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Introduction

Often oneisinterested in determining the frequency content of Sgnas. Signals are
typicaly represented as time dependent functions. Redl signd's are continuous, or analog
sgnds. However, through sampling the signd by gathering data, the sgnd does not
contain high frequencies and isfinite in length. The datais then discrete and the
corresponding frequencies are discrete and bounded. Thus, in the process of gathering
data, one serioudy affects the frequency content of the sgnd. Thisistruefor smplea
superposition of sgnas with fixed frequencies. The Situation becomes more complicated
if the data has an overdl nonconstant trend or even existsin the presence of noise.

From Transforms to Series

To be completed.

Fourier Series

As described in the last section (hopefully), we have seen that by restricting our datato a
timeintervd [0, T] for period T, and extending the datato (- ¥,¥) , one generatesa
periodic function of infinite duration at the cost of losing data outside the fundamentd
range. Thisis not unphysicd, asthe dataistypicdly taken over afinite period of time.
Thus, any physical results in the analys's can be obtained be redtricting the outcome to
the given period.

In typica problems one seeks a representation of the sgnd, valid for t1 [0,T], as
1 $ :
f (t) =3 A+ [A, cosw t)+B, sn(w,t)],
p=L

where the angular frequency is given by

w, =2pf = % p.
Note that f(t) is periodic with period P=T: f (t + P) = f (). Mog Sgnds have an infinite
period, so we dready have made afirst gpproximation. Thus, this has restricted the
physica datato o<t <T. [That is by limiting t, we are forced to using discrete
frequencies, or the above sum as opposed to an integra in the Fourier Transform in the
last section.]



One can extract the Fourier Coefficients (A, B, ) using the orthogonality of the

trigonometric bass. Namely, such orthogonality for aset {f  (x), n=1...¥} over the
intervd [a, b] withweght r (X) isgiven by the condition

b5 COf (T (x)dx=0,mt n.

For the trigonometric functions, thisis given by the rdations

. 10, min
Cposw, t)cosw,t) dt=iT

0 TE’ m=n.
T 10, mtn

CFinw, Hsinw,t) dt=iT

0 TE’ m=n.

E‘yos(wmt)s'n( w t) dt =0.

These rdaions are proved in Appendix A. The coefficients are found to in Appendix B
as

A =$E‘>v(t)cos(wpt) o, p=012,...

T

B, :é(‘)y(t)s'n(wpt) dt, p=12,...

0

Discrete Series

In the previous andysis we had redtricted time to the interva [0, T], leading to a Fourier
series with discrete frequencies and a periodic function of time. In redity, taking data can
only be done at certain frequencies, thus diminating high frequencies. Such aredtriction
on the frequency will lead to a discretization of the detaiin time. Another way to view this
isthat when recording data we sample at afinite number of time steps, limiting our

ability to collect data with large oscillations. Thus, we not only have discrete frequencies

but we aso have discrete times.

This can be captured in the following representation:

1 8 .
ft)=ZA" é,l[Ap cosw t)+ B ,sinw t)],
o=
where the time, time step and trigonometric arguments are given by
t =nDt, Dt :l, and w t :_prn.
N T



We need to determine M and the unknown coefficients. As for the Fourier series, werely
on an orthogondity principle, but thistime replacing the integrd by a sum. Again we will
determine the unknownsin terms of the given samples of the function f(t). The
orthogonality is provided in Appendix C. If we take N samples, we can the daermi neN

unknown coefficients A, A,..., Ay, ad B,...,By,,.;. Thus wecanfix M _E Often

the coefficients B,and B,,, are included for symmetry. Note that the corresponding sine

function factors evauate to zero, leaving these two coefficients arbitrary. Thus, we can
take them to be zero.

The full set of coefficients are found to be (in Appendix D)

2 o 1 N
%—Wgymmmﬁﬁxp-Ln/Ql

=%5N_1 y(t,) sin@2), p=12,... N/ 1
_13g
N a1 y(t,).
14
/ ——a y(t, ) cos(np ),

B, =8, =0

I

Matlab Implementation

In this section we provide implementations of the discrete trigonometric transform in
Matlab. Thefirg implementation is a straightforward one which can be done in most
programming languages. The second implementation makes use of matrix computations
that can be performed in Matlab. Sums can be done with matrix multiplication, as
describes in Appendix I. This diminates the loops in the program.

Direct Implementation without special use of matrix algebra

%

% DFT in adirect implementation

%

% Enter Datainy

y=[7.67.4829210211512413413711.810.1...
9.0899510611.412912713914.213511.410.981];

% Get length of data vector or number of samples
N=length(y);

% Compute Fourier Coefficients
for p=1:N/2+1

A(P)=0;

B(p)=0;



for n=1:N
A(P)=A(p)+2/N*y(n)* cos(2* pi* (p-1)*n/N)’;
B(p)=B(p)+2/N*y(n)*sin(2* pi* (p-1)*n/N)’;
end
end
A(N/2+1)=A(N/2+1)/2;

% Reconstruct Signal - pmax is number of frequencies used in increasing order
pmax=13;
for n=1:N
ynew(n)=A(1)/2;
for p=2:pmax
ynew(n)=ynew(n)+A (p)* cos(2* pi* (p-1)*n/N)+B(p)* sin(2* pi* (p-1)*n/N);
end
end

% Plot Data
plot(y,'0’)

% Plot reconstruction over data
hold on

plot(ynew,'r")

hold off

Compact Implementation

Thisimplementation uses matrix products and is described in Appendix H.

%

% DFT in acompact implementation

%

% Enter Datainy

y=[7674829210211512413413711.8101 ...
90899510611412912.713914.213511.410981];

N=length(y);

% Compute the matrices of trigonometric functions
p=1:N/2+1;

n=1:N;

C=cos(2* pi* n™* (p-1)/N);

S=sin(2* pi*n™* (p-1)/N);

% Compute Fourier Coefficients

A=2/N*y*C;

B=2/N*y*S

A(N/2+1)=A(N/2+1)/2;

% Reconstruct Signal - pmax is number of frequencies used in increasing order
pmax=13;

ynew=A(1)/2+C(;,2:pmax)* A(2:pmax)'+(;,2:pmax)* B(2:pmax)’;

% Plot Data
plot(y,'0’)

% Plot reconstruction over data



hold on

plot(ynew,'r")
hold off
Appendices
A. Orthogonality of Trigonometric Basis
We warnt to prove the relations (for w,, = @ m=12,....)
T 10, mtn
Cpos(w, t)cosfw,t) dt = %T
o i—, m=n.
t2
T ‘l 0) ml n
Ginw, sin(w,f) dt=iT
0 TE’ m=n.

T

CFOSt t) sin(w,t) dt = 0.

These are based upon the trigonometric identitiesin Appendix F. For w1 #w_

050,08, 0) d =2 gsin, +w, 10+ sinew, - w, )

_ 16 cos((W, +W,)t) , - coS(@W, - W)U
Zg W, tW, W, - W, Cb
=0
gnce (w, £w_)T = 2p(n+ m) and cos(2p (n+m)) =1 for n and m integers. Smilaly, the

other integral's can be computed.

50500, )00504,) o= g0, +w, 1)+ cos(w, - w, )

_ Lésin((w, +w)t) | sin(Ww, - W)t u
Zg W, twW, W,-Wg, Uy
=0
sgnce sin(2p (n£m)) =0. FAndly,




Tc‘;in(wmt)si n(w,t) dt= %Tc‘jzos((wn - W, )t) - cos((w, +w_)t) dt

- : T
_ 1&in((w, - w,)t) | sin(w, +w,)0) U
Zg W, - W, W, +w,, ld)

=0

For w_, =w,_, we haveinstead

T T
Cposw,t)cosfw,t) dt = pos®(w,t) dt
0 0
1T
= 3 1+ cos(2w,t) dt
0
_1é sin(w )il
= — A +—Q
T

>

T T
csin(w,t)sin(w,t) dt = ¢gin®(w,t) dt
0 0

17
= 3 (1- cos(Aw,t) Jat
0

_1é sin@w U
26 2w, §
_T

>
Here we have used the trigonometric identities cos®q = % (1+cos’ 2q) and

sin’g :% (1- cos® 2y), which are obtainable from the identities in Appendix F.

B. Derivation of Fourier Coefficients

We now look at the Fourier series representation
1 5 .
fO=5A"* él[Ap cosw t)+ B ,sin(w t)].
p:

We can use the orthogonality relationsin the last Appendix in order to arrive a
expressions for the Fourier coefficients.

First, we integrate the series over one period.



)
of hdt =g %A)+a[ﬁb cos(w, t) + B,sinw, t)]gdt
0 ol p=1
=1 Git+a eAD(yos(w f) dt+B, Osm(w t)dtu
1@ o
1 éé sinw t) - cos(wt) "u
=2aT+ien ) g TN g
2 _1e w, w, u
0 ol
_1
_ZAbT

T

Thiswill givethe expresson A :$(‘)f (t) dt.
0

Now muiltiply the seriesby cos(w,t) for some q=1,2,... and integrate.

-
N —

/

TOf (Ycos(w,t) dt =

N

A+ 5 [A cos(w,t)+ B s n(wpt)]gcos(wqt) dt

—'

o

| [

A)O:os(w t)dt+ a e'% O:os(w t)cos(w t) dt+ B @m(w t)cos(w t) dtu

2 =18 o

Here use was made of the known orthogonality relations from the last section. Also, the
Kronecker deltawas used, defined as

This renders the sum above a sum with al zero terms except for one, that for p =q.

For example, if g =3, we have

;‘)f(bcos(wgt) dt=A>0+A0+A - +A‘>O+-~-:%A.

T

Thus, one can solve for the A, 'sto obtain A, :TE(‘)f (Ycos(w,f dt, g=1,2,....
0

Smilaly, one has



-

Tc‘)f (dsin(w,t) dt= (‘:Ii
0 1

N

A+ g [ A, cosfw, t)+ Bpsin(wpt)]gsi niw,t) dt

p=L

o

:%A)cfm(w t)dt+§ ZADO:OS(W t)sin(w,t) dt + B @ln(w t)sin(w,t) dtu
1€ o
1 -cos(wt) %
—E'Ab Wq 8’6%>0+Bp deqH
-1p.
2 q

T

So, B, :éc‘)f (sin(w,t) dt.
0

C. Discrete Orthogonality

The derivation of the discrete Fourier coefficients can be done using the discrete
orthogondity of the discrete trigonometric basis Smilar to the derivation of the above
Fourier coefficients for the Fourier series. We firgt prove the following

) 5 10, k=1..,N-1
é_cosae?pnkgzl

S &N 5 iN, k=0ON
N .

3 sn®PKO_ ko, N

n=1 8 N (%]

This can be done more easily using the exponentid form,

N N
é COS&?pnk +|a Sln&?pnko_a e2p|nk/N
n=1 8 N ﬂ n=1 8 N g n=1

by using Euler'sformula, € = cosq +i sinq for each term in the sum.

The exponentia sum is the sum of a geometric progression, which can be summed as
donein Appendix G. Thus, we have

N N n
é e2pink/N :é (eZpik/N)

n=1 n=1
= PIKIN +(e2pik/N)2+.__+(eZpik/N)N
e®ikIN g_ (e2pik/N)N u
_ o}
- 1- @®ikN

B e@ikIN g]__ eZpiKH

- 1- @®ikIN




Aslongas k! O,N the numerator isO. In the specid casesthat k = 0,N , we have
e2{:)ink/N :1. %’

& opimkin _ &
ae"™™ " =ga1=N.

n=1 n=1

Therefore,

& apnko,. & . aPpnk
COS =+I Sin
& %N 5 A SNETN

0 SN-1
:' and the result follows.
N, k=0,N

We can use this to establish orthogondlity relaions of the following type for
p,g=0,1 N.
) LRt LR | 2

N .. Z L
P &p pno ae’_’pqno_leo aezp(p q)no ap (p+g)nau

cos ~cos ==z ~+Cos
?:1 €N g &N p 28?1 8 o & N %

Splitting the above sum into two sums and then evauating the separate sums from
egrlier in this section,

N _ 5 10, 1
& cosZ(p-no_1 0. pta
et N g iN, p=q
& i0, +qg! N
3 cosZR(Prand_i % P4
L™ N 5 iN, p+g=N
we obtain
y ) _ IN/2, p=g* N/2
acosgézp p”Eeosge?qu”E:} N, p=qg=N/2.
i e 10  otherwise
Smilaly, wefind
n eN P (p+gnyu
n=1

and

asm(pr )Sm(qu )_E S(?p(|o gn )- COS(ZO(p q)n)u

€n=
N/2 p=9g! N/2

i
% 0, otherwise



D. Discrete Transform

The derivation of the coefficients for the DFT is now easlly obtained using the discrete
orthogondity in the last section. We start with the expansion

N/2 L
a&p pnod a2p pn
f(t + cos ++B,sin 4.
(t,)= AJa[Ap 2 Besing
Wefirg sum over n:
N N 3 N /2
a f(tn):é:iAtﬁa[A cosZR PN c’+B Smae?ppn
n=1 n=l'|\2 p=1 8 N g ﬂg
:lA)éN +g2|%acosaézpp 0+B gsinae?pp 9"'
2 2 p=t | n=l 8 N g n=l 8 N %
1 2
==AN+3{A 0+B,
2 b=l
1
=—AN.
> M
. . : &pano
Now, we can multiply both sides of the expansion by cos8 N = and sum over n.
2
N i N 3 N/2
&pagno_g 11 9 a&p pno a&2p pn¢ a&pan o
f(t,)cos =ai=A+ cos =+B, sn COSc——— =
na—'l()gNﬂ?:lTZA)aA’g 2 &N O]E EN 5
1.9 a@pagnd
== oS -
2Aonaz.l g N 9
"V, & appno. apanod & . appno_ _apgnall
+ coS _cos =+ B qQ sing——=cos
21':\'%?:.1 g N g é N ﬂ p?l 8 %] 8 N %
\N/2\ .
taiaNd, +B,08 qt N/2
_leal "2 %
__I_N°/2
;a{AdepN,2+B 0} q=N/2
p=1
11
=AN, gt N/2
iszN q= N/2

So, we have found that

29 apan o N
=—3q f(t)cos -, 1,

19 N/2 1o
Az :Nna}l f(tn)cosgép n(N )Z N a1 f(t)cos(pn).




& capano_ S 11 N2 ap pno ap pnol . adogno
f(t)sine(——== =A+ cos ++B, sm ysin =
a fhsngmygraizAralhog iy N %ﬁ N 5
1,8 oo ¥ 8 anpmoaa?po ae?ppoae?p
== sin —+ COS, _sm -+B sm ~s8n
ZA)?ZI %N 2} ?1:Apna-.1 (é‘ g o a [} g
"2 N, U
= A X0+B —d
21} p P2 P,Q%
1
=>BN.
Findly, we have
29 . apagno N
B=—g f(t)sin bt =1...,—- 1.
= fsng=gme 4=t

E. The Discrete Exponential Transform

The derivation of the coefficients for the DFT was obtained using the discrete
orthogondity in the last section. However, thisis not the form used in Matlab for

gpectra andysis. Matlab alows for the computation of the Fast Fourier Transform (FFT)
and its description in the help section does not involve sines and cosines. Namely, Matlab
defines the transform and inverse transform as

"For length N input vector x, the DFT is a length N vector X, with elements

X(k) = SLE\Im x(n)*exp(-j*2*pi*(k-1)*(n-1)/N), 1 <= k <= N.
The inverse Dlg;l(computed by IFFT) is given by
x(n) = (1/N) sul\rln X(K)*exp( j*2*pi*(k-1)*(n-1)/N), 1 <=n <= N.
k=1
The relationship between the DFT and the Fourier coefficients a and b in
x(n) = a0 + s!?(rng(k)*cos(2*pi*k*t(n)/(N*dt))+b(k)*sin(2*pi*k*t(n)/(N*dt))

is
a0 = X(1)/N, a(k) = 2*real(X(k+1))/N, b(k) = -2*imag(X(k+1))/N,
where x is a length N discrete signal sampled at times t with spacing dt."

Or, it ds0 provides the following:
N

X(K)=a x( W22,
=1

N
X(J) =ié X KW D Swhere W, = ' for 1Ek,n £ N.

k=1



In this section we will derive the discrete Fourier exponentia transform in preparation for
adiscusson of FFT in the next section. We will start with the DFT.

_1, % a&2p pn o . &P pné
f(tn)—z,%+pa:_1[Apcosg N E+Bpsm8 N gj.

Again, we can employ Euler's formulato rewrite the trigonometric functionsin terms of
exponentials, Namdly, using € = cosq +i sing, we have that

Ccosq :%(éq +e'iq),

sing :i_(éq - e“q).

2i
Then we have
1, ¥ 1, ., . oion/ Sl
ft - + ,A_ 2p|pn/N+e2p|pn/N +B— 2p|pn/N_eZp|pn/N
(n ZA) ;a:l% ng_:‘ H p2|$ %
/

1 +N02\[1, iB_ e MmN +1' +iB_H -2pipn/ N U
AT ISEA BT o @A, +iB, g,
p:

We define Cp :%(Ap - in) and note that the above result can be written as

N/2

f (tn) - Co + é {CpeZpipn/N + C’;e 2pipn/N}.
p=1
Here we have introduce the complex conjugate operation (a+ib) =a- ib.
Thetermsin the sumslook smilar. We can actudly combine them into one form. Note
that e®™ =cos(2o N) +isin(2p N) =1. Thus, we can write

g PPN — g2 /NgdIN = g@I(N-PIVN jn the sacond sum. Since p=1,...,N/2, we see
that N- p=N-1LN- 2...,N/2. So, we can rewrite the second sum as

N°/2 oo/ N°/2 ( ! No.l ’

* -2pipn/N * i(N-p)n/N — * pign/ N
a C.e =aCe” = a G
p=1 p=1 gq=N/2

Since g isadummy index (it can be replaced by any letter without changing the value of
the sum), we can replace it with ap and combine the terms in both sums to obtain
N-1
ft,)=a Fe™™",
p=0
where



A

|
i o p=0
I

- -iB), O<p<N/2

3 ’Ir > (A, - 1B)) p

: Az p=N/2
1
'— +iB, ), N/2<p<N

Notice that the red and imaginary parts of the Fourier coefficients obey certain symmetry
properties over the full range of the indices sincethe real and imaginary parts are related
between pi [0,N/2] and pT [N/2 N - 1]. [A description of thiswill be provided later ]

We can know determi ne the coefficientsin terms of the sampled data.

2(A -iB)=—= &ppnd .. appndl
C,= (Ap iB,) = af(t)ecosg |sm8—;iH

N
o)

__a f (tn)e 2p|pn/N

Thus,

N
o)

i N
F - f t e—2p|pn/N1 O< <
va P<=

n=1

=

and
14 i N
:C - f t eZpl(N-p)n/N’ < <N
»=na (t) > <P

1 f(g)eZplpn/N

—l
We ha/e shown that for dl F's but two, theform s
__a f (tn)eZplpn/N
n=1

However, we can easity show that thisisasotruewhen p =0 and p :%.

2 = s = & 1(1,)008(rp)
:%é} f(t,)[cos(np) - i sin(np)]

:iéN f(t])e—Zpin(N/Z)/N
N n=1

and



1 14
F=-A==—23 f(t
0 2Ab N?;l (n)
:ié\‘ in(0)/N
N?:lf(t“)ezp

Thus al of the F,'s are of the same form. This gives us the discrete transform pair

¥ o
ft)=8 Fe”™"™,

p=0

F =14 f()ermn
p_ﬁa n .

n=1
Note that thisis Smilar to the definition of the FFT given in Matlab.

F. Fast Fourier Transform

The usua computation of the discrete Fourier transform is done using the Fast Fouier
Transdform (FFT). There are various implementations of it, but a standard formisthe
Radix-2 FFT. We describe this FFT in the current section. We begin by writing the DFT
compactly usng W = €' Notethat W"'2=-1, W" =1, and e®™N =W ¥, Wecan
then write

S-S
Fo=a WHXf,.

j=0
Thekey to the FFT isthat this sum can be written astwo smilar sums

-
Fo=aWf,
j=0
N1 N1
=a WHf + g Wk
i=0 j=N/2
Nl N1 N
- k K(m+N/2 —
- W fj+aW( )fm+N/2’ fOI’m—J-E
j=0 m=0
NG L ik K(j+N/2)
- i i+ N
- a éN fj +W fj+N12H
j=0
N/2-1

=3 w" gf, +(- D" f . L fsinceWw ™2 =wH W) andw"'? =- 1.

j=0

Thus, the sum appears to be of the same form as before, but there are haf as many terms

with a different coefficient for the W*'s. In fact, we can separate the terms involving the
+ or — 9gn by looking at the even and odd vaues of k.



For even k = 2m, we have

N/2-1
[o]

m\l 4 N N
F.= a (Wz ) &f + .. B m=0,...?-1.

i=0

For odd k = 2m+1, we have

N/2-1
[o]

I:2 m+L = a.

j=0

m\inri & N N
(W) W gf - . m=0,...—- 1

Each of these equations gives the Fourier coefficientsin terms of asmilar sum using
fewer terms and with a different weight, W? = (e‘zf’”N )2 =g N2 "|E N isapower of 2,
then this process can be repeated over and over until one ends up with asimple sum.

The processis easily seen when written out for a smal number of samples. Let N =8.
Then afird pass at the above gives

F=f+fi+L+L+f+f+f+T

F =f, +WE +W?2f, +W3f, +W*f, +W>f +W°f, +W'f,

F,=f, +W2f +W*f, + WO f +f, +W?f +W* f, +W° f,

F,=f, +W2 £, +WO £, +WE, +W* f, + W' f, +W?*f, +W°1,

Fo=f,+WE +f, + W, +f, +W*f +f +W*f,

F = f, +W°f W2, +W ' f, +W*f, +WF +W°f, +W°T,

Fo=f, +Wef +W*f, +W>f +f, +W° f +W*f, +W?f,

F=f,+W'f +W°f, +W°f, +W*f, + W f, +W? f, +WF,

The point isthat the terms in these expressions can be regrouped with W = €”'/® and
noting W* =- 1:

Fo=(fo+ f)+(f+f)+(f,+ f)+(f, + f;)
© gO+gl+92+%

F=(fo- f)+(f- f)W=+(f,- f )W +(f,- f, )W
°©0,t9,+t0s+ 9,

Fo=(fo+ f)+(f+ f)W2- (f,+ f)- (f,+f,)W?
=0 -9 +(gl' %)WZ

F3=(f0- f4)' (fz' fG)W+(f1- fs)\/\NV2+(f3- f7)V\NV6
=0,- G5 +OW’ +gW°

Fo=(fo+ f)+(f+f)- (L+f)-(f.+1)
=0,*t09,- 9,- 9,



Fo=(f,- f,)+(f,- fOW+(f, - fOWW*+(f,- f,)WW*
=0,+0gs+gW* +gW*

Fo=(fo+ f,)+(f+ f)We- (f,+f)- (f,+ f,)W°
=0y~ 0, HO, - G;)W°

F = (f,- f,)- (f,- fOW+(f,- EOWWE+(f,- f,)WW?
=g,- Qo+ OW°+ gW?

However, each of the g-series can be rewritten as well, leading to

Fo=(g+9,)+(9,+0)° hh+h

F =(9,%0)+(g +9,)° h, +h
F,=(0- 8,)+ (g - g)W?° h+h
F,=(0,- 9e) +(9s- 9, W? ° hy +h,
F=(9+09) (0, +9)=h-h
F=(9,+9)- (9 +9,) =h,- h
Fo=0o-9,-(9 - gG;)W?=h,- h,
F,=0- g +gW°+gW*=h - h

Thus, the computation of the Fourier coefficients amounts to inputting the f's and
computing the g's. This takes 8 additions and 4 multiplications. Then one get the h's,
which is another 8 additions and 4 multiplications. There are three stages, amounting to a
total of 12 multiplications and 24 additions. Carrying out the process in generd, one has

log, N stepswith N /2 multiplicationsand N additions per step. In the direct
computation one has (N - 1)* multiplicationsand N(N - 1) additions. Thus, for N =8,
that would be 49 multiplications and 56 additions.

The above process is typicaly shown schematicaly in a"butterfly diagram”. Examples

can be found at other sites. One might be provided here a a later date. For now, we have
the basic butterfly transformation displayed as

In the actud implementation, one computes with the h'sin the following order:



Output and Binary Representation Desired Order
h,+h,=F, 000 F,, 000
h - h=F, 100 F, 001
h,+h,=F,, 010 F,, 010
h,- h,=F, 110 F,, 011
h,+h,=F, 001 F,, 100
h,- h,=F, 101 F, 101
hg+h,=F, 011 F, 110
h-h=F, 111 F, 111

The binary representation of the index was dso listed. Notice that the output isin bit-
reversed order as compared to the right side of the table which shows the coefficientsin
the correct order. [Just compare the columnsin each set of binary representations] So,
typicdly there isabit reversa routine needed to unscramble the order of the output
coefficientsin order to use them.

G. Trigonometric Identities

The badic trigonometric identities that one needs the product of trigonometric
functions expanded as Smple expressions. These are based upon the sum and
differenceidentities:

sin(A+ B) =sin(A)cos(B) £ sin(B)cos(A)
cos(Ax B) = cos(A)cos(B)Fsin(A)sin(B) .

Adding or subtracting one obtains

sin(A+B) +sin(A- B) =2sin(A)cos(B)
cos(A+ B)+ cos(A- B) = 2cos(A)cos(B)
cos(A- B)- cos(A+B)=2sin(A)sin(B).

H. Geometric Progression

Another frequently occurring computation is the sum of a geometric progression. This

N

isasumof theform S, = § ar®. Thisisasumof N +1 termsin which consecutive
k=0

terms have a congtant ratio, r. The sumiseasily computed. One multiplies the sum

S, by r and subtracts the resulting sum from the origind sum to obtain
S,- IS, =(a+ar+---+a")- (ar+--+ar" +ar")=a- ar".
Factoring on both sdes of this chain of equations yields the desired sum,



I. Matrix Operations for Matlab

The beauty of usng Matlab is that many operations can be performed using matrix
operaions and that one can perform complex arithmetic. This eiminates many loops and
make the coding of computations quicker. However, one needs to be able to understand
the formaism. In this section we e aborate on these operations so that one can see how
the Matlab implementation of the direct computation of the DFT can be carried out in
compact form as shown previoudy in the Matlab Implementation section. Thisisdl
based upon the structure of Matlab, which is essentidly aMATrix LABoratory.

A key operation between matricesis matrix multiplication. An n” m matrix isamply a
collection of numbers arranged in n rows and m columns. For example, the matrix
él 2 3u. . , . ,
84 5 6(' isa 2" 3 matrix. The entries (eements) of agenerd matrix A can be
u

represented as A which represents the ith row and jth column.

Given two matrices, A and B, we can define the multiplication of these matrices when the
number of columns of A equals the number of rows of B. The product, which we
represent as matrix C, isgiven by theijth dement of C. In particular, we let A be
ap mmatrix and Ban m™ q matrix. The product, C, will bea p~ qmatrix with entries

g , :
C=aAB, i=1.,p, j=1l...q,
k=1

:AlBlj +A282j +AmBrT]

If we wanted to compute the sum é ab , theninatypicd programming language we

nn?
n=1

could use aloop, such as

Sum =0
Loopnfrom1ltoN

Sum = Sum + a(n)*b(n)
End L oop

In Matlab we could do this with aloop as above, or we could resort to matrix
multiplication. Wecanletaandbbe 1" n and n” 1 matrices, respectively. Then the
product would bea 1 1 matrix; namely, the sum we are seeking. However, these
matrices are not dways of the suggested size.

A 1" n matrix iscalled arow vector anda 1" n meatrix is caled a column vector. Often
we have that both are of the same type. One can convert arow vector into acolumn



vector, or vice versa, using the matrix operation called atranspose. More generdly, the
transpose of amatrix is defined asfollows. A" has the dements saisfying (AT )”_ =A.

In Matlab, the transpose if amatrix A is A'.

Thus, if we want to perform the above sum, we have a ab = a a b, .Inparticular, if

both a and b are row vectors, the sum in Matlab i |sg|ven by ab’, and if they are both row
vectors, thesumis a'b. This notation is much easier to type.

In our computation of the DFT, we have many sums. For example, we want to compute
the coefficients of the sine functions,

2 9 e
B, =y & Y(t)Sn(3E),  p=0,...,N/2

The sum can be computed as amairix product. The function y only hasvaues et times t, .
Thisis the sampled data. We can represent it as a vector. The sine functions take values
a arguments (angles) depending upon p and n. So, we can represent the sSines as an

N“ (N/2+1) or (N/2+1)" N matrix. The Fourier coefficient thus becomesasmple

matrix multiplication, ignoring the prefactor % . Thus, if we put the sampled datain a

1" N vector Y and put thesnesinan N~ (gﬂ) vector S, the Fourier coefficient will

be the product, which has size 17 g +19 Thus in the code we see that these
(%]

coefficients are computed as B=2/N*y* S for the given y and B matrices. The A
coefficients are computed in the same manner. Comparing the two codes in that section,
we see how much easier it is to implement. However, the number of multiplications and
additions has not decreased. Thisiswhy the FFT is generdly better. But, seeing the direct
implementation hel ps one to understand what is being computed before seeking amore
efficient implementation, such asthe FFT.



