
LARGE SCALE GEOMETRIC PROGRAMMING:

AN APPLICATION IN CODING THEORY

Yaw O. Chang∗ and John K. Karlof

Mathematical Sciences Department

The University of North Carolina at Wilmington

∗This research was partially supported by the Faculty Research and Development Fund

of the University of North Carolina at Wilmington

SCOPE AND PURPOSE

Geometric programming is an optimization technique originally developed

for solving a class of nonlinear optimization problems found in engineering

and design. Previous applications have generally been small scale and highly

nonlinear. In a geometric programming problem all the constraints as well

as the objective function are posynomials. The Gaussian channel is a com-

munications model in which messages are represented by vectors in Rn. The

transmitter has a finite set of messages available and these messages are

transmitted over a noisy channel to a receiver. The received message equals

the sent vector perturbed by a Gaussian noise vector. The receiver must

decide which of the messages was sent. We use groups of orthogonal matri-

ces to generate the message set and the result is called a group code. The

problem of finding the best code generated by a particular group is called

the initial vector problem. Previous attempts to find a general solution to

this problem have been unsuccessful. Although, it has been solved in several

special cases. We write this problem as a nonlinear programming problem,

transform it to a generalized geometric programming problem, and use the

double condensation technique developed by Avriel, Dembo, and Passy and

modified by Burns to develop an algorithm for its solution. We apply this

algorithm to groups in which the resulting initial vector problem has close

to 50,000 constraints.

2

ABSTRACT

An algorithm is presented that solves the initial vector problem for group

codes for the Gaussian channel. The Gaussian channel is a communications

model in which messages are represented by vectors in Rn and transmitted

over a noisy channel. In this paper, the set of messages, called a code, is

generated by a group of permutation matrices and the problem of finding the

code with the largest minimum distance between codewords for a particular

permutation group is called the initial vector problem. This problem is an

especially large scale nonlinear programming problem. We transform it to a

generalized geometric programming problem and use the double condensation

method to develop an algorithm for its solution.

3

1. INTRODUCTION

Geometric programming is an optimization technique originally developed

for solving a class of nonlinear optimization problems found in engineering

design [14, 15]. In a geometric programming problem all the constraints as

well as the objective function are posynomials (sum of terms having a positive

real coefficient multiplied by a product of variables where each variable is

raised to an arbitrary real constant power) and all the variables are strictly

positive. That is, a function of the form:

P (x) =
m∑

i=1

ci

n∏
j=1

x
aij

j

where ci > 0 and aij ∈ R. In a generalized geometric programming problem,

the coefficients may be arbitrary real numbers. Avriel, Dembo, and Passy

[1] describe a technique called double condensation that solves a generalized

geometric programming problem by solving a series of linear programming

problems. This technique was later modified by Burns [4] to apply to prob-

lems with equality constraints.

The Gaussian channel is a communications model in which messages are

represented by vectors in Rn and transmitted over a noisy channel. We gen-

erate the set of messages by groups of permutation matrices and the resulting

message set is called a permutation code. Given an arbitrary permutation

group, the problem of finding an optimal code generated by that group may

be written as a nonlinear programming problem [10]. The resulting problem

is called the initial vector problem and in it each group element together

with its inverse create a constraint. Since we will be considering groups as

large as 95,000 elements, the associated nonlinear programming problem is

especially large scale. In this paper, we transform this large scale nonlinear

1

programming problem to a generalized geometric programming problem and

use the double condensation method to develop an algorithm for its solution.

Previous applications of geometric programming have been highly nonlinear

problems with few constraints and variables [9, for survey article].

In section 2, we describe the Gaussian channel, permutation codes, and

present some previous results on solving the initial vector problem. In section

3 we describe the double condensation technique and present our specialized

algorithm. Section 4 contains a numerical example and in section 6 we present

computational results.

2

2. GROUP CODES FOR THE GAUSSIAN CHANNEL

The Gaussian channel is a communications model introduced by Shannon

in 1948 in which messages are represented by vectors in Rn and transmitted

over a noisy channel. We assume the transmitter has a finite set of messages

available and sends one every T seconds. When the vector x is transmitted,

the received signal is represented by a vector y = x + z which consists of the

sent vector and a Gaussian noise vector z whose components are statistically

independent Gaussian random variables of mean zero and variance N. Upon

receiving y, the receiver must decide, presumably in some optimum manner,

which of the messages was sent. The set of vectors representing the messages

is called a code and the process of deciding is called decoding.

In this paper, we consider codes generated by groups of orthogonal n by

n matrices (a real matrix, A, is orthogonal if At = A−1) and more specifically

by groups of permutation matrices (A is a permutation matrix if exactly one

entry in each row and column is equal to one, and all other entries are zero).

Group codes were first defined by Slepian [12] in 1968.

Definition 2.1 A set X of M n-dimensional unit vectors is an (M,n) group

code if there exists a group G of orthogonal n by n matrices and a unit vector

x such that X = {gx : g ∈ G}. The code X is said to be generated by the

group G and the initial vector x. If G is a group of permutation matrices

then X is called a permutation code.

If the set of vectors available to the transmitter is an (M,n) group code

where each codeword has the same a priori probability of transmission, then

the decoding criteria for the receiver that minimizes the average error prob-

ability is maximum likelihood [3, section 6.2]. That is, the optimum receiver

3

decodes y as the codeword g′x that minimizes the set of Euclidean distances

{d(y, gx) : g ∈ G}. One advantage of using a group code is that all the

codewords are on an equal footing; each has the same error probability and

the same disposition of codeword neighbors. Thus, the best group codes are

those with a large nearest neighbor distance between codewords. This is

formulated in the following problem.

Initial Vector Problem: Given a group G of orthogonal n by n matri-

ces, find an initial vector that maximizes the minimum distance between the

codewords of all codes generated by G, i.e., find a unit vector x in Rn such

that min{d(x, gx)} = max min{d(z, gz)} where the maximum is taken over

all unit vectors z in Rn and the minimum is taken over all nonidentity ele-

ments g in G. The vector x is called an optimal initial vector for G and the

associated code is called an optimal code generated by G.

Previous attempts to provide a general solution to this problem have not

been successful, although it has been solved in some special cases [2, 7, 8, 13].

The evidence so far is that is a very difficult problem and it does not have a

closed-form solution.

Suppose G is a group of orthogonal n by n matrices and VG = {y ∈ Rn :

gy = y, ∀g ∈ G}. Let (,) denote the ordinary inner product and define

V ⊥
G = {y ∈ Rn : (y, z) = 0,∀z ∈ VG}. Karlof [10] has shown that if VG 6=
{0}, any optimal initial vector for G must lie in V ⊥

G . Karlof [10] presented

a numerical algorithm for the initial vector problem that incorporates this

fact. This algorithm is a two phase method. Phase I is a modification

of Topkis and Veinott’s feasible directions method that identifies a set of

active constraints and a starting point for phase II. Phase II uses a Newton-

Raphson technique on the equations formed by the active constraints, the

4

equations defining V ⊥
G (if VG 6= {0}), and the equation

∑
x2

i = 1. Karlof has

applied this algorithm to many permutation groups, the largest one being

the Mathieu group of degree 11 and order 7920. It is also shown in [10] that

if G is a doubly transitive permutation group, then V ⊥
G = {y :

∑
yi = 0}.

Let G be a doubly transitive permutation group. Now, since d2(gx, x) =

2− 2(gx, x) and (gx, x) = (g−1x, x), an equivalent formulation of the initial

vector problem(IVP) is

min zn+1

n∑
i=1

zi = 0

n∑
i=1

z2
i = 1

(gz, z) ≤ zn+1 g ∈ S

z = (z1, . . . , zn) ∈ Rn, zn+1 ∈ R

where S is a complete list of the group elements excluding inverses and

the identity. We now let M denote the cardinality of S. Note that this

formulation of problem (IVP) is a geometric programming problem except the

variables are unrestricted. It can be transformed to a generalized geometric

programming problem by replacing zi = z+
i − z−i and restricting z±i ≥ ρ for

some ρ > 0. We present an algorithm that uses the double condensation

methods to solve this transformed formulation of the initial vector problem.

We apply this algorithm to permutation groups as large as 95,040.

5

3. ALGORITHM

A generalized geometric programming problem is of the form:

min P0(x)−Q0(x)

Pk(x)−Qk(x) = 0, k = 1, 2, . . . ,M ′

Pk(x)−Qk(x) ≤ 0, k = M ′ + 1, M ′ + 2, . . . , N (3.1)

0 < xLB
j ≤ xj ≤ xUB

j j = 1, . . . , n

where Pk(x) and Qk(x) are posynomials of the general form:

Pk(x) =
Ik∑

i=1

uik(x) =
Ik∑

i=1

cik

n∏
j=1

x
ajik

j ,

Qk(x) =
Lk∑
l=1

vlk(x) =
Lk∑
l=1

dlk

n∏
j=1

x
bjlk

j ,

and cik > 0, for all i, k, and dlk > 0 for all l, k.

Before we give the description of the double condensation method [4] for

solving problem IVP, we describe the condensation technique. The classical

arithmetic-geometric inequality stating that the weighted arithmetic mean of

positive numbers a1, a2, . . ., an is greater than or equal to the geometric

mean may be written as follows:

n∑
i=1

ai ≥
n∏

i=1

(
ai

wi

)wi

(3.2)

where
∑

wi = 1, and wi > 0 for all i. Equality holds in (3.2) if and only if

a1

w1

=
a2

w2

= . . . =
an

wn

.

6

Let p(x) ≤ 1 be a functional constraint where p(x) is a posynomial of the

form

p(x) =
I∑

i=1

ci

n∏
j=1

x
aij

j , ci > 0;

and x′ > 0 be given. Define

wi =
ci
∏n

j=1 x′
aij

j

p(x′)
,∀i = 1, . . . , I.

Then wi > 0 and
∑I

i=1 wi = 1. Therefore, as a direct consequence of (3.2)

we have

p(x, x′) ≤ p(x) ≤ 1, (3.3)

where

p(x, x′) =
I∏

i=1

(
ci
∏n

j=1 x
aij

j

wi

)wi

.

The monomial p(x, x′) is the condensed form of p(x), and equals the original

posynomial at the point of condensation x′. Note that (3.3) implies that any

x that satisfies p(x) ≤ 1 will also satisfy p(x, x′) ≤ 1, but not vice versa.

We convert problem IVP to a generalized geometric programming prob-

lem by writing the variables zi = z+
i − z−i (i = 1, . . . , n) and restricting

z+
i , z−i ≥ ρ > 0. It is no loss of generality to restrict zn+1 > 0 since the

maximum inner product is always positive. Thus, this generalized geometric

programming problem has 2n + 1 variables:

min zn+1

n∑
i=1

z+
i −

n∑
i=1

z−i = 0

n∑
i=1

(z+2

i + z−
2

i)− 2
n∑

i=1

z+
i z−i = 1

(gz+, z+) + (gz−, z−)− [(gz+, z−) + (gz−, z+)] ≤ zn+1g ∈ S

(3.4)

7

ρ ≤ z+
i , z−i , 0 < zn+1

where z± = (z±1 , z±2 , . . . , z±n).

An equivalent version of (3.4) is:

min zn+1

∑n
i=1 z+

i∑n
i=1 z−i

= 1

∑n
i=1 z+2

i + z−
2

i

1 + 2
∑n

i=1 z+
i z−i

= 1

(gz+, z+) + (gz−, z−)

zn+1 + (gz+, z−) + (gz−, z+)
≤ 1

(3.5)

ρ ≤ z+
i , z−i , 0 < zn+1

.

We now describe how to solve (3.5) by solving a serie of linear pro-

gramming problems via the double condensation method. Let z ∈ R2n+1

be a feasible solution of (3.5). Using the condensation technique described

above, the denominators of (3.5) can be condensed to monomials and (3.5)

becomes a posynomial geometric programming problem. Now we perform

another condensation on the new posynomial geometric programming prob-

lem at z to obtain a the following monomial programming problem. We let

z = (z+
1 , z−1 , z+

2 , z−2 , . . . , z+
n , z−n , zn+1).

min zn+1

Ck(z) = 1, k = 1, 2.

Ck(z) ≤ 1, k = 3, . . . ,M + 2,

8

ρ ≤ z+
i , z−i , 0 < zn+1

.

where Ck(z) is a monomial.

The natural logarithm function ln y is monotonicly increasing and is de-

fined for y > 0. Therefore, (3.6) can be transformed to a linear program-

ing problem through a change of variables: y±j = ln z±j , j = 1, . . . , n and

yn+1 = ln(zn+1 + 1). Also, we set ρ = 1 so that y±j ≥ 0. Problem LP(z):

max−yn+1

f1y = b1

f2y = b2

Ay ≤ B

0 ≤ y+
i , y−i ≤ ln 2

0 ≤ yn+1

where f1, f2, and b1, b2 are the left side and right side respectively obtained

from the two equality constraints of problem (3.6), A is an M by 2n+1

matrix and B is an M dimensional column vector obtained from the in-

equality constraints of problem (3.6). We restrict 0 ≤ y±i ≤ ln 2 so that

1 ≤ z±i ≤ 2 and then 0 ≤ zi ≤ 1. Since yn+1 is restricted ≥ 0 in problem

LP(z), zn+1 = eyn+1 − 1.

This linear programming problem has M + 2 constraints and 2n+1 vari-

ables. The algorithm will be applied to groups with M as large as 50,000 and

n as large as 20. Thus, in this case, the problem would have on the order

9

of 50,000 constraints and, after adding slacks, on the order of 50,000 vari-

ables. However, the dual of the problem has only 2n+1 constraints all of type

greater than or equal to. The right hand side values of these constraints are

all zero except for the last constraint where the value is minus one. Since the

primal has two equalities, M inequalities, and 2n upper bound constraints,

the dual has 2 unrestricted and M + 2n restricted variables. We multiply all

the constraints of the dual by minus one, add slack variables, write each of

the two unrestricted variables as the difference of two restricted variables and

obtain a linear programming problem in standard form with 2n+1 equality

constraints and M + 4n + 5 variables. This is a great improvement over the

number of constraints in the primal. Solving the dual has other advantages.

We may take the slack variables as our beginning basis. The double con-

densation algorithm of [4] involves condensing the most violated inequality

constraint of the original problem, transforming it to linear form, adding it

to the primal problem, and resolving the new linear programming problem.

But adding a constraint to the primal is equivalent to adding a variable to

the dual. So when solving the dual problem with the new variable added, we

may use our current optimal solution as our starting basic feasible solution

and pivot on the new variable.

We incorporate the above observations in the following algorithm which

employs the double condensation algorithm of [4] to solve the initial vector

problem.

STEP 0: Form problem IVP. Let z̄0 be a feasible solution of problem IVP.

Set K=0 and OBJ=z̄0
n+1 and choose ε > 0.

STEP 1: Apply the double condensation technique and linearization proce-

dure to form linear program LP(z̄K). Form the dual DL(z̄K) of linear

10

program LP(z̄K). Solve DL(z̄K) using the slack variables as the be-

ginning basic feasible solution. Let xK+1 be the optimal basic feasible

solution to DL(z̄K). Compute the corresponding solution z̄K+1 to prob-

lem IVP.

STEP 2: Evaluate the inequality constraints in problem IVP at z̄K+1. If

z̄K+1 satisfies all the inequality constraints, then go to step 5.

STEP 3: Recondense the most violated constraint at z̄K+1, transform it to

linear form, and append it to DL(z̄K) as a new variable.

STEP 4: Solve the appended problem DL(z̄K) using xK+1 as the beginning

basic feasible solution and pivot on the new variable. Let xK+1 be

the optimal basic feasible solution to the appended problem DL(z̄K).

Compute the corresponding solution z̄K+1 to problem IVP. Go to step

2.

STEP 5: If | z̄K+1
n+1 −OBJ |< ε, then stop. The solution is z̄K+1. Otherwise,

set K=K+1, OBJ = z̄K
n+1 and go to step 1.

Remarks

1. Steps 2 thru 4 form a method to obtain an optimal solution to the

posynomial geometric programming problem. When a solution zK+1

passes the test in STEP 3, it is a global optimum to the posynomial

goemetric programming problem. The linear constraint generated in

STEP 4 reduces the feasible region of LP (zK) so that zK+1 no longer

belongs to it but all the feasible solutions of the posynomial geometric

programming problem still remain a subset of this new feasible region.

The new linear constraint is generally referred to as a cut.

11

2. This algorithm is not guaranted to converge to a global optimum of

the original problem. Avriel, Dembo, and Passy [1] prove only conver-

gence to a Kuhn-Tucker point for a generalized geometric programming

problem without equality constraints.

3. The equality constraints are not involved in the calculations of STEP

3 and do not change during each major interation.

12

4. EXAMPLE

In this section, we present an example of the algorithm described in sec-

tion 3 applied to a small permutation group of degree 4. The group is the al-

ternating group on four elements, A4 = {(1), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3),

(1,2,3), (1,3,2), (1,3,4), (1,4,3), (2,3,4), (2,4,3), (1,2,4), (1,4,2)}. Problem

IVP from section 2 is:

min z5

z1 + z2 + z3 + z4 = 0

z2
1 + z2

2 + z2
3 + z2

4 = 1

z1z2 + z2z1 + z3z4 + z4z3 ≤ z5

z1z3 + z2z4 + z3z1 + z4z2 ≤ z5

z1z4 + z2z3 + z3z2 + z4z1 ≤ z5

z1z3 + z2z2 + z3z4 + z4z1 ≤ z5

z1z4 + z2z1 + z3z3 + z4z2 ≤ z5

z1z1 + z2z4 + z3z2 + z4z3 ≤ z5

z1z2 + z2z3 + z3z1 + z4z4 ≤ z5

z ∈ R5

To change problem IVP to a generalized geometic programming problem,

we write zi = z+
i − z−i (i = 1, . . . , 4) and restrict z+

i , z−i ≥ 1. Then the prob-

lem has 9 constraints and 9 variables.

STEP 0: Choose z̄0 = (.4082, .4082,−.8165, 0.0, .8333) then OBJ=z̄0
n+1 =

.8333. Set K=0 and ε = .0001.

13

STEP 1: After applying the double condensation technique, problem LP(z̄0)

is formed:

f1 = (.094,−.067, .094,−.067,−.133, .242, .000, .000, .000) b1 = .209

f2 = (.292,−.208, .292,−.208, .208,−.377, .208,−.208, .000) b2 = −.025

A =

.100 −.057 .100 −.057 .006 .011 −.119 .136 −.140

−.142 .151 .025 .018 .084 −.076 .084 −.042 −.133

.025 .018 −.142 .151 .084 −.076 .084 −.042 −.133

−.069 .078 .109 −.049 .049 −.034 −.017 .047 −.137

.044 −.031 .044 −.031 −.125 .226 .062 −.062 −.140

.109 −.049 −.069 .078 .045 −.034 −.016 .047 −.137

−.015 .052 −.015 .052 .081 −.080 .016 .016 −.133

B = (.029,−.051,−.051,−.011, .080,−.011,−.037)T .

The dual, DL(z̄0), of the above problem is formed. After putting

it in standard form, it has 9 constraints and 28 variables. After 8

pivots, the optimal basic feasible solution is x1 with basic variables

x1
2 = 4.690, x1

3 = .0010, x1
5 = 2.246, x1

9 = 4.898, x1
10 = .0011, x1

21 =

.0331, x1
23 = .0334, x1

24 = .0281, x1
26 = .0400. The corresponding solu-

tion to LP(z̄0) is

y = (.692, .000, .0621, .000, .000, .570, .000, .147, .519)T

and to problem IVP is z̄1 = (.999, .064,−.768,−.159, .680) where z̄1±
i =

ey±i for i = 1, . . . , 4, z̄1
i = z̄1+

i − z̄1−
i and z̄1

5 = ey5 − 1.

14

STEPS 2 and 3: We evaluate problem IVP at z̄1. The most violated in-

equality constraint is the sixth one. It is recondensed at z̄1 and ap-

pended to DL(z̄0) as a new variable. The new coefficient in the ob-

jective function is .101 and the new column is (.275,−.150,−.077,

.062,−.011, .005,−.055, .053,−.122)T .

STEP 4: The appended problem is solved using x1 as the beginning basic

feasible solution and pivoting on the new variable. An optimal solution

is obtained after 2 pivots. The corresponding solution (again denoted

by z̄1) to problem IVP is z̄1 = (.849, .150,−.768,−.159, .680) and we

return to step 2.

STEPS 2, 3, and 4: The sixth constraint is again the most violated in-

equality and is recondensed at z̄1 and appended to DL(z̄0) as a new

variable. The appended problem is solved after 2 pivots and the corre-

sponding solution to problem IVP is z̄1 = (.839, .157,−.768,−.159, .680).

STEP 2: z̄1 satisfies all the inequality constraints of problem IVP.

STEP 5: | z̄1
5 −OBJ |=| .680− .833 |> .0001. Set K = 1, OBJ = .680 and

return to step 1.

REMARK: The algorithm converges after 3 more iterations with

z̄2 = (.69000 .16250 −.68933 −.16273 .45013)

z̄3 = (.68819 .16246 −.68819 −.16246 .44721)

z̄4 = (.68819 .16246 −.68819 −.16246 .44721)

15

5. COMPUTATIONAL RESULTS

In this section, we present the results of some computational experiments

in which the algorithm of section 3 was used to calculate the optimal initial

vectors of several well-known permutation groups. The groups were gener-

ated using a table of generators in [11] and group algorithms from [5]. The

computations were done on a VAX 6420 at the University of North Carolina

at Wilmington and a CRAY Y-MP at the North Carolina Supercomputer

Center.

Recall from the discussion of section 3, the linear programming problem

DL(zK) has a very special structure. The right hand side values of the

constraints are all zero except for the last constraint. As a consequence,

DL(zK) is highly degenerate which can cause computational problems. To

avoid this situation, we employ a perturbation method found in [6]. We

found that this perturbation results in a substantial decrease in the number of

pivots. In Table 5.1, we compare the number of pivots with perturbation and

without perturbation required at the beginning of each major iteration (i.e.,

everytime DL(zK) was formed in STEP 1) for the numerical example of the

permutation group A4 presented in section 4. We can see the number of pivots

decreased significantly even for such a small group. We also compare the

total number of pivots required of the entire calculations for the groups A4,

M11, and PSL(4, 2). The group M11 eventually encounters cycling without

perturbation and the calculation could not be finished. These results are

shown in Table 5.2.

We tested the proposed algorithm on five large permutation groups: they

are the symmetric group S8, the Mathieu groups M11 and M12, the projective

unimodular group PSL(4, 2), and a group of order 40,320 and degree 16

16

which we call P16. The initial starting solutions were generated randomly by

IMSL subroutine RNUN. See Table 5.3 for the results, and note the following

nomenclature:

|G|: order of the permutation group,

M : number of less than or equal to constraints in problem (IVP),

n: degree of the permutation group,

INT: number of major iterations,

MIN DIS: minimum distance of optimal code.

Table 5.1: Comparison for group A4.

iteration No. of pivots without perturbation No. of pivots with perturbation

1 23 8

2 19 10

3 23 7

4 50 7

17

Table 5.2: Comparison of total number of pivots for three groups

Group Total No. of pivots without pertur. Total No. of pivots with pertur.

A4 121 38

M11 – 805

PSL(4, 2) 28,309 1,892

Table 5.3: Computational results for 5 large groups

Group |G| M n INT MIN DIS

S8 40,320 20,497 8 4 .218

M11 7,920 4,042 11 5 .633

M12 95,040 47,965 12 13 .488

PSL(4, 2) 20,160 10,237 15 8 .635

P16 40,320 20,377 16 11 .690

6. CONCLUSIONS

The algorithm developed to solve the initial vector problem in this paper

differs from the previous method [10] in several respects. In [10], Karlof

employed a two phase algorithm. Phase I was a modification of Topkis and

Veinott’s feasible directions method and was used to identify a set of active

constraints. Phase II used a Newton-Raphson technique on the equations

formed by the active constraints. Phase I failed to converge for large groups.

The largest group solved was of order 7,920. Convergence of phase I was

18

also sensitive to the choice of the starting point. On the other hand, the

algorithm developed in this paper never failed to converge and the starting

points were choosen randomly. The largest group solved in this paper was

of order 95,040. This was the largest group we were able to generate. We

believe this algorithm has the potential to handle much larger groups.

19

References

[1] M. Avriel, R. Dembo and U. Passy, “Solution of generalized geometric

programs,” Int. J. Numer. Methods Engrg., 9, 149-169 (1975).

[2] I. Blake, “Distance properties of group codes for the Gaussian channel,”

SIAM J. Appl. Math., 23, No. 3, 312-324, (1972).

[3] I. Blake and R. Mullin, The Mathematical Theory of Coding, Academic

Press, New York (1975).

[4] S. A. Burns, “Generalized geometric programming with many equality

constraints,” Int. J. Numer. Methods Engrg., 24, 725-741 (1987).

[5] J. Cannon, “The basis of a computer system for modern algebra,”

SYMAC’81, Proc. 1981 ACM Symp. Symbolic and Algebraic Compu-

tation, (1981).

[6] A. Charnes, “Optimality and degeneracy in linear programming,”

Econometrica, 20, 160-170, (1952).

[7] D. Djokovic and I. Blake, “An optimization problem for unitary and

orthogonal representations of finite groups,” Trans. Amer. Math. Soc.,

164, 267-274, (1972).

[8] C. Downey and J. Karlof, “The analysis of optimal [M,3] group codes

for the Gaussian channel,” Util. Math., 18, 51-70, (1980).

[9] J. Ecker, “Geometric progamming: methods, computations, and appli-

cations,” SIAM Review, 22, No. 3, 338-362, (1980).

20

[10] J. Karlof, “Permutation codes for the gaussian channel,” IEEE Trans.

on Inform. Theory. IT-35, No. 4, 726-732, (1989).

[11] C. Sims, “Computational methods for permutation groups,” in Compu-

tational Problems in Abstract Algebra. Oxford, UK:Pergamon (1970).

[12] D. Slepian, “Group codes for the Gaussian channel,” Bell Syst. Tech.

J., 17, 575-602, (1968).

[13] , “Permutation modulation,”Proc. IEEE, 53, 228-236, (1965).

[14] C. Zener,“A mathematical aid in optimizing engineering design,” Proc.

Nat. Acad. Sci. U.S.A., 47, 537-539,(1961).

[15] ,“A further mathematical aid in optimizing engineering design,”

Ibid., 48, 518-522, (1962).

21

