

[17]

whereM̃l is the spatial deviation term, {M̃l 5 Ma 2 ^Ml&
l}. The

surface relaxation timeT1f is replaced by the reciprocal ofkf ,
the relaxation rate constant, andMa is the equilibrium
weighted spatial average magnetization in thea phase, given
by

Ma 5 e l ^Ml &
l 1

1

P
^Mf

s& in Va . [18]

Equations similar to that of Eq. [18] have been obtained for
local mass equilibrium by Whitaker (47) for a multiphase
diffusion and reaction problem or for local thermal equilibrium
(67) in multiphase conduction problems. Here^Mf

s& is the
magnetization density at the surface of the fibers. The surface
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relaxation rate constant,kf , proton detachment rate,s, and
equilibrium coefficient,P, are assumed to have negligible
variations at the interface,Afl. In addition, the intrinsic average
magnetization,̂Ml&

l, is assumed to be a constant at the inter-
face. This assumption was investigated previously (46) and
shown to be a valid approximation, provided

S r 0

La
D 2

! 1 . [19]

For the system studied, this constraint is easily satisfied: Since
the maximumr0 value is 250mm, andLa is 0.5 cm, the ratio
(r0/La)2 5 0.002! 1.

Analogous to the development of Nozadet al. (60), one can
define a closure problem for the local deviation term,M̃l, and
express the governing equation for thea phase in terms of the
effective diffusion and reaction terms

­Ma

­t
5 DII eff

a :¹I ¹I Ma 2 keff
a Ma

1
S A

Va
Dkf ~Mf

`! 1 kl ~Ml
`!

P~ A /Va ! 1 e l ~1 2 P~ A /Va !!
, [20]

where the effective diffusivity and relaxation rate constants are
defined by

DII eff
a

Dl
5

el

el ~1 2 P~A/Va!! 1 P~A/Va! SIII 1
1

Vl
E

Alf

nI lf z fIdAD [21]

keff
a 5

P~ A /Va !kf 1 e l ~kl 2 P~ A /Va !kf !

P~ A /Va ! 1 e l ~1 2 P~ A /Va !!
. [22]

The expression for the vector function,f, can be obtained by
solving a closure problem similar to that of Nozadet al. (60).
It must be noted that the porosity in the present system does not
vary over the macroscopic domain since the polyacrylamide
gel is uniform on this scale. In addition, since there is no
diffusion in the fiber phase,f, the solution in thea phase is
defined only by the closure problem in thel phase. The vector
field, f, is a function ofs, (PA/Va), and Dl. Whitaker (47)
discusses in detail the constraints necessary to show under
what conditions the closure problem is independent of the
adsorption and relaxation processes. Furthermore, if the effects
of cell geometry are ignored (f ! 1), the diffusion coefficient
is a function of the ratio (PA/Va) and porosity,el. It is inter-
esting to note that the effective relaxation rate constant,keff

a , is
not a function of geometry, and it is also not affected by the
solution for thef field. The effective relaxation rate constant,
keff

a , varies with the porosity,el, and is affected only byP(A/
Va), kf , andkl.

Volume Averaging in VT and the One-Equation Model

The system of equations for thea andb phases (Eqs. [20],
[6]–[8]) is similar to the problem solved by Ochoaet al. (63)
involving diffusion and reaction in cellular media; however,
the present system includes three relaxation terms and the
adsorption factor,P.

Following the previously outlined methodology for thel and
f phases, the governing equations for thea andb phases can be
volume averaged inVT (Fig. 2). As before, the magnetization
density equations for thea andb phases are expressed in terms
of the intrinsic phase average magnetization densities,^Ma&a

and ^Mb&b. The resulting equations are combined into the
one-equation model using the following expression:

^M & 5 ea ^Ma &a 1
1

Keq eb ^Mb &b . [23]

The governing one-equation model for the diffusion and relax-
ation rate constant in the porous medium becomes

­ ^M &

­t
5 DII eff

T : ¹I ¹I ^M & 2 keff
T ~^M & 2 Meff

` ! , [24]

whereDII eff
T is defined as

DII eff
T 5

Deff
a

~ea 1 Keqeb ! F ~ea 1 keb !III 1
1

VT
E

Aab

1

2
~nI abgI

1 gI nI ab ) dA 1
k

VT
E

Aba

1

2
~nI abhI 1 hI nI ba ! dAG [25]

andkeff
T andMeff

` are defined as

keff
T 5

keff
a ea 1 Keqkbeb

ea 1 Keqeb

5
1

ea 1 Keqeb
FSP~ A /Va !kf 1 e l ~kl 2 P~ A /Va !kf !

P~ A /Va ! 1 e l ~1 2 P~ A /Va !! Dea

1 Keqkbeb G [26]

Meff
` 5

1

keff
T ~ea 1 Keqeb !

3 3kbMb
` 1

SS A

Va
DkfMf

` 1 kl Ml
`D

P~ A /Va ! 1 e l ~1 2 P~ A /Va !!
4 . [27]

The vector fields,
#
g andhI , which are functions of the geometry

of a andb phases, respectively, can be obtained by solving the
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closure problem (60, 68). The vector fieldhI is also a function
of the water partition coefficient into theb phase. In Eq. [25]
k is a function ofDb, the diffusion coefficient in the crosslinker
phase, andKeq, the permeability into the crosslinker phase:

k 5 Keq
Db

Deff
a . [28]

If the diffusion coefficient,Db, in the crosslinker phase is
small, or the permeability into the crosslinker phase is very
low, the model predicts very little effect of crosslinker on the
effective diffusivity. It must be noted that the proposed model
assumes that the solute size is very small relative to structure
of gel. In Eq. [26],ea andeb are the volume fractions of thea
andb phases (ea 5 Va/VT, eb 5 Vb/VT), andkb or (Tlb)21 is
the relaxation rate constant in the crosslinker phase. In deriving
Eq. [20], the length scale constraints

la

L
! 1 [29]

lb

L
! 1 [30]

were used, whereL is the macroscopic length scale. For the
present study, these constraints are easily satisfied, sincela is
no more than 1mm, lb is on the length scale of 1 nm, andL is
on the order of 1 cm.

It can be noted that the derivation in this paper leads to
effective diffusion coefficients and relaxation parameters that
resemble the ‘‘fast exchange’’ limits found in the literature
whereby the proton exchange between the various ‘‘pools’’ is
rapid. The present theory reduces to this limit when the closure
problems for the effective transport parameters are in the
quasi-steady limit and where it has been assumed that the
adsorption and relaxation processes do not affect the closure.
In the volume averaging approach, it is not necessary to make
these assumptions (47), and further work can be proposed to
more completely evaluate the terms in the closure methodol-
ogy, especially for cases where time dependence of the diffu-
sion coefficient is observed experimentally.

Equation [27] can now be solved over the macroscopic
sample domain and compared to the experimental values ob-
tained from the NMR experiments as shown in the following
section.

Macroscopic Magnetization Equation Solution

In the previous section the spatially averaged magnetization
equation (Eq. [24]) appropriate for a porous medium was
obtained. Since the gels for the NMR measurements were cast
in standard NMR test tubes, Eq. [24] is expressed here in
cylindrical coordinates:

­ ^M &

­t
5 Deff

T F1

r

­

­r
r

­ ^M &

­r
1

­2^M &

­ z2 G
2 keff

T ~^M & 2 Meff
` ! . [31]

It is assumed here that the diffusion medium is isotropic and
the effective diffusivity does not vary spatially.

It is now desired to obtain the solution of this equation and
to compare it to the experimental data. Figure 3 shows the
NMR tube containing polyacrylamide gel and showing the
position of the 1-cm RF coil on the outside of the tube. The
coordinate axes are located at the center of the tube. Only those
protons that are located in the area of the RF coil experience
disturbances from the equilibrium magnetization condition.
The no-flux condition is defined at the wall of the tube due to
the impermeability and the zero-flux condition is defined at the
center of the tube due to the symmetry

­ ^M &

­r
5 0 @ r 5 0 [32]

­ ^M &

­r
5 0 @ r 5 a [33]

­ ^M &

­ z
5 0 @ z 5 0 . [34]

Since the proton magnetization is at its equilibrium on the
outside of the RF coil, the boundary conditions at the ends of
the tube are

^M & 5 Meff
` @ z 5 6L , [35]

FIG. 3. The NMR tube with polyacrylamide gel.
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whereL is the half-length of the RF coil. The initial condition
for this problem is

^M & 5 2Meff
` @ t 5 0 . [36]

In terms of normalized magnetization term averaged over both
ther andz coordinateŝ^M&&/Meff

` , the macroscopic solution to
the system of equations (Eqs. [31]–[36]) is given by

^^M &&

Meff
` 5 1 2 S16

p2D O
n51

` 1

~2n 2 1!2

3 exp~2kTefft !expS2F ~2n 2 1!p

2 G 2

DTeff
T t /L2D .

[37]

For cases where the diffusion coefficient is very small, the
magnetization is monoexponential as Eq. [37] would indicate
when the exponential terms are dominated by the effective
relaxation term, and in these cases Eq. [37] would reduce to
Eq. [2] with k equal to 2, which is conventionally used for
relaxation studies. It would be necessary forkeff

T to be of order
(p/2)2Deff

T /L2 for the additional terms in the series to be im-
portant. If keff

T were of order 0.3 s21, this would imply Deff
T

would need to be of order 1022 cm2/s for the additional terms
in the series to be needed. ProvidedDeff

T is known, Eq. [37] can
be used to determine thekeff

T from the experimental data by
fitting the magnetization recovery curve from the NMR mea-

surements. In the present study, the values for the effective
diffusion coefficientDeff

T were determined by measuring the
diffusion coefficients as described in the experimental section;
however, for the present system the use of Eq. [37] leads to
only a small correction over that obtained using Eq. [2] di-
rectly.

RESULTS

Diffusion

Diffusion coefficients were measured in gels and unpolymer-
ized solutions with crosslinker concentration ranging from 0 to
10% C. The diffusion measurements were obtained atD ranging
from 10 to 900 ms. No time dependence of the diffusion coeffi-
cients was observed within the examinedD range. Figure 4 shows
the diffusion coefficients from the present data and those reported
by Pavesi and Rigamonti (34). For comparison, free water diffu-
sion coefficients are also shown. Contrary to the results in the
present study, Pavesi and Rigamonti (34) report time dependence
of water diffusion coefficients in polyacrylamide gels atD
times , 100 ms. Furthermore, the diffusion coefficients from
Pavesi and Rigamonti (34) for polyacrylamide gels are much
lower than those reported in the present study, which implies that
the gels may have been prepared differently. The diffusion results
can be affected by a large number of factors, such as hydrolysis,
storage temperature, pH control, and time between the gel casting
and NMR measurements.

In order to evaluate the effects of acrylamide and crosslinker
concentration on water diffusion coefficients, the acrylamide
content was varied between 2.5 and 30% T, and the crosslinker
concentration was varied between 0 and 10% C. Diffusion
coefficients atD 5 900 ms were chosen for this analysis.

FIG. 4. Water self-diffusion in free water and polyacrylamide gels as a
function of the diffusion time,‚. Comparison to the Pavesi and Rigamonti (34)
data.F, in H2O (present study);ƒ, 5% T/5% C gels (present study);■, 5%
T/10% C gels (present study);{, 5% T/2.6% C gels (Pavesi–Rigamonti);Œ,
5% T/25% C gels (Pavesi–Rigamonti).

FIG. 5. Water diffusion in acrylamide solutions and polyacrylamide gels.
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Figure 5 shows theDH2O in polyacrylamide gels and solutions
with different crosslinker (0, 5, 10% C) concentrations.DH2O

in both solutions and gels decreases monotonically with in-
creasing polymer concentration. At very low total acrylamide
content (2.5–5% T), the diffusion coefficients in gels and
solutions approach the free solution values, as expected. Nei-
ther gels nor solutions show any effect of crosslinker concen-
tration on the diffusion coefficients of water. The diffusion
coefficients for gels are lower than those for solutions, which
indicates that the 3D network of gels formed upon polymer-
ization changes the physical structure or the chemical proper-
ties of the local environment through which the water must
diffuse.

In order to establish the structural (fiber size and shape)
effects of gels on the diffusion of water, the experimental data
was compared to various well-established models for fibrous
media. For this analysis, the diffusion coefficients atD 5 900
ms were normalized with respect to the free water diffusion
coefficient,D0 5 2.4 (1025 cm2/s) atD 5 900 ms. Since there
was no significant difference between the diffusion coefficients
at the same acrylamide and different crosslinker concentrations
in gels and solutions, the diffusion values at 0, 5, and 10% C
for each acrylamide concentration were averaged, normalized,
and plotted against the volume fraction of polymer.

Figure 6 shows the measured normalized average diffusion
coefficients for gels as a function of the polymer volume
fraction. Also shown are the theoretical models developed by
Maxwell (69), Perrinset al.(70) (this is numerically equivalent
to the volume averaging result of Ryan (71)), Johansson–
Lofroth (42), Wakao–Smith (72), Mackie–Meares (73), and
Stokes–Einstein (74, 75). It can be noted that the theories of

Maxwell, Perrinset al., Wakao and Smith, Mackie–Meares,
and Stokes–Einstein do not contain any adjustable parameters.
As a result, no fitting of these models to the data is required.
The Johansson–Lofroth cell model (42), based upon the
Ogston (18) expression for the probability distribution of
straight polymer chains, requires knowledge of the fiber radius
of the polymer. The Johansson–Lofroth model (42) was eval-
uated with a fiber radius of 5 Å (28). Other researchers have
reported fiber radii as high as 6.5 Å (75) and as low as 3.5 Å
(76), or observed the fiber radius to be dependent upon the
crosslinker concentration (3, 5).

The Stokes–Einstein equation (74, 75)

Deff

D0
5

h0

heff
5 ~1 1 2.5w!21, [40]

whereheff is the effective viscosity of the solution, andw is the
polymer volume fraction, predicted the diffusion coefficients in
acrylamide solutions most accurately, as shown in Fig. 7. This
expression was derived for diffusion of hard spheres in a dilute
suspension moving in a continuum. The acrylamide solutions
used in this study are relatively dilute, and the comparison
indicates that the Stokes–Einstein equation (74, 75) is appro-
priate for these solutions. It is important to note that the
Stokes–Einstein equation does not explicitly account for any
specific molecular interactions between water and the acryl-
amide monomers; the increase in solution viscosity is sufficient
to describe the reduction in diffusion coefficients.

As shown in Fig. 6, the Maxwell (69) model provides the
upper limit for diffusion coefficients in isotropic two-phase
media. The Perrinset al. (70) model, derived for a square

FIG. 6. Water diffusion in gels and comparison to the theoretical models.

FIG. 7. Water diffusion in acrylamide solutions and Stokes–Einstein
model.
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lattice of cylindrical fibers, and the Johansson and Lofroth (42)
model, derived for random suspension of cylindrical fibers,
both predicted higher diffusion coefficients in gels than ob-
tained experimentally (Fig. 6). The Perrinset al. (70) result is
numerically similar to the calculations of Ryan (71) and Ochoa
(49), who used volume averaging in arrays of squares and
cylinders in a square lattice without including the adsorption
terms. All three models predicted diffusion coefficients that
were significantly higher than the experimental data. The major
factors that may lead to the differences between the models and
the data are adsorption effects and differences in geometry.
Adsorption of water to the surface of the fibers will in general
lower the diffusion coefficient. In addition, previous work (63)
which explored the effects of geometry indicated that for
isotropic media the effective diffusion coefficient is not highly
dependent on the shape of the pores.

In addition, the Mackie and Meares (73) model,

Deff

D0
5 S1 2 w

1 1 wD
2

5 S e

2 1 eD
2

, [41]

matched the experimental data very closely, as shown in Fig. 6.
This expression was originally developed for modeling diffu-
sion in ion-exchange resin membranes. Mackie and Meares
(73) used the lattice model for liquids where the resin polymer
blocked a fractionw of all sites available. The diffusion of
solutes was then restricted to the free sites. In deriving this
equation, Mackie and Meares (73) assumed that the obstacles,
that is, lattice sites or polymer fibers in the present study, are
of the same size as the solutes. Although, the polymer fiber size
is expected to be larger (approximately 1-nm radius (65, 27))
than that of the water molecule (radius equal to 0.15 nm), the
model predicted water diffusion coefficients in gels fairly well.
Therefore, the major problems with using the Mackie–Meares
theory are that it fails to account for adsorption effects and that
the validity of the assumption concerning the relative size of
fibers to solute size is questionable.

The experimental data in this study agree well with previ-
ously published results of Gibbs and Johnson (36) and Tokita
et al. (78). Gibbs and Johnson (36) observed that their data for
a wider range of solute sizes fit the Ogston–Morris (18, 39)
model

f 5
Deff

D0
5 expS2S r s 1 r f

r f
D 2

TvD , [42]

where f is the volume fraction available to the solute,rs is
solute radius (1.5 Å for water),rf is the fiber radius, andv is the
specific volume of the polymer. The comparison of the present
study results to the Ogston–Morris (18, 39) model yieldedrf

values equal to 1.5 Å for gels. The equivalent Stokes radius,
which is the sum of therf andrs, is equal to 3.0 Å. This value
of rf is much less than the values previously reported by Ogston

et al. (64), who used the sedimentation data of different size
solutes in polyacrylamide solutions and Eq. [42] to obtain the
fiber radii. They reported the radius of the polyacrylamide fiber
as 9 Å incomparison to 1.5 Å found by fitting Eq. [42] to the
results of the present study. A proposed radius size of 0.15 nm
for the acrylamide fibers is rather small and may not reflect
realistic features of the gel. In contrast to the present study of
water diffusion, the previous research (65, 27) investigated the
transport properties of much larger proteins (1.6–9 nm). It is
therefore useful to consider other factors such as adsorption
that may account for the decrease in the observed diffusion
coefficients in gels. Furthermore, the model of Ogston–Morris
(18, 39) does not provide any explanation for the lack of effect
of crosslinker on the water diffusion in gels.

Contrary to the previously published models, the volume
averaging model proposed in the previous section accounts for
the effects of both adsorption and crosslinker concentration.
Equation [21] demonstrates that when the adsorption coeffi-
cient, P, is increased, the diffusion coefficient will decrease,
provided the ratioP(A/Va) is not much less than 1. Figure 8
shows the effect ofP(A/Va) on the effective diffusivities in
gels. The adsorption coefficientP is related to the water layer
thickness at the surface of the fibers, which is expected to be on
the order of 1 Å. The ratio of the fiber surface area to the total
volume of the fiber and water in thea phase,A/Va, is on the
order of 1 nm21. As a result, the adsorption coefficient,P, can
strongly affect the diffusion coefficients in gels. Furthermore,
Eq. [25] demonstrates that the magnitude of the equilibrium
coefficient for water in the crosslinker phase,Keq, will directly
affect the diffusion coefficients in crosslinked gels. SmallKeq

values (Keq ! 1) will have no effect on the diffusion in gels,

FIG. 8. Effects of the ratioP(A/Va) on the effective diffusivities using the
volume averaging model.
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which may explain the lack of crosslinker effect on the diffu-
sion coefficients in gels.

From the volume averaging method, the diffusion coefficients for
gels without the crosslinker are given by Eq. [21]. The term in large
brackets on the right-hand side of Eq. [21] has been determined by
Ryan (71) and represents the effect of geometrical structure on the
effective diffusion coefficient. Figure 8 shows the effective diffusion
coefficient determined by Eq. [21] as a function of porosity for
several values of the termP(A/Va). As shown in this figure, the effect
of adsorption is to significantly reduce the effective diffusion coeffi-
cient, and this term has the potential to decrease the diffusion coef-
ficient to a much larger degree than the term that accounts for the
effect of geometry. By fitting Eq. [21] to the experimental data for
gels with no crosslinker, the ratioP(A/Va) was found to be 4.73. As
shown in Fig. 9, the model (Eq. [43]) provided an excellent fit to the
data. The value ofP(A/Va) 5 4.73 (error5 0.24%) will later be used
in the analysis of the effective relaxivities.

The volume averaging theory can therefore describe the
effects of a combination of factors, including adsorption and
partitioning into the acrylamide fiber and the bisacrylamide
crosslinker phases, on the diffusion coefficients in the gel.

Spin–Lattice Relaxation

Figure 10 shows a typical normalized magnetization recov-
ery curve from the NMR data and the model given by Eq. [37].
The model provided an excellent fit to the data (corr5 0.99).
The numerical values forkeff

T were obtained using a nonlinear
curve-fitting algorithm. The effective diffusion coefficients,
Deff

T , obtained from the NMR measurements, were substituted
into Eq. [37] and the resulting equation was fit to the magne-
tization recovery experimental data to determine the effective
relaxation coefficients.

The error in estimatingkeff
T was obtained by repeating the

calculations for 2.5% T/5% C gels using experimental data from
two consecutive runs on the same day, and data from a gel which
had identical concentration, but was prepared at a different time.
The resulting effective relaxation times, 1/keff

T 5 Teff, ranged from
3.022 to 3.161 s, with a relative percent error of 2%. The effective
relaxation results were also checked for error due to diffusion.
From the data reproducibility analysis, the diffusion coefficients
for 20% T/5% C gels ranged from 1.36 to 1.461 (1025 cm2/s).
Upon substitution of these values (1.36 to 1.461 (1025 cm2/s))
into the Eq. [37], the resulting effective relaxation time for this
composition gel was unchanged, and found to equal 1.89 s. As a
result, the experimental error in determining the diffusion coeffi-
cients has a negligible effect on theTeff or keff

T values.
Figure 11 shows the relaxation time,T1eff 5 (keff

T )21, as a
function of the acrylamide concentration. The data is shown for
gels with 0, 5, and 10% C concentration. As expected, the
relaxation time, (keff

T )21, decreases as the concentration of the
acrylamide increases. In order to compare the data to the
models, the acrylamide concentration in Fig. 11 must be re-
placed with the volume fraction of water,el. A commonly
accepted value of 1.4 g/ml (79) was used as the density of
acrylamide in a gel, and the volume fraction of water was
calculated fromel 5 1 2 T/1.4.

From the volume averaging method, at 0% crosslinker con-
centration, the effective relaxation rate constant,keff

T , is

keff
T < keff

a 5
P~ A /Va !kf 1 e l ~kl 2 P~ A /Va !kf !

P~ A /Va ! 1 e l ~1 2 P~ A /Va !!
. [22]

Since the ratioP(A/Va) was previously calculated as 4.73 from
the diffusion data, and the bulk (free water) relaxation rate
constant,kl, was measured independently and found equal to
0.253 s21, the fiber surface relaxation rate constant,kf , was

FIG. 10. A typical normalized magnetization recovery curve for poly-
acrylamide gels. Comparison to the spatial averaging model.F, Data (2.5%
T/0% C gel); —, model.

FIG. 9. The volume averaging model fit to the experimental diffusion data
for polyacrylamide gels with no crosslinker.
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determined by fitting Eq. [22] to the experimental data. Figure
12 shows the model (Eq. [22]) with the best fit valuekf 5 0.668
(error5 0.04%), and the experimental data for 0% crosslinked
gels. As shown in Fig. 12, Eq. [22] fits the data very well.

For crosslinked gels, the expression for the effective relax-
ivities from the volume averaging model was

keff
T 5

keff
a ea 1 Keqkbeb

ea 1 Keqeb

5
1

ea 1 Keqeb
FSP~ A /Va !kf 1 e l ~kl 2 P~ A /Va !kf !

P~ A /Va ! 1 e l ~1 2 P~ A /Va !! Dea

1 Keqkbeb G . [26]

The volume fractions,ea andeb, can be expressed in terms
of ef and el, noting that (ea 1 eb) 5 1. Since the relative
amount of the crosslinker (93 1024 to 0.01 by volume
fraction) is small, the fiber volume fraction,ef , can be based
upon the concentration of acrylamide only. It is also assumed
here, based upon the previous analysis of the diffusion data,
that the equilibrium partition coefficient of protons between the
crosslinker and the water phase,Keq, is small (Keq ! 1).
Equation [26] then reduces to

keff
T 5 SP~ A /Va !kf 1 e l ~kl 2 P~ A /Va !kf !

P~ A /Va ! 1 e l ~1 2 P~ A /Va !! D
1 KeqkbS1 2 e l 2 ef

e l 1 ef
D . [44]

Since the valuesP(A/Va), kf , andkl are known, the product
Keqkb can now be obtained by fitting Eq. [44] to the experi-

mental data. From the nonlinear regression analysis, the prod-
uct Keqkb was found to equal 10.3 s21 (error5 2.83%) for 5%
C gels, and 2.98 s21 (error 5 0.91%) for 10% C gels. Figure
13 shows the effective relaxation rate constant,keff

T data, and
the model (Eq. [44]) usingKeqkb values of 10.3 and 2.98 s21

for 5 and 10% gels, respectively, as functions of the inverse
volume fraction, (el 1 ef)

21. The model, Eq. [44], provided an
excellent fit to the data. As also shown in Fig. 13, the NMR

FIG. 11. Effective relaxation coefficient for polyacrylamide gels as a
function of the total polymer concentration.

FIG. 12. The volume averaging model fit to theT1 relaxation data for
polyacrylamide gels with no crosslinker.

FIG. 13. The volume averaging model fit to theT1 relaxation data for
polyacrylamide gels with 5 and 10% crosslinker concentration.
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relaxation data is very sensitive to small changes in the volume
fraction, (el 1 ef). For a small increase in the inverse volume
fraction, (el 1 ef)

21, from 1.00 to 1.02, theKeqkb values more
than tripled as the crosslinker concentration decreased from 5
to 10% C. Since the crosslinker, bisacrylamide, is water insol-
uble in the absence of acrylamide, the relaxation rate constants
for the pure crosslinker phase cannot be determined experi-
mentally. However, the crosslinker relaxation rate constantkb

is expected to be independent of gel composition since it is an
intrinsic property of the Bis phase. This assumption, coupled
with the preceding data, leads to the conclusion that as the
concentration of the crosslinker is increased from 5 to 10% C,
the equilibrium distribution coefficient,Keq, decreases by a
factor greater than 3. This is a clear indication that as the
crosslinker concentration is raised, the Bis phase becomes
increasingly hydrophobic.

DISCUSSION AND CONCLUSIONS

The degree of crosslinking is known to affect the size of
the pores of polymer network, especially at high gel concen-
trations (80, 81). The effects of crosslinker on the structure of
gels were previously investigated using light, small-angle neu-
tron, and small-angle X-ray scattering (3, 5). All of the previ-
ous studies noted distinct structural changes with increasing
crosslinker concentration. Although there is strong evidence
that the structure of gels and particularly the pore size is
affected by the concentration of the crosslinker, the present
study demonstrates that the diffusion coefficients of water in
gels are independent of the amount of crosslinker. The pro-
posed explanation for this observation is that the equilibrium
water partition coefficient between the bisacrylamide cross-
linker phase and the bulk water phase,Keq, is very small.
As demonstrated using the Bloch equations and the volume
averaging method, ifKeq is much less than 1, the crosslinker
has no effect on the diffusion of water in gels. Furthermore,
fitting the present experimental data to previously published
diffusion models that account for fiber and solute size
(18, 73, 39) required unrealistically low values for the acryl-
amide fiber size. Other models from the literature that account
only for geometrical effects on diffusion predicted much higher
diffusion coefficients than observed from the experimental
results of the present study. The Mackie–Meares theory ap-
peared to fit the experimental data adequately; however, this
theory does not account for the crosslinker concentration, and
it also is based on the unrealistic assumption that the acryl-
amide fiber is the same size as the solute. The volume aver-
aging model developed in the present study incorporates the
effects of adsorption to the surface of the uncrosslinked poly-
acrylamide fibers and to the bisacrylamide clusters on diffusion
within one unified approach that also gives detailed expres-
sions for the relaxation rate constants. This model demon-
strates that the ratioPA/Va may significantly lower the diffu-
sion coefficients in gels.

Contrary to the diffusion data,T1 relaxation measurements
showed a detectable effect of crosslinker concentration on the
relaxation of water in gels. The same mathematical model
derived for the diffusion coefficients using the Bloch equations
and the volume averaging method (45, 46) could also be used
to describe the effects of adsorption and gel structure on the
magnetization recovery. The proposed model for the gel me-
dium consisted of a three-phase system including the bulk
water, the uncrosslinked acrylamide fibers, and the crosslinker
phases. This model follows the cluster concept introduced by
Richards and Temple (26). The effects of the crosslinker con-
centration were accounted for by introducing the proton parti-
tion coefficient,Keq, between the crosslinker and bulk water
phases. In addition, the effects of adsorption to the surface of
the fibers were also incorporated in the model. By fitting the
model to the experimental data, the productKeqkb for 5% C
gels was found to be larger than that for 10% C gels. Sincekb

is a constant, it can be concluded that increasing the crosslinker
concentration from 5 to 10% C causes a more than threefold
decrease in the equilibrium coefficientKeq. The resulting re-
duction in the value ofKeq implies that at high concentrations
of crosslinker, water protons are less likely to penetrate the
crosslinker region. This observation is in general agreement
with the cluster concept introduced by Richards and Temple
(26) and previously published experimental data by Cohenet
al. (3). Since the crosslinker is known to be more hydrophobic
than acrylamide, at high concentrations it will form hydropho-
bic clusters. The use of the Bloch equations provided an
accurate description of the proton relaxation in the hydrogels.
The derived relaxation equations were successful in describing
the general trends seen from the experimental data.

The T1 relaxation analysis presented in this study differs
significantly from previously published methods for examining
the structural features of the gels using spin–lattice relaxation.
One previous approach used a diffusion cell model, strictly
valid for media with micrometer-sized pores, to analyze relax-
ation in polyacrylamide gels where the pores are only a few
nanometers in length (11). In this previous study (11), a pore
size distribution on the nanometer length scale was calculated
for the polyacrylamide gel. It is, however, not clear that this
distribution is physically meaningful, since the time scales for
the experimental measurements were too long to adequately
describe features of the gel on the nanometer length scale. The
present study, in contrast, describes how, with the use of the
averaging approach, the structure of polyacrylamide gels can
be analyzed using protonT1 relaxation data in combination
with water self-diffusion measurements.
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