
Bilevel Programming

Applied to the

Flow Shop Scheduling Problem

John K. Karlof
Mathematical Sciences Department

The University of North Carolina at Wilmington

and

Wei Wang
Cascade Fibers Company
Sanford, North Carolina

SCOPE AND PURPOSE

Bilevel programming is a model for two independent levels of hierarchical

decision making. Each decision maker attempts to optimize its own objective

function and is affected by the actions of the other planner. There is a top

planner and a bottom planer. The lower planner makes its decisions after,

and in view of, the decisions of the top planner. The standard flow-shop

scheduling problem is to schedule n jobs on m machines where each job

is processed on each machine and each job follows the same ordering of

machines. The objective function is usually to minimize the makespan (the

total time from when the first job begins to when the last job finishes) or the

total flowtime (the sum of the times it takes each job to be processed through

the sequence of machines). We alter the flow-shop scheduling problem by

adding operators and imposing a hierarchy of two decision makers. The top

planner (the shop owner) assigns the operators to the machines in order to

minimize her objective, the total flowtime, while the lower planner (the

customer) decides on the jobs’ schedule in order to minimize his objective,

the makespan. We model the problem as a bilevel programming problem and

develop a two level branch and bound algorithm for its solution.

ii

ABSTRACT

A two level branch and bound algorithm is developed to solve an altered

form of the standard flow-shop scheduling problem modeled as a bilevel pro-

gramming problem. The flow-shop scheduling problem considered here differs

from the standard problem in that operators are assigned to the machines

and each operator has a different time table for the jobs on each machine.

The shop owner is considered the top planner and assigns the operators to

the machines in order to minimize the total flowtime while the customer is

the bottom planner and decides on a job schedule in order to minimize the

makespan.

iii

1. INTRODUCTION

The standard mathematical programming problem involves finding an

optimal solution for just one decision maker. But many planning problems

contain an hierarchical decision structure, each with independent, and often

conflicting objectives. These types of problems can be modeled using a mul-

tilevel programming approach. Bilevel programming is the simpliest class of

multilevel programming problems in which there are two independent deci-

sion makers. Recently, several different algorithms have been proposed to

solve the bilevel linear programming problem [1, 2]. Many of them are varia-

tions of the simplex method, although difficulties arise because the problem

is not convex.

The standard flow-shop scheduling problem is to schedule n jobs on m

machines where each job is processed on each machine and each job follows

the same ordering of machines. The objective function is usually to minimize

the makespan, the total flowtime, or some combination of these.

The goal of this paper is to apply the bilevel progamming idea to the

standard flow-shop scheduling problem except that we alter the problem by

adding operators and imposing a hierarchy of two decision makers. Suppose

we have m machine operators in the shop and each of them has his own

time table for different jobs on each machine. We assume the shop owner

assigns the operators to the machines in order to minimize her objective, the

total flowtime. After knowing the operator time schedule which is posted by

the shop owner, the customer, who has the n jobs to be processed, decides

the jobs’ ordering to minimize his objective, the makespan. We develop a

two level branch and bound algorithm to solve this bilevel mathematical

programming problem.

1

Section 2 contains an introduction to bilevel programming. Section 3

contains a description of the standard flow shop scheduling problem, our

altered version and the bilevel programming model. In section 4, we develop

a branch and bound algorithm to solve the new version and section 5 contains

computational results.

2

2. BILEVEL PROGRAMMING

Bilevel programming problems are characterized by two levels of hierar-

chical decision making. The top planner makes its decision in full view of the

bottom planner. Each planner attempts to optimize its objective function

and is affected by the actions of the other planner. The properties of bilevel

programming problems are summarized as follows: [2]

1. The system has interacting decision making units within a hierarchical

structure.

2. The lower unit executes its policies after, and in view of, the decisions

of the higher unit.

3. Each level maximizes net benefits independently, no compromise is pos-

sible.

4. The effect of the upper decision maker on the lower problem is reflected

in both its objective function and set of feasible decisions.

Let x1 be a vector variable indicating the higher decision level’s choice

and x2 be a vector variable indicating the lower decision level’s choice. Let

S be the set of feasible choices {(x1, x2)}. For any fixed choice of x1, level

two will choose a value of x2 that optimizes the level two objective function

f2(x1, x2). Hence, for each feasible value of x1, level two will react with a

corresponding value of x2. This results in a functional relationship between

the decisions of level one and the reactions of level two, say x2 = Ψ(x1).

So the bilevel programming problem may be formulated as:

maxx1 f1(x1, x2) where x2 solves

maxx2 f2(x1, x2) st: (x1, x2) ∈ S

3

Then S1 = {(x1, x
∗
2)|f2(x1, x

∗
2) = maxx2 f2(x1, x2)} is the level one feasible

region and S is the level two feasible region.

4

3. THE FLOW SHOP SCHEDULING PROBLEM

The standard flow shop problem is one of scheduling n jobs in a shop

containing m machines, where each job contains m operations and every

job follows the same ordering of machines as it is processed. A variety of

performance measures for evaluating the quality of a derived sequence of

jobs have been developed such as miminizing job idleness, minimizing the

number of machine idle periods, and minimizing makespan, or total flow

time [3, 4, 5, 6, 7]. In this paper, we consider makespan and flowtime. The

makespan is the time from when the first job begins on the first machine

until when the last job finishes on the last machine. The flowtime of each

job is the time from when the first job begins on the first machine until the

time when that job finishes on the last machine. The total flowtime is the

sum of the flowtimes of the jobs.

We consider the following variation of the standard problem. Suppose

there are m operators in the shop and each of them has his own time table

for different jobs on each machine. We assume the shop owner has to pay the

operators based on the total flowtime of the jobs, but the customer’s charges

are based on the makespan of the jobs. Thus the objective of the shop owner

is to minimize the total flowtime while the objective of the customer is to

minimize makespan. After seeing the posted operator time schedule, the

customer has to decide the jobs’ ordering. Thus, for each arrangement of

the m! operators’ schedules, the customer has n! ways to arrange the jobs’

order. This situation is an hierarchical decision process. The top planner is

the shop owner and the customer, reacting to the shop owner’s decision, is

the bottom planner. The problem is formulated as a bilevel programming

problem:

5

Define:

mki,j = makespan associated with operator’s schedule i and job schedule

j.

fli,j=flowtime associated with operator’s schedule i and job schedule j.

ki =

 1, if operator schedule i is chosen.

0, otherwise.
rj =

 1, if job schedule j is chosen.

0, otherwise.

Minimize :
∑
i,j

flij · rj · ki

where rj solves

Minimize :
∑
i,j

mkij · rj · ki

subject to
n!∑

j=1

rj = 1

m!∑
i=1

ki = 1

ki ∈ {0, 1}, i = 1, . . . ,m!

rj ∈ {0, 1}, j = 1, . . . , n!

To understand this procedure better, we present a simple example which

contains only three machines with three operators, and three jobs to be

processed. In the following table, each row contains the optimal makespan

and corresponding flowtime for the job orderings heading the column and

for the operator schedule heading the row. The six feasible solutions for the

shopowner are underlined, and the final optimal solution is boxed— cba with

job order 213.

6

123 132 213 231 312 321

mk fl mk fl mk fl mk fl mk fl mk fl

abc 49 84 49 89 51 83 51 86 46 81 48 86

acb 48 83 50 91 51 86 53 89 47 83 49 86

bac 46 93 50 100 47 79 52 101 49 97 49 97

bca 47 82 47 88 50 82 48 82 44 82 47 90

cab 45 76 47 89 48 83 47 82 43 82 46 91

cba 45 81 49 89 44 80 49 88 47 85 46 86

7

4. THE BILEVEL PROGRAMMING ALGORITHM

4.1 Definitions

Suppose an operators’ schedule and a corresponding jobs’ schedule have

been assigned. Let tij be the processing time of the job in the ith position

on the jth machine for this particular schedule. If a job in the ith position

finishes operation on the jth machine, and the (j + 1)th machine is still busy,

then this job has to wait on the jth machine until the time when the (j +1)th

machine is free.

jth machine

(j + 1)th machine

tij yij

ti−1,j+1

a a a a a a a a a

This time interval, denoted yij, is called job idle time. yij is the idle time

for the job in the ith position between the end of the operation on the jth

machine and its start on the (j + 1)th machine. Because there is no job idle

time on the last machine, yim=0, for 1 ≤ i ≤ n.

If the job in the ith position finishes operation on the jth machine and

goes to the next machine or off the processing line if j = m, but the job

which is in the (i + 1)th position is still busy on the (j − 1)th machine, then

we have machine idle time.

(j − 1)th machine

jth machine

ti+1,j−1

xi+1,jtij q q q q q q q q q

The jth machine is idle until the job which is in the (i + 1)th position

8

Figure 4.1: Processing Schedules for Four Machines and Six Jobs

M1 :

M2 :

M3 :

M4 :

q q q q q q q qt11 t21 t31 t41 t51 t61y51 y61

a a a a q q q a a a a a a a a a q q q qx12�-t12 t22 t32 t42 t52 t62x22 y22 x32 x42 y52

q q q a a a q q q q a a a a a a q q q qx13� - t13 t23 t33 t43 t53 t63y23 x33 y33 x43 y63

a a a a a a a a a a a a a a ax14� - t14 t24 t34 t44 t54 t64x44 x54

ppp ppp ppp ppp ppp ppp
ppp ppp ppp ppp ppp ppp

ppp ppp ppp ppp ppp ppp

finishes operation on the (j − 1)th machine. This time interval, denoted by

xi+1,j, is called machine idle time. xi+1,j is the idle time on the jth machine

between the end of the job in the ith position on the jth machine and the

start of the job in (i + 1)th position on the jth machine. Because there is

no machine idle time on the first machine, xi1=0, for 1 ≤ i ≤ n. We now

present a diagram of the processing schedule for four machines and six jobs

in order to illustrate xij and yij.

The makespan, denoted by mk, is the time from when the first job begins

on the first machine until when the last job finishes on the last machine.

From figure 4.1, we can see that:

mk =
n∑

i=1

(xim + tim) =
n∑

i=1

xim +
n∑

i=1

tim

We note that, independent of the jobs’ ordering,
∑n

i=1 tim is fixed. So mini-

mizing the makespan is equivalent to minimizing
∑n

i=1 xim. The flowtime of

9

each job is the time from when the first job begins on the first machine until

the time when that job finishes on the last machine. Then the total flowtime,

denoted fl, is the sum of the flowtimes of each job. From figure 4.1, we can

see that:

• the flowtime of the job in the first position is

fl1 = x1m + t1m;

• the flowtime of the job in the second position is

fl2 = x1m + t1m + x2m + t2m;
...

• the flowtime of the job in the nth position is

fln = x1m + t1m + x2m + t2m + . . . + xnm + tnm;

Therefore

fl = fl1 + fl2 + . . . + fln

= n(x1m + t1m) + (n− 1)(x2m + t2m) + . . . + xnm + tnm

=
∑n

i=1(n + 1− i)(xim + tim)

4.2 Algorithm 1: Calculating xij and yij

We incorporate the following observations in algorithm 1.

1. There is no machine idle time on the first machine.

xi1 = 0 for 1 ≤ i ≤ n

2. There is no job idle time on the mth machine.

yim = 0 for 1 ≤ i ≤ n

10

3. There is no job idle time for the job in the first position.

y1j = 0 for 1 ≤ j ≤ m

4. x1j =
∑j−1

i=1 t1i for 2 ≤ j ≤ m

5. If tij + yij ≥ xi+1,j−1 + ti+1,j−1 then

yi+1,j−1 = (tij + yij) − (xi+1,j−1 + ti+1,j−1).

(j − 1)th machine

jth machine

xi+1,j−1 ti+1,j−1 yi+1,j−1

ti,j yi,j

a a a a a a a a aa a a a a a a a a a a a a aq q q q q q q q

6. If tij + yij < xi+1,j−1 + ti+1,j−1 then

xi+1,j = (xi+1,j−1 + ti+1,j−1) − (tij + yij).

(j − 1)th machine

jth machine

xi+1,j−1 ti+1,j−1

ti,j yi,j xi+1,j

q q q q q q q q a a a a a a a a a a a a a q q q q q q q q

Algorithm 1:

Step 1: xij = 0, yij = 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ m

Step 2: x1j =
∑j−1

k=1 t1k for 2 ≤ j ≤ m.

Step 3: Set i = 1, j = 1.

Step 4: If ti,j+1 + yi,j+1 − ti+1,j − xi+1,j ≥ 0, then

yi+1,j = ti,j+1 + yi,j+1 − ti+1,j − xi+1,j ;

otherwise

xi+1,j+1 = ti+1,j + xi+1,j − ti,j+1 − yi,j+1.

11

Step 5: If j < m, set j = j + 1 and go to step 4.

Step 6: If i < n, set i = i + 1, j = 1 and go to step 4.

Step 7: Stop

4.3 Algorithm 2: Minimizing Makespan

For a given operators’ schedule and n jobs to process there are n! ways

to arrange these jobs. Our purpose is to find an ordering that will result in

the smallest makespan given the operators’ schedule. We propose a branch

and bound algorithm.

As we have already shown, the makespan,

mk =
n∑

i=1

(tim + xim).

Suppose the current best solution for this operators’ schedule is mkc and we

are in the midst of forming a tree whose branches correspond to job orderings.

From the last line of figure 4.1, it is evident that if the jth job is in the first

position and

x1m +
n∑

i=1

tim > mkc,

then any makespan with the jth job in the first position will be larger than

mkc regardless of how we arrange the rest of the jobs. Therefore we do not

need to explore this branch any further. Otherwise, if

x1m +
n∑

i=1

tim ≤ mkc

then the next step for this branch is to compare x1m + x2m +
∑n

i=1 tim with

mkc. If

x1m + x2m +
m∑

i=1

tim > mkc

12

then again it is impossible to find a makespan which is smaller than mkc on

this branch. Then we would choose the next job to be processed in the second

position. The worst situation is that all the jobs in the different positions

need to be explored. Every time when we record a current best solution for

the makespan we record the corresponding flowtime as well. This is because

the two of them make a feasible solution.

The algorithm is shown below, note that we consider the operators’ sched-

ule as fixed. We use k to represent a particular job sequence and then

k = k + 1 represents the next sequence. We use mkk and flk to denote the

makespan and the flowtime respectively for the current job sequence, mkc

and flc represent the current best makespan and flowtime respectively within

this fixed operators’ schedule, and we record the current best job ordering in

K.

Algorithm 2:

Initialization: Set k equal to the first job sequence. Calculate

all xij and yij using algorithm 1 and calculate mkk and flk.

Set mkc = mkk, flc = flk, K = k, and k = k + 1.

Step 1: If k exceeds the last sequence, STOP.

Step 2: Do i = 1, n

Apply the recursive procedure in Algorithm 1 to find xim.

Set mki =
∑i

p=1 xpm +
∑m

p=1 tpm

If mki > mkc then k = k+ 1 (ie. prune off this branch) and

goto step 1.

End do;

mkk = mkn.

13

Step 3: Find flk;

If mkk < mkc then

mkc = mkk, f lc = flk,

K = k; k = k + 1; goto step 1.

If mkk = mkc and flk < flc then

mkc = mkk, flc = flk,

K = k; k = k + 1; goto step 1.

4.4 Algorithm 3: Solution to the Bilevel Programming Problem

The set of feasible solutions for the upper level decision maker is a set of

ordered pairs, one for each schedule of operators and each consisting of the

best makespan for that operators’ schedule together with the corresponding

flowtime. We denote the current best ordered pair as (mk, fl). The final

optimal solution is the ordered pair with the smallest flowtime.

During the following branch and bound procedure, we record the current

smallest flowtime, fl, from the current partial set of feasible solutions. If

in the current branch representing an operators’ schedule, we can not find

a flowtime flk smaller than fl, then no matter how small the makespan is

on this branch, the optimal solution will not exist on this branch. Also,

even if we find a flowtime on a branch smaller than fl, it is not certain that

this flowtime will replace fl. This is because the smaller flowtime has to

correspond to the smallest makespan on the branch; otherwise it is not a

feasible solution for the upper level decision maker.

Recall fl =
∑n

i=1(n + 1− i) · (xim + tim). Suppose jobs have been sched-

14

uled in positions 1, 2, . . . , j. We define s(j, i) to be the ith smallest of the

remaining job processing times on the mth machine and

f̃ lj =
j∑

i=1

(n + 1− i)(xim + tim) +
n∑

i=j+1

(n + 1− i)s(j, i− j).

If f̃ lj > flc, then regardless of how we schedule the remaining jobs we

will not find a flowtime that is smaller than flc on this branch. Now if

f̃ ln < fl, then we found a flowtime smaller than our previous best feasible

solution, but this flowtime may not correspond to the smallest makespan for

this branch. So we need to begin at the beginning of the branch with the

branch and bound method for makespan. Therefore, from this point, every

time we start the branch and bound method for makespan, we are certain

that there is a smaller flowtime on this branch. However, it is not guaranteed

to be a feasible solution.

The branch and bound algorithm to solve the flowshop bilevel program-

ming problem is given below. The notation l = l +1 means go to the next

sequence of operators’ schedules. We record the current best operators sched-

ule in L.

Algorithm 3:

Initialization: Set l = the first operators schedule. Find the

best makespan for this operators schedule using algorithm

2 and calculate the corresponding flowtime. Set (mk, fl) =

(mkc, f lc).

Step 1: Set l = l + 1 and k = the first job sequence.

Step 2: Do j = 1, n

Apply the recursive procedure in Algorithm 1 to find xjm.

15

Suppose k = the sequence {k1, k2, . . . , kn}.
If f̃ lj > fl then

prune off all branches beginning with {k1, k2, . . . , kj}
and set k = to the next job sequence. If k exceeds

the last sequence goto Step 1; otherwise repeat Step

2.

end if

end do

Step 3: If ˜fln < fl then apply algorithm 2 to this operators

schedule.

4.5 Example

We now present a simple example with three machines (and three oper-

ators) and four jobs. The time table of the three operators is as follows:

job 1 job 2 job 3 job 4

operator 1 machine 1 1 6 7 2

machine 2 5 1 8 6

machine 3 9 10 6 5

operator 2 machine 1 9 8 10 7

machine 2 3 9 4 7

machine 3 1 3 6 9

operator 3 machine 1 5 8 5 8

machine 2 6 8 6 2

machine 3 5 6 8 2

16

Note: Comments are written in parentheses.

Algorithm 3:

Initialization: l = 123 (The first operator schedule.)

Algorithm 2:

Initialization: k=1234 (The first job schedule.) Calculate xij and

yij using algorithm 2. (The results are summarized in figure 4.2)

Then

mkk =
4∑

i=1

(ti3 + xi3) = 32

and

flk =
4∑

i=1

(4 + 1 − i) · (xi3 + ti3) = 93.

Set mkc = 32 and flc = 93, K=1234 and k=1243.

Step 1: k does not exceed the last sequence.

Step 2: Consider mki =
∑i

p=1 xp3 +
∑3

p=1 tp3. Apply algorithm 1 to

find x13 = 4, then mk1 = 25,x23 = 7, then mk2 = 32, x33 = 1, then

mk3 = 33 > mkc. This branch is pruned off. Step 2 is repeated

for job schedules k = 1324, 1342, 1432. (They are all pruned off

except for k=1432 since mk1432 = 32.)

Step 3: fl1432 = 77. So mkc = 32, f lc = 77, K=1432, and k=1423

Step 2: Step 2 is repeated for the remaining job sequences. (None of

them are better than 1432. Algorithm 2 ends and we go to step 1

of algorithm 3.)

Set (mk, fl) = (mkc, f lc) = (32, 77).

Step 1: Set l = 132, k=1234.

17

Figure 4.2: Gnatt chart

18

Step 2: Begin the recursive procedure in algorithm 1 and find x13 = 7

f̃ l1 = 4(x13 + t13) +
4∑

i=2

(4 + 1 − i)s(1, i− 1)

= 4 · 8 + 3 · 3 + 2 · 6 + 1 · 9

= 63

< fl

Continue algorithm 1 and find x23 = 7

f̃ l2 =
2∑

i=1

(4 + 1 − i)(xi3 + ti3) +
4∑

i=3

(4 + 1 − i)s(2, i− 2)

= 83

> fl

Therefore, prune all job branches that begin with job sequence 12. Set

k= 1324 and repeat step 2. The values of x13 and f̃ l1 are the same as

above, but x23 = 6 and f̃ l2 = 83. So prune off all branches beginning

with the job sequence 13. Step 2 is repeated for job sequences 1432 and

1423 and these are pruned off as well. (Steps 1 and 2 (and if necessary

3) are repeated for the rest of the operator sequences. The current best

solution turns out to be optimal.)

19

5. COMPUTATIONAL RESULTS

In this section, we present the results of computational experiments in

which the algorithms in section 4 were used to solve several problems. The

computations were done on a SUN Spark 10 and the code was written in C.

The operator time tables were generated randomly choosing integers between

one and ten. Thus the data for a problem with 5 machines and 8 jobs is

five(one for each operator) 5 by 8 matrices in which the entries are integers

between 1 and 10 chosen randomly. Representative ouput from the program

is contained in the following table. The problem solved had 8 jobs and 5

machines. Each row of the table represents a current best solution. For this

problem there are 5! · 8! = 4, 838, 400 possible branches in the tree. The

algorithm only needed to calculate 230, 558 of them, roughly 5%. The total

CPU time needed was 2 minutes and 44 seconds.

Makespan Flowtime Operator Assignment Job Order

69 399 12345 54682731

70 384 12543 54832716

58 325 13245 53268741

59 322 15243 52743861

The next table contains total number of branches(TNB), number of branches

calculated by the algorithm(BCA), the percent of the total branches that the

algorithm calulated(PER), and CPU time for various sized test problems.

20

Number of Number CPU

Machines of Jobs TNB BCA PER (hours:min:sec)

5 5 14,400 2,652 18% 0:0:.4

5 7 604,800 19,827 3.3% 0:0:17

5 8 4,838,400 230,588 4.7% 0:2:44

7 7 25,401,600 135,466 .5% 0:9:42

5 10 435,456,000 10,265,783 2% 5:25:50

8 8 1,625,702,400 3,004,329 .18% 12:28:46

The largest problem which we ran the algorithm on was ten machines

and ten jobs. It failed to come up with an answer after more than 19 hours

of CPU time on the SUN and 2 hours of CPU time on a CRAY Y-MP. For

problems this large an heuristic algorithm seems to be necessary.

21

References

[1] J. Bard and J. Moore, “A branch and bound algorithm for the bilevel

programming problem,” SIAM Journal on Scientific and Statistical

Computing, 11, 281-292, 1990.

[2] W. Bialas and M. Karwan, “Two-level linear programming,” Manage-

ment Science, 30, 1004-1020, 1984.

[3] R. Ahmadi and U. Bagchi, “Minimizing job idleness in deadline con-

strained environments,” Operations Research, 40, 972-985, 1992.

[4] C. Liao, “Minimizing the number of machine idle intervals with min-

imum makespan in a flow-shop,” Journal of the Operational Research

Society, 44, 817-824, 1993.

[5] R. Deckro, J. Hebert, and E. Winkofsky, “Multiple criteria job-shop

scheduling,” Computers and Operations Research, 9, 279-285, 1982.

[6] W. Selen and D. Hott, “A mixed-integer goal-programming formulation

of the standard flow-shop scheduling problem,” Journal of the Opera-

tional Research Society, 37, 1121-1128, 1986.

[7] J. Achugbue and F. Chin, “Scheduling the open shop to minimize mean

flow time,” SIAM Journal on Computing, 11, 709-720, 1982.

[8] W. Wang, “Bilevel programming of the flow-shop scheduling problem,”

M.S. thesis, the University of North Carolina at Wilmington, 1993.

22

