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Abstract

Given an abstract group G, an N dimensional orthogonal matrix representation G of G, and

an “initial vector” x ∈ RN , Slepian defined the group code generated by the representation

G to be the set of vectors Gx. If G is a group of permutation matrices, the set Gx is called

a “permutation code”. For permutation codes a ’stack algorithm’ decoder exists that, in the

presence of low noise, produces the maximum-likelihood estimate of the transmitted vector

by using far fewer computations than the standard decoder. In this paper a new concept of

equivalence of codes of different dimensions is presented which is weaker than the usual definition

of equivalent codes. We show that every group code is (weakly) equivalent to a permutation

code and we discuss the minimal degree of this permutation code.
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1 Introduction

Group codes, as defined by Slepian (see [10] and references therein) are defined as follows.1 Consider

a group G of N × N orthogonal matrices which forms an injective representation of an abstract

group G with M elements, and an “initial vector” x ∈ RN , RN the Euclidean N -dimensional

space. A group code X is the orbit of x under G, i.e., the set of vectors Gx. By assuming that the

only solution of the equation Gx = x, G ∈ G, is G = I (the identity matrix), the code X has M

elements. We say X is an [M,N ] group code and denote xg the code vector associated with g ∈ G.

When a codeword xg of X is transmitted over the additive white Gaussian noise channel, the

optimum (i.e., maximum-likelihood) decoder, upon receiving the noisy vector r = xg + n, chooses

as the most likely transmitted vector the one that yields

min
h∈G

‖ r− xh ‖2 . (1)

If G is not endowed with any special structure, decoding (i.e., the solution of (1)) is obtained by an

exhaustive search among all the candidates g ∈ G. This requires a number of calculations νC = NM

(in fact, M scalar products of N terms each must be computed) and a storage of νS = NM real

numbers (M vectors of N components each). Define the number of bits per dimension carried by

the constellation as

r =
log2M

N

then we have νC = νS = N2rN , which shows that the complexity of the decoder grows exponentially

with the number of dimensions and with the number of bits per dimension. A permutation code is

a group code obtained by applying to the initial vector x a group G of permutations (i.e. G is a

group of permutation matrices). If X is a permutation code, then a less complex decoder that is

equivalent to maximum likelihood is available.

Slepian [9] has studied permutation codes with G the full symmetric group Sn. In this case a very

simple decoder exists that is equivalent to maximum likelihood. Karlof [4] has described a “stack

algorithm” decoder for arbitrary permutation codes that, in the presence of low noise, produces
1The reader is warned that the term “group code” is being used of late with a different meaning, i.e., to denote

block or convolutional codes defined over an alphabet forming a group. Accordingly, some authors use a different

term (e.g., “orbit codes” [8]) instead of Slepian’s “group codes.”). We use here the original definition to be consistent

with our references.
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the maximum-likelihood vector using fewer calculations than the standard maximum-likelihood

decoder.

Two [M,N ] codes X1 and X2 are defined to be equivalent if there exists an orthogonal N by N

matrix O such that OX1 = X2. Equivalent codes have congruent Voronoi regions and thus have

the same error performance over the Gaussian channel. We extend the definition of equivalence to

codes in different dimensions with the same number of elements. In this case, we say the two codes

are equivalent if they have the same configuration matrix, i.e., the Gram matrix of their scalar

products. Then the two codes have the same set of distances between codewords as in the case

of equivalent codes of the same dimension. We note that this definition is weaker than the usual

definition since the codes are not, in general, orthogonal transformations of each other. It what

follows it should be clear from the context which definition of equivalence is being used.

In this paper, using the fact that every group is isomorphic to a permutation group, we find the

minimum degree of this permutation group, show that every group code is (weakly) equivalent to

a permutation code, and describe how to find the minimum degree of the equivalent permutation

code.

2 Finding an equivalent permutation code

Let G be a group. A permutation representation of degree n [6, Chap. 7] of G is a homomorphism

of G into Sn, or the image of G under the homomorphism. If the homomorphism is an isomorphism,

we say that the representation is faithful.

In general, every group G with order |G| is isomorphic to a subgroup of S|G|. Let H denote a

subgroup of G and let R be the set of right cosets of H in G. Then

G =
⋃

Hr∈R
Hr

is the decomposition of G into right cosets of H. To every g ∈ G assign the permutation

πg : R→ R where πg(Hr) = Hrg.

The set Γ = {πg|g ∈ G} is a transitive permutation group of degree n = |G|/|H| and is the

permutation representation of G induced by H [6]. Every transitive permutation representation of

G can be obtained in this way. When H = {e}, the identity of G, the representation induced by H
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is called the right regular representation of G. The left regular representation can be defined in a

similar way.

The minimum n corresponds to the maximum |H| such that the representation Γ is faithful,

i.e., such that the kernel of the homomorphism of G onto Γ is the identity. This kernel can be

characterized as the maximal normal subgroup of G contained in H [6, Chap. 7]. Consequently,

if H′ denotes the largest non-normal subgroup of G that does not include normal subgroups of G

other than the identity, then n is given by the ratio

n =
|G|
|H′|

.

Example 2.1 Icosahedral group. [7, p. 32] Let G =< x, y, z|x3 = y2 = z2 = (xy)3 = (yz)3 =

(xz)2 = 1 >. Then G is a simple group of order 60. Let H =< x, y >. Then, the order of H is 12

and since G has no subgroups of order larger than 12, H is the largest non-normal subgroup of G that

does not contain any non-trivial normal subgroups of G. Thus, G is isomorphic to a permutation

group, ΓH, of degree 5 and of order 60. The set of right cosets is R = {H,Hz,Hzy,Hzyx,Hzyx2}

and ΓH =< (3, 4, 5), (2, 3)(4, 5), (1, 2)(4, 5) >. For example, πz = (1, 2)(4, 5) since

πz(H) = Hz

πz(Hz) = Hz2 = H

πz(Hzy) = Hzyz = Hyzy = Hzy

πz(Hzyx) = Hzyxz = Hzyzx2 = Hyzyx2 = Hzyx2

πz(Hzyx2) = Hzyx2z = Hzyxzx2 = Hzyzx = Hzyx.

Now if G is abelian or a Sylow p-group then all its subgroups are normal. So |H′| = 1, and hence

n = |G|. If G = Sm, m = 3 or m ≥ 5, then its only non-trivial normal subgroup is the alternating

group Am, while G does admit the subgroup Sm−1. Hence

n =
|Sm|
|Sm−1|

= m.

Thus the closer G is to an abelian group, the larger is the value of n.
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Theorem 2.1 Suppose G is a finite abstract group with irreducible real characters χ1, χ2, . . . , χp.

Consider a faithful representation ρ : G → G where G is a group of orthogonal N × N matrices.

Let χρ be the character of ρ and suppose χρ =
∑p

i=1 aiχi. Let x ∈ RN and form the group code

X = Gx = {ρ(g)x : g ∈ G}. Suppose H is a subgroup of G and form the permutation representation

φ : G → Γ = {πg|g ∈ G} induced by H. Let χφ be the character of φ and suppose χφ =
∑p

i=1 biχi.

If φ is faithful and bi ≥ ai ∀i, then Γ generates a permutation code equivalent to X .

Proof: Let ψi be the irreducible representation of G afforded by χi. Without loss of generality

assume that ai 6= 0 for 1 ≤ i ≤ m and ai = 0 for i > m. Then there exists an orthogonal N ×N

matrix U such that Uρ(g)UT = ⊕m
i=1aiψi(g), ∀g ∈ G (i.e. ρ(g) is equivalent to the direct sum of

a1 copies of ψ1(g) . . . am copies of ψm(g)). Let x̄ = Ux. Then X and {(⊕m
i=1aiψi(g))x̄ | g ∈ G} are

equivalent N dimensional codes.

We will consider Γ as a group of n×n permutation matrices where n = |G|
|H| . Then there exists an

orthogonal n×nmatrix V such that V φ(g)V T = ⊕m
i=1aiψi(g)⊕m

i=1(bi−ai)ψi(g)⊕p
i=m+1biψi(g), ∀g ∈

G.

Let x0 be a zero padded n dimensional version of x̄ (i.e. x0 = (x̄T , 0 . . . 0)T ). Then {(⊕p
i=1biψi(g))x0}

and {φ(g)(V Tx0)} are equivalent n dimensional codes. Clearly theN dimensional code {⊕m
i=1aiψi(g)x̄}

and the n dimensional code {⊕p
i=1biψi(g)x0} have the same number of elements and the same con-

figuration matrix. Thus Γ generates a permutation code equivalent to X .

Corollary 2.1 Every group code is equivalent to at least one permutation code.

Proof: Let H = {e}. Then φ is the right regular permutation representation of G, φ(g) =

⊕p
i=1biψi(g) where bi = deg(ψi) if ψi is also irreducible over the complex field (i.e. ψi is a complex

irreducible representation of the first kind) and bi = 1
2 or 1

4 times deg(ψi) otherwise. If ai > bi,

then more copies of φ may be used.

Example 2.2 The 4-PSK signal set can be generated by the following representation of the cyclic

group, G, of order four 0 1

−1 0


 −1 0

0 −1


 0 −1

1 0


 1 0

0 1


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using the initial vector x = [1, 0]T . The irreducible real representations of this cyclic group are the

representation above, denoted ψ2(g), the identity representation ψ1(g), associating +1 with all the

groups elements, and the alternating representation ψ−1(g), associating −1 with the first and third

elements of G and +1 with the second and fourth elements. Consequently, letting φ denote the right

regular representation, an orthogonal matrix, V , exists such that

ψ1(g)⊕ ψ−1(g)⊕ ψ2(g) = V φ(g)V T .

The matrix V is found in [1]:

V =
1
2



1 1 1 1

1 −1 1 −1
√

2 0 −
√

2 0

0 −
√

2 0
√

2


.

By applying V T to the zero-padded version of x, x0 = [0, 0, 1, 0]T , we get the initial vector of the

permutation code equivalent to 4-PSK: [
√

2/2, 0, −
√

2/2, 0]T .

In practice, it is often difficult to find the matrices U and V in the proof of the previous theorem.

Also, the degree n of the permutation representation may be prohibitively large. The procedure is

greatly simplified in the case that the image of φ is doubly transitive.

Corollary 2.2 Suppose Γ is doubly transitive. Then

1. ρ is irreducible,

2. φ = 1⊕ ρ, (here, we use 1 to denote the identity representation of G)

3. n = N + 1,

4. U is the identity matrix, and

5. V may be taken to be 

γ γ γ . . . γ γ

β1 −γ1 −γ1 . . . −γ1 −γ1

0 β2 −γ2 . . . −γ2 −γ2

· · · · · ·

0 0 0 . . . βn−1 −βn−1


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where nγ2 = 1, (n− j)γ2
j + β2

j = 1, βj − (n− j)γj = 0.

Proof: It is well known [3, p. 230] that a doubly transitive permutation representation may be

written as the direct sum of the identity representation and an irreducible representation. The

matrix V is given in [2].

Given an irreducible representation ρ : G :→ G, a method to find an appropriate H is to use a

computer algebra system such as MAGMA to print out all subgroups of G of low index and then, if

necessary, use the characters of G to find which of the induced permutation representations contain

ρ. This is illustrated in the following example.

Example 2.3 Let G = the icosahedral group. This group has four nontrivial irreducible orthogonal

representations[7, p. 313], two of degree 3, one of degree 4, and one of degree 5. We label these

ρ1, ρ2, ρ3, ρ4 and their characters χ1, χ2, χ3, χ4 respectively. We use MAGMA to find the low index

subgroups of G. There are four of index 12 or less. They are H of index 5 from example 2.1,

I =< y, zx2 > of index 6, K =< x, z > of index 10, and L =< xyz > of index 12. Denote the

induced permutation representations by φH, φI , φK and φL respectively. Only φH and φI are doubly

transitive. Thus φH = 1 ⊕ ρ3 and φI = 1 ⊕ ρ4 and by corollary 2.2 any group codes generated by

ρ3 or ρ4 can be easily represented by equivalent permutation codes.

To find permutation codes equivalent to group codes generated by ρ1 or ρ2, we investigate

the images and characters of φK and φL which we denote by ΓK, ΓL, χK, and χL respectively.

The orders of the five conjugacy classes of G are |C1| = 1, |C2| = 12, |C3| = 12, |C4| = 15,

and |C5| = 20. The representatives of the corresponding conjugacy classes of ΓK and ΓL are

{(1), (1, 2, 8, 10, 6)(3, 9, 7, 5, 4), (1, 8, 6, 2, 10)(3, 7, 4, 9, 5), (1, 2)(3, 5)(6, 8)(7, 9), (2, 3, 5)(4, 7, 6)(8, 10, 9)}

and {(1), (2, 11, 8, 5, 7)(3, 10, 12, 4, 9), (2, 8, 7, 11, 5)(3, 12, 9, 10, 4), (1, 3)(2, 4)(5, 11)(6, 8)(7, 12)(9, 10),

(1, 2, 5)(3, 7, 9)(4, 10, 6)(8, 12, 11)} respectively. The character table of G is :

C1 C2 C3 C4 C5

1 1 1 1 1 1

χ1 3 1+
√

5
2

1−
√

5
2 -1 0

χ2 3 1−
√

5
2

1+
√

5
2 -1 0

χ3 4 -1 -1 0 1

χ4 5 0 0 1 -1.
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Since χK(g), and χL(g) equal the number of elements φK(g) and φL(g) fix the following character

inner products are easily computed,

1 =
1
|G|

∑
g∈G

χK(g)χ3(g)

=
1
|G|

∑
g∈G

χK(g)χ4(g)

1 =
1
|G|

∑
g∈G

χL(g)χ1(g)

=
1
|G|

∑
g∈G

χL(g)χ2(g)

=
1
|G|

∑
g∈G

χL(g)χ4(g).

Now, since every permutation representation contains the identity representation we have, ρK =

1⊕ ρ3 ⊕ ρ4 and ρL = 1⊕ ρ1 ⊕ ρ2 ⊕ ρ4. So we can represent group codes generated by ρ1 and ρ2 by

equivalent permutation codes but the degree would be 12 and the matrix V would have to be found.

We conclude with an example which summarizes the main result of the paper.

Example 2.4 Let G = the icosahedral group. Consider the 4-dimensional group code X = {ρ3(g)x :

g ∈ G}. The image of ρ3 can be found in [7, p. 313]. We use a modification of the algorithm in

[5] to find the optimal initial vector x = [−0.68222, −0.49471, −0.44657, −0.30070] for this

representation. The minimum squared Euclidean distance is d2
min = 0.447056. We are then under

the hypothesis of Corollary 2.1. We use the degree 5 permutation representation φH = 1⊕ ρ3 and

transform the zero padded vector x0 = [0, −0.68222, −0.49471, −0.44657, −0.30070] to the initial

vector V Tx0 = [−0.61010, −0.27588, −0.06926, 0.26504, 0.69020] for the equivalent permutation

code generated by ΓH.

We finally note that in practice the code is transmitted over the AWGN channel using the

low-dimensional constellation in order to save on the spectral efficiency. The received vector r is

first zero-padded as for the initial vector and then transformed into y = V T r0. Now, y can be ML

decoded with the permutation code decoder. We note that this is an orthogonal transformation

on the received vector which does not modify the additive noise statistics. In the above example
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the operation is particularly convenient since the code dimension is only increased by one. On the

other hand, if we wanted to use the 3-dimensional codes generated by the representations ρ1 or ρ2

we would need to use a degree 12 permutation representation.
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