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Abstract
A barrier coverage has been studied wide-

ly because it provides guaranteed detection of 
mobile objects after a barrier is constructed. Also, 
many researchers have investigated the recog-
nition of human emotion by facial expression 
and human gesture or motion with possible high 
accuracy. In particular, thanks to recent remark-
able advancements of technology, it is possible to 
recognize human emotion by wireless signal. In 
this article, we introduce a new emotion-detect-
able framework in advanced smart cities with a 
concept of barrier coverage in IoT-enabled envi-
ronments. The proposed framework allows IoT 
devices to create a virtual emotion barrier, called 
a VEmoBar, which is able to sense human emo-
tion through a wireless signal and its reflection. 
Also, we define a problem whose goal is to form 
a specific number of VEmoBars which returns 
a maximum cumulative accuracy. To solve the 
problem, we propose a novel approach as well 
as a system initialization and then evaluate them 
through extensive simulations with various scenar-
ios. Moreover, we discuss future issues and chal-
lenges toward future promising smart cities based 
on this virtual emotion framework.

Introduction
Emotion is a unique feature of humans because 
emotion can be created only by humans. This 
notable feature allows us to distinguish humans 
from machines. Also, it is a fact that computing 
machines or systems can offer useful services to 
humans by recognizing their emotions with possi-
ble computational models [1].

For the recognition of human emotion, there 
exist several research branches. First, the emotion 
can be derived from audio and visual information 
such as voice, facial expression, gesture or motion 
recognition using cameras [2, 3]. Also, it is possi-
ble that emotion can be measured by physiologi-
cal signals including heart rate, body temperature 
through wearable devices and body sensors [4, 
5]. Recently, researchers developed an import-
ant emotion recognition scheme using wireless 
signals reflected by the human body [6, 7]. So, 
with a reduction of limitation and implementation 
requirements, the technique using wireless signals 
allows the system to infer a person’s emotions 
from a wireless signal and its reflection. In par-
ticular, the approach based on wireless signals 
has clear advantages when compared with other 
approaches [8]. For example, emotion recogni-

tion using wireless signals has a better coverage 
than cameras because wireless signals can pen-
etrate walls or other physical objects. Howev-
er, cameras may have limited angles and need 
additional requirements such as a good luminos-
ity. Moreover, wireless signal based solutions can 
reduce privacy issues since cameras may cause 
unwanted capture including sensitive information 
of people such as a user’s face.

It has been known that the Internet of Things 
(IoT) [9, 10] should be one of the promising 
concepts toward proper emotion-based services. 
Then, it is highly appropriate that we accomplish 
emotion recognition using wireless signals in IoT 
environments for private areas and public areas 
consisting of various IoT devices. After an IoT 
device transmits a wireless signal to a human and 
receives heartbeat and respiration signals through 
its reflection, it is then possible to derive the emo-
tions of the person by their feature extractions 
[6, 7]. Furthermore, if an IoT-enabled system can 
detect specific groups with serious emotions such 
as extreme anger, fury and can also monitor spe-
cific regions with those emergent situations con-
tinuously by IoT devices equipped with wireless 
signals, it follows that the system can give people 
rapid and custom-made services based on the 
detection of emotions. Figure 1 depicts possible 
emotion-based applications by wireless signal. Fig-
ure 1a depicts emotion recognition and derivation 
processes by wireless signal at private areas such 
as private home and smart car. After the emotion 
recognition, it is possible to provide custom-made 
services to the person. Also, Fig. 1b represents 
possible applications of emotion-based services at 
public areas after agreement of people is satisfied 
for installing emotion-detectable IoT device to 
public areas. For example, if the system perceives 
serious emotions such as extreme fury or fear at 
public transportation areas, it is able to give the 
reinforced security service by patrolling the spe-
cific area.

It is anticipated that those emotion-based ser-
vices for citizens will contribute to the realization 
of successful advanced smart cities. In particular, 
when we want to sense the emotions of people, 
a concept of barrier coverage [11] should be a 
good solution for this purpose. If we construct 
a barrier by a set of devices within a given area, 
then any movement or penetration of objects 
between one region and another is guaranteed to 
be sensed by at least one device within the built 
barrier. But, because wireless signals may return 
different emotion accuracy depending on the dis-
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tance between device and object, we should take 
into account this issue critically to pursue highly 
accurate emotion detection by IoT-enabled bar-
riers.

Based on the above observation, we introduce 
a framework for virtual emotion detection toward 
future advanced smart cities. Then, our contribu-
tions can be summarized as follows. We design 
a framework that is able to provide virtual emo-
tion detection by barriers consisting of IoT devic-
es. To the best of our knowledge, this is the first 
approach to introduce the concept of virtual emo-
tion barrier fitting with an IoT environment where 
the detected information not only can be kept as 
manipulatable data in the system but also can be 
transmitted to other devices of entities.

Different from [12], we formally define a prob-
lem, k-MaxCAEmo, whose objective is to form k 
number of virtual emotion barriers in the given 
region such that the cumulative accuracy of those 
barriers is maximized. To solve the problem, we 
then propose the Max-k-Cumulative-Accuracy-Se-
lection approach that returns k number of virtual 
emotion barriers with the maximum cumulative 
accuracy for emotion detection.

Also, the performance of the proposed 
scheme is evaluated through extensive simula-
tions with various scenarios. Furthermore, we dis-
cuss research challenges and future issues that 
can be studied critically based on the proposed 
framework.

A Framework for  
IoT-based Virtual Emotion Detection

In this section, we present the proposed frame-
work for IoT-based virtual emotion detection in 
advanced smart cities. First, we explain assump-
tions and settings that are considered in our sys-
tem. Then, the concept of virtual emotion barrier 
is introduced and the k-MaxCAEmo problem is 
defined.

Assumptions and System Settings
Now we describe the assumptions and settings 
that are considered in the proposed system:
•	 For emotion categorization, the proposed sys-

tem seeks to recognize four emotion types 
including joy, pleasure, sadness, and anger.

•	 Heterogeneous IoT devices with different 
maximum signal ranges are located at the 
square-shaped area.

•	 Each IoT device is able to transmit wireless 
signals to a person within the signal range 
and it also has procedures to derive and 
detect four emotion types through wireless 
signal reflection [6, 7].

•	 Emotion detection accuracy based on wire-
less signals can be different depending on 
the distance between the person and the 
IoT device. Also, the system has pre-defined 
accuracy rate information according to the 
wireless signal range of the device.

•	 The recognized emotion information can be 
stored as data or a kind of multimedia such 
as voice and video in the system and it also 
can be sent to other entities [13]. Also, the 
information can be utilized for numerous 
applications such as Artificial Intelligence 
(AI) services [14].

Virtual Emotion Barrier and its Construction
As one of the promising research branches, emo-
tion recognition has attracted much interest from 
researchers in both academic institutions and 
key industries because detecting possibly correct 
emotions of humans allows systems to achieve 
custom-made services for a specific person or 
group. Also, it is noted that emotion recognition 
by wireless signal [6] has several advantages of 
increased coverage and reduced privacy when 
it is compared with other emotion recognition 
schemes based on audio/video information and 
physiological signals. In particular, if it is possible 
to detect and derive a precise human emotion 
in an IoT environment, it motivates the system to 
carry out useful AI-enabled services to citizens, 
which will be one of the goals in future IoT-based 
smart cities.

We now define the concept of virtual emotion 
which is utilized in the proposed framework.

FIGURE 1. Possible emotion-based applications by wireless signal at private areas 
and public areas: a) an example of emotion detection at private areas;  
b) an example of emotion detection at public areas.

(a)

(b)
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Virtual Emotion: Given that an IoT device is 
equipped with wireless signal, each IoT device is 
able to transmit the wireless signal and to receive 
its reflection so that it can derive the emotions 
of humans through pre-installed processing units 
of heartbeat segmentation, respiration signal 
and feature extraction going through a wireless 
signal’s reflection. Then, the derived emotion is 
defined as a virtual emotion that can be kept as 
manipulatable data as well as be sent to other 
devices in AI-enabled applications.

Also, it has been known that as the distance 
between a person and an IoT device for wireless 
signal increases, the accuracy of emotion recog-
nition decreases [6]. For example, an emotion 
recognition accuracy with distance 10 m between 
the IoT device and the human is higher than the 
accuracy with a distance of 20 m. Hence, the 
accuracy issue should be addressed critically in 
emotion-related applications and our system also 
reflects upon the derivation of the accurate virtual 
emotion.

Based on this observation, we introduce a 
new form of barrier, virtual emotion barrier which 
is called VEmoBar, in order to guarantee the 
detection of emotions within a given area where 
numerous IoT devices are involved. The proposed 
system aims at providing a person or people with 
appropriate AI-enabled services with a highly 
expected matching probability according to the 
detected emotion of the person by IoT devices. 
The proposed barrier concept is defined as fol-
lows.

Virtual Emotion Barrier (VEmoBar): It is 
given that a set of IoT devices are positioned at a 
square-shaped area where IoT devices can sense 
and derive virtual emotions using a wireless signal 
and its reflection. A virtual emotion barrier, called 
VEmoBar, is a barrier that detects the emotion of 
humans who move from one side to another side.

Figure 2 depicts an example of virtual emo-
tion detection. Given area A, a virtual emotion 
barrier can be generated by the connected set 
of heterogeneous IoT devices where each device 
has its own maximum wireless signal range and 

two devices can be connected if the signals by 
two devices meet at each other when their maxi-
mum signal ranges are used. Then, as can be seen 
in Fig. 2, the organized virtual emotion barrier is 
aware of virtual emotion of any person who is 
moving from one side to another (i.e., from top to 
bottom or from bottom to top.)

Problem Definition
In the proposed system, an institutive goal is to 
detect virtual emotions by the constructed VEmo-
Bar of IoT devices with possible high accuracy. 
In [11], the authors concentrated on finding the 
maximum number of barriers because the life-
time of the barrier system can be prolonged by 
applying sleep–wakeup scheduling alternately. 
For example, while one barrier is active, other bar-
riers are in sleep mode to save battery life. After 
that, the mode of the current activated barrier is 
transformed into the sleep mode and then some 
barrier with sleep mode previously is activated. 
Such a sleep–wakeup scheduling is executed 
using a set of alternating barriers. Different from 
[11], we propose the virtual emotion barrier con-
sisting of heterogeneous IoT devices where each 
IoT device has different maximum wireless signal 
ranges. Because wireless signals may cause differ-
ent virtual emotion detection accuracy depend-
ing on the distance between the device and the 
object, we consider the issue and also introduce 
the VEmoBar with a concept of cumulative accu-
racy so that the human emotion is guaranteed to 
be detected by at least k number of IoT devices 
with possible high cumulative accuracy. Now, we 
formally define the k-MaxCAEmo problem that is 
to be solved in the proposed framework.

k-MaxCAEmo: Suppose that a set of n number 
of IoT devices T with a list of different signal rang-
es R are located at the area A. Also, the system 
has pre-determined emotion detection accura-
cy by the wireless signal range and the distance 
between a device and a person. Then, the k-Max-
CAEmo problem is to maximize the cumulative 
accuracy of emotion detection with the construc-
tion of k number of VEmoBar such that the cumu-
lative accuracy is calculated by multiplying every 
estimated accuracy between IoT devices within k 
number of VEmoBar.

That is, the objective function of the k-Max-
CAEmo problem is to maximize the cumulative 
accuracy of VEmoBar, referred to as CA, such that 
k number of VEmoBar consisting of vb1, vb2, …, 
vbk are constructed. After forming k number of 
VEmoBar, each VEmoBar vbm has its detection 
accuracy which is referred as Avb1, Avb2, …, Avbk 
where 1 ≤ m ≤ k. It follows that the final CA = Avb1 
· Avb2 · … · Avbk. Then, the objective function of 
the k-MaxCAEmo problem is to:

Maximize CA		  (1)

Figure 3 shows examples of building k number 
of VEmoBar with possibly high cumulative accura-
cy. Suppose that a set of IoT devices T = {t1, t2, …, 
tn} are positioned within the area A and we have 
a pre-defined accuracy rate information depend-
ing on the distance. In Fig. 3a, there exist three 
VEmoBar: vb1, vb2, vb3. vb1 is composed of t1, 
t2, t3, t4, t5, t6; vb2 includes t7, t8, t9, t10, t11; vb3 
consists of t12, t13, t14, t15, t16, t17. Note that the 

FIGURE 2. An example of emotion detection by the constructed virtual emotion 
barrier.
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accuracy is assigned for every pair of neighbor 
devices. Then, we mark the accuracy between 
two devices ti and tj as ati,tj. For example, in vb1, 
the accuracy value 0.7 is assigned between t1 and 
t2 depending on the wireless signal range and it 
follows that ati,tj = 0.7. If so, vb1’s detection accu-
racy Avb1 can be calculated as at1,t2 · at2,t3 · at3,t4 
· at4,t5 · at5,t6 which returns 0.228 in Fig. 3a. Sim-
ilarly, the detection accuracy of vb2 and vb3 can 
be estimated. So, as can be seen in Fig. 3a, Avb2 
is 0.131 and Avb3 is 0.293, respectively. On the 
other hand, Fig. 3b represents a graph expression 
of vb1, vb2, vb3 from Fig. 3a. From source S to 
destination D, we can make three VEmoBar, vb1, 
vb2, vb3. In order to solve the k-MaxCAEmo prob-
lem with k = 2, we should choose vb1 and vb3 
because vb2’s detection accuracy is low. Hence, 
for the k-MaxCAEmo problem, we can calculate 
the cumulative accuracy CA = Avb1 · Avb3 which 
returns 0.066 in Fig. 3b. In summary, the cumu-
lative accuracy CA is maximized such that k num-
ber of VEmoBar is formed to guarantee that the 
emotion of a person moving from one region to 
another is detected by at least k devices with pos-
sible high accuracy.

Proposed Approach
In this section, we address the proposed approach 
to solve the k-MaxCAEmo problem. In our sys-
tem, the Max-k-Cumulative-Accuracy-Selection 
approach is implemented after the Initialization 
procedure.

Initialization
To construct k number of VEmoBar using IoT 
devices equipped with wireless signals, we first 
perform Initialization that returns the initial IoT 
graph GT = (V(GT), E(GT)) including the determined 
accuracy among IoT devices. Then, the steps of 
Initialization are described as follows:
•	 Verify a square-shaped IoT area A and a set 

of IoT devices T = {t1, t2, …, tn} including a 
list of their different maximum signal ranges 
R = {rt1, rt2, …, rtn}.

•	 Generate virtual source S and destination D 
which can be considered as two opposite 
sides depending on the detection direction.

•	 Using R, each IoT device checks neighbor 
devices. For example, two devices ti and tj 
become a neighbor relation at each other 
and can be connected with each other if the 
Euclidean distance Euc(ti, tj) between two 
devices is less than equal to the sum of their 
maximum signal ranges rti + rtj.

•	 Using the pre-defined accuracy reference Y 
depending on wireless signal ranges, each 
device ti has a node accuracy value ati. Then, 
the edge accuracy value ati,tj is assigned if ti 
and tj have neighbor relation where ati,tj is 
decided as the minimum value of ati and atj 
so that ati,tj = min(ati,tj).

•	 Then, the initial IoT graph GT = (V(GT), E(GT)) 
is created. It follows that the set of IoT devic-
es including S and D is matched as the set of 
vertices V(GT). S and D are added to V(GT). 
Also, every neighbor relation e(ti, tj) with 
accuracy value is transformed into E(GT).
The pseudocode of Initialization is described in 

Algorithm 1 in more detail.

Max-k-Cumulative-Accuracy-Selection Approach
After initialization procedure, the system has the 
initial IoT graph GT = (V(GT), E(GT)). Based on the 
graph, we propose the Max-k-Cumulative-Accura-
cy-Selection approach that generates k number of 
VEmoBar with maximum cumulative accuracy so 
as to solve the k-MaxCAEmo problem. Then, the 
Max-k-Cumulative-Accuracy-Selection approach is 
performed by the below steps:
•	 Create the set of VEmoBar as B and set B as 

empty initially.
•	 Generate status graph GT’ = (V(GT’), E(GT’)) 

which is derived from GT = (V(GT), E(GT)). It 
follows that GT is converted into GT’ on con-
dition that every vertex i  V(GT’) divides into 
two vertices iin and iout and we consider a 
directional edge iin → iout. Also, if nodes i 
and j have an edge in GT, a directional edge 
is expressed as jout → iin in GT’ for each 
incoming edge from j to i in GT. Similarly, for 
each outgoing edge from i to j in GT, GT’ has 
a directional edge iout → jin.

•	 For GT’ = (V(GT’), E(GT’)), we apply the 
Edmonds-Karp algorithm [15] to discover the 

FIGURE 3. An example of virtual emotion barrier construction with a consideration of cumulative accuracy when k = 2: a) an example of 
virtual emotion barrier construction with cumulative accuracy; b) an example of a graph expression with k = 2.

(a) (b)
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maximum number of independent paths (or 
node-disjoint paths). Then, the found m num-
ber of independent paths become a poten-
tial set of candidates where P = {P1, P2, …, 
Pm}. If the set size of P is less than k, return 
false. Otherwise, continue the below steps.

•	 For each candidate Pc where Pc  P, verify its 
constructing devices and their edge accura-
cy values from GT. Then, estimate the cumu-
lative accuracy values APc of each candidate 
in P.

•	 From P, choose k number of candidates with 
the highest cumulative accuracy.

•	 Add the selected candidates to B. So, B = 
{B1, B2, …, Bk}.

•	 For updated barriers, calculate CA = AB1  
AB2  …  ABk and the CA is returned as the 
ultimate output.
Also, the pseudocode of the Max-k-Cumula-

tive-Accuracy-Selection approach is represented in 
Algorithm 2 in more detail.

Experimental Evaluation
In this section, we evaluate the performance of 
the proposed schemes. Our simulations cover 
various square-shaped regions such as width 500 
 height 200, 500  300, 500  400, 500  500, 
500  600, 500  700, 500  800, 500  900, 
500  1000, respectively. Also, the number of 
IoT devices ranges from 50 to 200 and those 
IoT devices are deployed randomly within the 
square-shaped area. Also, we consider heteroge-
neous IoT devices so that each IoT device has 
different maximum wireless signal ranges. In the 
experiments, the maximum wireless signal range 
of devices ranges from 55 to 80. It follows that 
each device has different wireless signal ranges 
whose maximum bound is from 55 to 80 when 
the system assigns the signal range to each device 
randomly. By Algorithm 2, our simulation returns 
CA as the successful final result or returns false if 
the set size of P is less than k. It is noted that each 
experiment in the utilized result graph represents 
the average value of CA for 100 successful cases 
with different graph sets. Based on those settings, 
we first performed the Initialization procedure 
and then Max-k-Cumulative-Accuracy-Selection is 
implemented using GT which is the result of Ini-
tialization. Also, when k number of VEmoBar are 
generated within the given square-shaped area, 
we applied various k values as k = 1, 2, 3, respec-
tively.

Largely, our experiments are classified with 
two scenarios. In the first scenario of simulations, 
we consider a different number of devices and 
various signal ranges of devices in the area with 
width 500   height 500. Figure 4a shows the 
result when the number of devices is 50; Fig. 4b 
describes the result when the number of devic-
es is 100; Fig. 4c shows the performance of the 
proposed scheme when the number of devices 
is 150; 200 devices are utilized in Fig. 4d. As can 
be seen in Fig. 4, the value of cumulative accura-
cy CA decreases as the maximum signal range of 
devices increases. In particular, when the system 
has the bigger value of k, the proposed approach 
returns the smaller values of CA as a whole. For 
instance, we are able to check that the case of k = 2 
returns the smaller value of CA than the case of 
k = 1 and the case of k = 3 also has the smaller 
CA than the cases of k = 1 and k = 2.

For the second group of experiments, we also 
deliberate on different sizes of square-shaped 
areas and the number of devices is 100 and the 
wireless signal ranges of devices are ranging from 
55 to 80. Figures 5a and 5b show the results for 
the areas with width 500  height 200 and 500 
 300; Figs. 5c and 5d describe the results for 
the regions with 500  400 and 500  600; Fig. 
5g depicts the result using the area with 500  
700; Fig. 5f depicts the result using 500  800 
as the area. Furthermore, Fig. 5g shows the result 
of CA within 500  900; Fig. 5h represents the 
result for the area of 500  1000. Similar to the 
results in the first group of experiments, through 
the second group of simulations, it is confirmed 
that as the maximum signal range of devices is 
increasing, the value of cumulative accuracy CA is 
decreasing. On the other hand, if the system uses 
the bigger value of k, the Max-k-Cumulative-Ac-
curacy-Selection algorithm still gets the smaller 

ALGORITHM 2. Max-k-Cumulative-Accuracy-Selection.

Inputs: GT, k, Output: CA or false. 
1:	 set CA = 0;
2:	 set B = Ø;
3:	 set P = Ø;
4:	 set GT’ = Ø;
5:	 convert GT into GT’ such that every vertex i has two vertices 
	 iin and iout and there exist directional edges iin → iout,  
	 jout → iin, iout → jin where i, j  V(GT’), i ≠ j;
6:	 while GT’ ≠ Ø do
7:		  search for the independence path in GT’ from S to D;
8:		  if an independence path Pc is found then
9:			   calculate APc

;
10:			   add Pc to the candidate set P;
11:		  else
12:			   break;
13:		  end if
14:	 end while
15:	 if |P| < k then
16:		  return false;
17:	 else
18:		  select k candidates with the highest cumulative accuracy;
19:		  add those k candidates to B. Then, B = {B1, B2, …, Bk};
20:		 calculate CA = AB1

  AB2
  …  ABk

;
21:		  return CA;
22:	end if

ALGORITHM 1. Initialization.

Inputs: A, T, R, n, Y, Output: GT = (V(GT), E(GT))
1:	 set GT = (V(GT), E(GT)) = Ø;
2:	 verify target area A and its detection direction;
3:	 create source S and destination D;
4:	 add S and D to V(GT);
5:	 for i = 1 to n do
6:		  set V(GT) ← V(GT) ∪ ti;
7:	 end for
8:	 for i = 0 to n – 1 do
9:		  for j = i + 1 to n do
10:			   if Euc(i, j) ≤ rti

 + rtj
 then

11:				    set E(GT) ← E(GT) ∪ e(ti, tj) with the edge  
				    accuracy ati,tj

 from Y where ati,tj
 = min(ati

, atj
);

12:			   end if
13:		  end for
14:	 end for
15:	 return GT = (V(GT), E(GT))
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results for CA within the second group of results. 
For example, we could verify that the case of k 
= 3 returns the smaller results of CA than other 
cases k = 1 and k = 2, respectively.

Research Challenges and Future Works
In this section, we discuss research challenges and 
future issues based on the proposed infrastruc-
ture.

Variation for Detectable Types of Emotion
The proposed system assumed that IoT devices 
are able to detect four emotion types including 
joy, pleasure, sadness, and anger. Depending on 
the requirement and the objective of the pursuing 
system, it is appropriate to develop a light system 
that is capable of detecting a specific emotion 
type only. For example, each IoT in the light sys-
tem only focuses on detection of only one emo-
tion type and we can design the system whose 
goal is to derive only one or a few types of emo-
tions to seek the lightness of the system instead of 
deriving all emotion types. In addition, finding the 
optimal number of devices and their strategic for-
mations maintaining the same number of VEmo-
Bar in the given area can be one of the issues to 
aim at system efficiency with a maximum life.

Construction of Virtual Emotion Barrier with 

Guaranteed Delay Bound
Let us remember that by generating k number 
of VEmoBar in the proposed framework, the 
emotions of a moving person in the area can be 
detected by at least k devices in the constructed 
VEmoBar with possible high cumulative accuracy. 
However, depending on the formed shapes of 
k number of VEmoBar, there may be a relatively 
long delay between two VEmoBar to recognize 
the emotion of a mobile person passing through 
the area if the distance between two devices is 
far such that two devices are covered by differ-
ent VEmoBar. Therefore, this can be one of the 
research challenges. We plan to devise a model 
that is capable of providing the guaranteed delay 
bound among every VEmoBar in the given area.

Expanded Supportable Areas with  
Various Shapes and Obstacles

The proposed infrastructure requires the construc-
tion of VEmoBar within only square-shaped areas. 
To fulfill various mission objectives and require-
ments, it is highly reasonable to build k number 
of VEmoBar which is workable for various types 
of regions including convex polygon, convex hull, 
and so on. Hence, it is necessary to develop novel 
methods to be able to create VEmoBar correctly 
for various shapes of areas. In partucluar, those 

FIGURE 4. Comparison for cumulative accuracy CA by different k with various number of devices in the area 500  500: a) n = 50 in 500 
 500 area; b) n = 100 in 500  500 area; c) n = 150 in 500  500 area; n = 200 in 500  500 area.
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FIGURE 5. Comparison for cumulative accuracy CA by different k with n = 100 in various area sizes: a) n = 100 in 500  200 area; b) n 
= 100 in 500  300 area; c) n = 100 in 500  400 area; d) n = 100 in 500  600 area; e) n = 100 in 500  700 area; f) n = 100 in 
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areas may include several obstacles with a view of 
a practical scenario. Then, when we have multiple 
obstacles in the given areas, a successful construc-
tion of VEmoBar with high accuracy and a devel-
opment of solid strategies can be another branch 
of future research challenges.

Concluding Remarks
Providing services based on human emotion by 
IoT devices should be indispensable toward a suc-
cessful realization of future advanced smart cities. 
To secure a bridgehead for those emotion-based 
services in IoT and AI-enabled smart cities, we 
designed a framework that is capable of detecting 
virtual emotion by VEmoBar that is composed of 
heterogeneous IoT devices. To the best of our 
knowledge, this is the first work to introduce the 
concept of virtual emotion barrier fitting with IoT 
environments where the detected information 
can be kept as manipulatable data in the pro-
posed infrastructure as well as be transmitted to 
other entities. Also, we defined the k-MaxCAEmo 
problem whose objective is to create k number 
of VEmoBar such that the cumulative accuracy of 
those barriers is maximized. To solve the problem, 
we proposed the Max-k-Cumulative-Accuracy-Se-
lection approach based on the Initialization proce-
dure. Then, we analyzed the performance of the 
proposed scheme through extensive simulations 
with various settings and scenarios. Moreover, we 
discussed possible research challenges and pre-
sented our future plans to deal with those critical 
issues.
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