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Introduction 
 
Often one is interested in determining the frequency content of signals. Signals are 
typically represented as time dependent functions. Real signals are continuous, or analog 
signals. However, through sampling the signal by gathering data, the signal does not 
contain high frequencies and is finite in length. The data is then discrete and the 
corresponding frequencies are discrete and bounded. Thus, in the process of gathering 
data, one seriously affects the frequency content of the signal. This is true for simple a 
superposition of signals with fixed frequencies. The situation becomes more complicated 
if the data has an overall non-constant trend or even exists in the presence of noise. 

From Transforms to Series 
 
To be completed. 

Fourier Series 
 
As described in the last section (hopefully), we have seen that by restricting our data to a 
time interval [0, T] for period T, and extending the data to ),( ∞−∞ , one generates a 
periodic function of infinite duration at the cost of losing data outside the fundamental 
range. This is not unphysical, as the data is typically taken over a finite period of time. 
Thus, any physical results in the analysis can be obtained be restricting the outcome to 
the given period. 
 
In typical problems one seeks a representation of the signal, valid for ],,0[ Tt ∈  as 
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Note that f(t) is periodic with period P=T: ( ) ( ) .f t P f t+ =  Most signals have an infinite 
period, so we already have made a first approximation. Thus, this has restricted the 
physical data to .0 Tt <<  [That is, by limiting t, we are forced to using discrete 
frequencies, or the above sum as opposed to an integral in the Fourier Transform in the 
last section.] 
 



One can extract the Fourier Coefficients ( pp BA , ) using the orthogonality of the 

trigonometric basis.  Namely, such orthogonality for a set }1),({ ∞= …nxnφ over the 
interval ],[ ba  with weight )(xρ  is given by the condition 
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For the trigonometric functions, this is given by the relations 
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These relations are proved in Appendix A. The coefficients are found to in Appendix  B 
as 
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Discrete Series 
 
In the previous analysis we had restricted time to the interval [0,T], leading to a Fourier 
series with discrete frequencies and a periodic function of time. In reality, taking data can 
only be done at certain frequencies, thus eliminating high frequencies. Such a restriction 
on the frequency will lead to a discretization of the data in time. Another way to view this 
is that when recording data we sample at a finite number of time steps, limiting our 
ability to collect data with large oscillations. Thus, we not only have discrete frequencies 
but we also have discrete times.  
 
This can be captured in the following representation: 
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We need to determine M and the unknown coefficients. As for the Fourier series, we rely 
on an orthogonality principle, but this time replacing the integral by a sum. Again we will 
determine the unknowns in terms of the given samples of the function f(t). The 
orthogonality is provided in Appendix C. If we take N samples, we can the determine N 

unknown coefficients 0 1 / 2, , , NA A A…  and 1 / 2 1, , .NB B −…  Thus, we can fix .
2
N

M =  Often 

the coefficients 0B and 2/NB are included for symmetry. Note that the corresponding sine 
function factors evaluate to zero, leaving these two coefficients arbitrary. Thus, we can 
take them to be zero. 
 
The full set of coefficients are found to be (in Appendix  D) 
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Matlab Implementation 
 
In this section we provide implementations of the discrete trigonometric transform in 
Matlab. The first implementation is a straightforward one which can be done in most 
programming languages. The second implementation makes use of matrix computations 
that can be performed in Matlab. Sums can be done with matrix multiplication, as 
describes in Appendix I. This eliminates the loops in the program. 
 
Direct Implementation without special use of matrix algebra 
 

% 
% DFT in a direct implementation 
% 
% Enter Data in y 
y=[7.6 7.4 8.2 9.2 10.2 11.5 12.4 13.4 13.7 11.8 10.1 ... 
    9.0 8.9 9.5 10.6 11.4 12.9 12.7 13.9 14.2 13.5 11.4 10.9 8.1]; 
 
% Get length of data vector or number of samples 
N=length(y); 
 
% Compute Fourier Coefficients 
for p=1:N/2+1 
    A(p)=0; 
    B(p)=0; 



    for n=1:N 
        A(p)=A(p)+2/N*y(n)*cos(2*pi*(p-1)*n/N)'; 
        B(p)=B(p)+2/N*y(n)*sin(2*pi*(p-1)*n/N)'; 
    end     
end 
A(N/2+1)=A(N/2+1)/2; 
 
% Reconstruct Signal - pmax is number of frequencies used in increasing order 
pmax=13; 
for n=1:N 
    ynew(n)=A(1)/2; 
    for p=2:pmax 
        ynew(n)=ynew(n)+A(p)*cos(2*pi*(p-1)*n/N)+B(p)*sin(2*pi*(p-1)*n/N); 
    end 
end     
 
% Plot Data 
plot(y,'o') 
 
% Plot reconstruction over data 
hold on 
plot(ynew,'r') 
hold off 
 

Compact  Implementation 
 
This implementation uses matrix products and is described in Appendix H. 

 
% 
% DFT in a compact implementation 
% 
% Enter Data in y  
y=[7.6 7.4 8.2 9.2 10.2 11.5 12.4 13.4 13.7 11.8 10.1 ... 
    9.0 8.9 9.5 10.6 11.4 12.9 12.7 13.9 14.2 13.5 11.4 10.9 8.1]; 
N=length(y); 
 
% Compute the matrices of trigonometric functions 
p=1:N/2+1; 
n=1:N; 
C=cos(2*pi*n'*(p-1)/N); 
S=sin(2*pi*n'*(p-1)/N); 
 
% Compute Fourier Coefficients 
A=2/N*y*C; 
B=2/N*y*S 
A(N/2+1)=A(N/2+1)/2; 
 
% Reconstruct Signal - pmax is number of frequencies used in increasing order 
pmax=13; 
ynew=A(1)/2+C(:,2:pmax)*A(2:pmax)'+S(:,2:pmax)*B(2:pmax)'; 
 
% Plot Data 
plot(y,'o') 
 
% Plot reconstruction over data 



hold on 
plot(ynew,'r') 
hold off    
 

Appendices 

A. Orthogonality of Trigonometric Basis 
 

We want to prove the relations (for 
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These are based upon the trigonometric identities in Appendix F. For m nω ω≠ ±  
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since ( ) 2 ( )n m T n mω ω π± = ±  and cos(2 ( )) 1n mπ ± =  for n and m integers. Similarly, the 
other integrals can be computed. 
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since sin(2 ( )) 0.n mπ ± =  Finally, 
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For ,m nω ω=  we have instead 
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Here we have used the trigonometric identities 2 21
cos (1 cos 2 )

2
θ θ= +  and 

2 21
sin (1 cos 2 )

2
θ θ= − , which are obtainable from the identities in Appendix F. 

B. Derivation of Fourier Coefficients 
 
We now look at the Fourier series representation  
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We can use the orthogonality relations in the last Appendix in order to arrive at 
expressions for the Fourier coefficients.  
 
First, we integrate the series over one period. 
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This will give the expression 0
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Now multiply the series by cos( )qtω  for some 1,2,q = …and integrate.  

 

0
10 0

0
10 0 0

0 ,
10

1
()cos( ) [ cos( ) sin( )] cos( )

2

1
cos( ) cos( )cos( ) sin( )cos( )

2

sin( )1
0

2 2

.
2

T T

q p p p p q
p

T T T

q p p q p p q
p

T

q
p p q p

pq

q

f t t dt A A t B t t dt

A t dt A t t dt B t t dt

t T
A A B

T
A

ω ω ω ω

ω ω ω ω ω

ω
δ

ω

∞

=

∞

=

∞

=

 
= + + 

 
 

= + + 
 

 = + + ⋅  

=

∑∫ ∫

∑∫ ∫ ∫

∑

 
Here use was made of the known orthogonality relations from the last section. Also, the 
Kronecker delta was used, defined as  
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This renders the sum above a sum with all zero terms except for one, that for .p q=   
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C. Discrete Orthogonality 
 
The derivation of the discrete Fourier coefficients can be done using the discrete 
orthogonality of the discrete trigonometric basis similar to the derivation of the above 
Fourier coefficients for the Fourier series. We first prove the following  
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This can be done more easily using the exponential form,  
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by using Euler's formula, cos sinie iθ θ θ= +  for each term in the sum. 
 

The exponential sum is the sum of a geometric progression, which can be summed as 
done in Appendix G. Thus, we have 
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As long as 0,k N≠  the numerator is 0. In the special cases that 0,k N= , we have 
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We can use this to establish orthogonality relations of the following type for 
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Splitting the above sum into two sums and then evaluating the separate sums from 
earlier in this section,  
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D. Discrete Transform 
 
The derivation of the coefficients for the DFT is now easily obtained using the discrete 
orthogonality in the last section. We start with the expansion  
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Now, we can multiply both sides of the expansion by 
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Similarly, 
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E. The Discrete Exponential Transform 
 
The derivation of the coefficients for the DFT was obtained using the discrete 
orthogonality in the last section. However, this is not the form used in Matlab for  
spectral analysis. Matlab allows for the computation of the Fast Fourier Transform (FFT) 
and its description in the help section does not involve sines and cosines. Namely, Matlab 
defines the transform and inverse transform as  
 

"For length N input vector x, the DFT is a length N vector X, with elements 
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       a0 = X(1)/N, a(k) = 2*real(X(k+1))/N, b(k) = -2*imag(X(k+1))/N, 
    where x is a length N discrete signal sampled at times t with spacing dt." 
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In this section we will derive the discrete Fourier exponential transform in preparation for 
a discussion of FFT in the next section. We will start with the DFT.  
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Again, we can employ Euler's formula to rewrite the trigonometric functions in terms of 
exponentials, Namely, using cos sin ,ie iθ θ θ= +  we have that  
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2 / 2 / 2 2 ( ) /ipn N ipn N iN i N p n Ne e e eπ π π π− − − −= =  in the second sum. Since 1, , / 2p N= … , we see 
that 1, 2, , /2.N p N N N− = − − …  So, we can rewrite the second sum as 

/ 2 / 2 1
* 2 / * 2 ( ) / * 2 /

1 1 / 2

.
N N N

ipn N i N p n N iqn N
p p N q

p p q N

C e C e C eπ π π
−

− −
−

= = =

= =∑ ∑ ∑  

Since q is a dummy index (it can be replaced by any letter without changing the value of 
the sum), we can replace it with a p and combine the terms in both sums to obtain 

1
2 /

0

( ) ,
N

ipn N
n p

p

f t F e π
−

=

= ∑  

where  
 



0

/ 2

, 0
2

1
( ), 0 / 2

2
, / 2

1
( ), / 2

2

p p
p

N

N p N p

A
p

A iB p N
F

A p N

A iB N p N− −

 =

 − < <

= 
 =

 + < <

 

 
Notice that the real and imaginary parts of the Fourier coefficients obey certain symmetry 
properties over the full range of the indices since the real and imaginary parts are related 
between [0, /2]p N∈  and [ / 2, 1].p N N∈ −  [A description of this will be provided later.] 
 
We can know determine the coefficients in terms of the sampled data.  

1

2 /

1

1 1 2 2
( ) ( ) cos sin

2

1
( ) .

N

p p p n
n

N
ipn N

n
n

pn pn
C A iB f t i

N N N

f t e
N

π

π π
=

−

=

    = − = −        

=

∑

∑
 

Thus,  

2 /

1

1
( ) , 0

2

N
ipn N

p n
n

N
F f t e p

N
π−

=

= < <∑  

and 
* 2 ( ) /

1

2 /

1

1
( ) ,

2

1
( ) .

N
i N p n N

p N p n
n

N
ipn N

n
n

N
F C f t e p N

N

f t e
N

π

π

−
−

=

−

=

= = < <

=

∑

∑
 

We have shown that for all F's but two, the form is   
2 /

1

1
( ) .

N
ipn N

p n
n

F f t e
N

π−

=

= ∑  

 

However, we can easilty show that this is also true when 0p =  and .
2
N

p =  

[ ]

/ 2 / 2
1

1

2 ( /2 ) /

1

1
( )cos( )

1
( ) cos( ) sin( )

1
( )

N

N N n
n

N

n
n

N
in N N

n
n

F A f t n
N

f t n i n
N

f t e
N

π

π

π π

=

=

−

=

= =

= −

=

∑

∑

∑

 

and 



0 0
1

2 (0) /

1

1 1
( )

2

1
( )

N

n
n

N
in N

n
n

F A f t
N

f t e
N

π

=

=

= =

=

∑

∑
 

Thus, all of the pF 's are of the same form. This gives us the discrete transform pair 
 

1
2 /

0

( ) ,
N

ipn N
n p

p

f t F e π
−

=

= ∑  

 

 2 /

1

1
( )

N
ipn N

p n
n

F f t e
N

π−

=

= ∑ . 

 
Note that this is similar to the definition of the FFT given in Matlab. 

F. Fast Fourier Transform 
 
The usual computation of the discrete Fourier transform is done using the Fast Fouier 
Transform (FFT). There are various implementations of it, but a standard form is the 
Radix-2 FFT. We describe this FFT in the current section. We begin by writing the DFT 
compactly using 2 /i NW e π−= . Note that / 2 1, 1,N NW W= − =  and 2 / .ijk N jke Wπ =  We can 
then write  

1

0

.
N

jk
k j

j

F W f
−

=

= ∑  

The key to the FFT is that this sum can be written as two similar sums: 
 

1

0

/ 2 1 1

0 / 2

/ 2 1 / 2 1
( / 2 )

/ 2
0 0

/ 2 1
( / 2 )

/ 2
0

/ 2 1
( / 2 ) / 2 / 2

/ 2
0

, for
2

( 1) ,since ( ) 1.

N
jk

k j
j

N N
jk jk

j j
j j N

N N
jk k m N

j m N
j m

N
jk k j N

j j N
j

N
jk k k j N kj N k N

j j N
j

F W f

W f W f

N
W f W f m j

W f W f

W f f W W W andW

−

=

− −

= =

− −
+

+
= =

−
+

+
=

−
+

+
=

=

= +

= + = −

 = + 

 = + − = = − 

∑

∑ ∑

∑ ∑

∑

∑

 

 
Thus, the sum appears to be of the same form as before, but there are half as many terms 
with a different coefficient for the jkW 's. In fact, we can separate the terms involving the 
+ or – sign by looking at the even and odd values of k. 
 



For even 2 ,k m=  we have 

( )
/ 2 1

2
2 / 2

0

, 0, 1.
2

N jm
m j j N

j

N
F W f f m

−

+
=

 = + = − ∑ …  

 
For odd 2 1,k m= +  we have 

( )
/ 2 1

2
2 1 / 2

0

, 0, 1.
2

N jm j
m j j N

j

N
F W W f f m

−

+ +
=

 = − = − ∑ …  

 
Each of these equations gives the Fourier coefficients in terms of a similar sum using 

fewer terms and with a different weight, ( )22 2 / 2 /( /2) .i N i NW e eπ π− −= =  IF N is a power of 2, 

then this process can be repeated over and over until one ends up with a simple sum.  
 
The process is easily seen when written out for a small number of samples. Let 8.N =  
Then a first pass at the above gives  
 

0 0 1 2 3 4 5 6 7F f f f f f f f f= + + + + + + +  
2 3 4 5 6 7

1 0 1 2 3 4 5 6 7F f Wf W f W f W f W f W f W f= + + + + + + +  
2 4 6 2 4 6

2 0 1 2 3 4 5 6 7F f W f W f W f f W f W f W f= + + + + + + +  
3 6 4 7 2 5

3 0 1 2 3 4 5 6 7F f W f W f Wf W f W f W f W f= + + + + + + +  
4 4 4 4

4 0 1 2 3 4 5 6 7F f W f f W f f W f f W f= + + + + + + +  
5 2 7 4 6 3

5 0 1 2 3 4 5 6 7F f W f W f W f W f Wf W f W f= + + + + + + +  
6 4 2 6 4 2

6 0 1 2 3 4 5 6 7F f W f W f W f f W f W f W f= + + + + + + +  
7 6 5 4 3 2

7 0 1 2 3 4 5 6 7F f W f W f W f W f W f W f Wf= + + + + + + +  

The point is that the terms in these expressions can be regrouped with / 8iW e π−=  and 
noting 4 1W = − : 
 

0 0 4 1 5 2 6 3 7

0 1 2 3

( ) ( ) ( ) ( )F f f f f f f f f

g g g g

= + + + + + + +
≡ + + +

 

( ) ( ) ( ) ( )2 3
1 0 4 1 5 2 6 3 7

4 6 5 7

F f f f f W f f W f f W

g g g g

= − + − + − + −

≡ + + +
 

( ) ( ) ( ) ( )2 2
2 0 4 1 5 2 6 3 7

2
0 2 1 3( )

F f f f f W f f f f W

g g g g W

= + + + − + − +

= − + −
 

2 6
3 0 4 2 6 1 5 3 7

2 6
4 6 5 7

( ) ( ) ( ) ( )F f f f f W f f WW f f WW

g g g W g W

= − − − + − + −

= − + +
 

( ) ( ) ( ) ( )4 0 4 1 5 2 6 3 7

0 2 1 3

F f f f f f f f f

g g g g

= + + + − + − +

= + − −
 



4 4
5 0 4 2 6 1 5 3 7

4 4
4 6 5 7

( ) ( ) ( ) ( )F f f f f W f f WW f f WW

g g g W g W

= − + − + − + −

= + + +
 

( ) ( ) ( ) ( )6 6
6 0 4 1 5 2 6 3 7

6
0 2 1 3( )

F f f f f W f f f f W

g g g g W

= + + + − + − +

= − + −
 

6 2
7 0 4 2 6 1 5 3 7

6 2
4 6 5 7

( ) ( ) ( ) ( )F f f f f W f f WW f f WW

g g g W g W

= − − − + − + −

= − + +
 

 
However, each of the g-series can be rewritten as well, leading to  
 

0 0 2 1 3 0 1( ) ( )F g g g g h h= + + + ≡ +  

1 4 6 5 7 4 5( ) ( )F g g g g h h= + + + ≡ +  
2

2 0 2 1 3 2 3( ) ( )F g g g g W h h= − + − ≡ +  
2

3 4 6 5 7 6 7( ) ( )F g g g g W h h= − + − ≡ +  

4 0 2 1 3 0 1( ) ( )F g g g g h h= + − + = −  

5 4 6 5 7 4 5( ) ( )F g g g g h h= + − + = −  
2

6 0 2 1 3 2 3( )F g g g g W h h= − − − = −  
6 2

7 4 6 5 7 6 7F g g g W g W h h= − + + = −  
 
Thus, the computation of the Fourier coefficients amounts to inputting the f's and 
computing the g's. This takes 8 additions and 4 multiplications. Then one get the h's, 
which is another 8 additions and 4 multiplications. There are three stages, amounting to a 
total of 12 multiplications and 24 additions. Carrying out the process in general, one has 

2log N  steps with / 2N  multiplications and N additions per step. In the direct 

computation one has 2( 1)N −  multiplications and ( 1)N N −  additions. Thus, for 8,N =  
that would be 49 multiplications and 56 additions.  
 
The above process is typically shown schematically in a "butterfly diagram". Examples 
can be found at other sites. One might be provided here at a later date. For now, we have 
the basic butterfly transformation displayed as  
 

1
2

j j
N j

f f f
+

→ +

1 1
2 2

j
j

N j N j
f f f W

+ +

 
→ − 

 

 

 
 
In the actual implementation, one computes with the h's in the following order: 
 



Output and Binary Representation Desired Order 

0 1 0, 000h h F+ =  

0 1 4 , 100h h F− =  

2 3 2, 010h h F+ =  

2 3 6, 110h h F− =  

4 5 1, 001h h F+ =  

4 5 5, 101h h F− =  

6 7 3, 011h h F+ =  

6 7 7 , 111h h F− =  

0 , 000F  

1 , 001F  

2 , 010F  

3 , 011F  

4 , 100F  

5 , 101F  

6 , 110F  

7 , 111F  
 
 
The binary representation of the index was also listed. Notice that the output is in bit-
reversed order as compared to the right side of the table which shows the coefficients in 
the correct order. [Just compare the columns in each set of binary representations.] So, 
typically there is a bit reversal routine needed to unscramble the order of the output 
coefficients in order to use them. 

G. Trigonometric Identities 
 

The basic trigonometric identities that one needs the product of trigonometric 
functions expanded as simple expressions. These are based upon the sum and 
difference identities:  
 

sin( ) sin( )cos( ) sin( )cos( )A B A B B A± = ±  
cos( ) cos( )cos( ) sin( )sin( )A B A B A B± = ∓ . 

 
Adding or subtracting one obtains 
 

sin( ) sin( ) 2sin( )cos( )A B A B A B+ + − =  
cos( ) cos( ) 2cos( )cos( )A B A B A B+ + − =  
cos( ) cos( ) 2sin( )sin( )A B A B A B− − + = . 

 

H. Geometric Progression 
 

Another frequently occurring computation is the sum of a geometric progression. This 

is a sum of the form 
0

N
k

N
k

S ar
=

= ∑ . This is a sum of 1N +  terms in which consecutive 

terms have a constant ratio, .r  The sum is easily computed. One multiplies the sum 

NS by r  and subtracts the resulting sum from the original sum to obtain  
1 1( ) ( ) .N N N N

N NS rS a ar ar ar ar ar a ar+ +− = + + + − + + + = −L L  
Factoring on both sides of this chain of equations yields the desired sum,  



1(1 )
.

1

N

N

a r
S

r

+−
=

−
 

I. Matrix Operations for Matlab 
 
The beauty of using Matlab is that many operations can be performed using matrix 
operations and that one can perform complex arithmetic. This eliminates many loops and 
make the coding of computations quicker. However, one needs to be able to understand 
the formalism. In this section we elaborate on these operations so that one can see how 
the Matlab implementation of the direct computation of the DFT can be carried out in 
compact form as shown previously in the Matlab Implementation section. This is all 
based upon the structure of Matlab, which is essentially a MATrix LABoratory.  
 
A key operation between matrices is matrix multiplication. An n m×  matrix is simply a 
collection of numbers arranged in n rows and m columns. For example, the matrix  

1 2 3

4 5 6
 
 
 

 is a 2 3×  matrix. The entries (elements) of a general matrix A can be 

represented as ijA which represents the ith row and jth column.  
 
Given two matrices, A and B, we can define the multiplication of these matrices when the 
number of columns of A equals the number of rows of B. The product, which we 
represent as matrix C, is given by the ijth element of C. In particular, we let A be 
a p m× matrix and B an m q×  matrix. The product, C, will be a p q× matrix with entries 

1

1 1 2 2

, 1, , , 1, , ,

.

m

ij ik kj
k

i j i j im mj

C A B i p j q

A B A B A B
=

= = =

= + +

∑ … …

…
 

 

If we wanted to compute the sum 
1

N

n n
n

a b
=

∑ , then in a typical programming language we 

could use a loop, such as  
 

Sum =0 
Loop n from 1 to N 
    Sum = Sum +  a(n)*b(n) 
End Loop 

 
In Matlab we could do this with a loop as above, or we could resort to matrix 
multiplication. We can let a and b be 1 n×  and 1n×  matrices, respectively. Then the 
product would be a 1 1×  matrix; namely, the sum we are seeking. However, these 
matrices are not always of the suggested size.  
 
A 1 n×  matrix is called a row vector and a 1 n×  matrix is called a column vector. Often 
we have that both are of the same type. One can convert a row vector into a column 



vector, or vice versa, using the matrix operation called a transpose. More generally, the 
transpose of a matrix is defined as follows: TA  has the elements satisfying ( )T

jiij
A A= .  

In Matlab, the transpose if a matrix A is 'A . 
 

Thus, if we want to perform the above sum, we have 1 1
1 1

N N

n n n n
n n

a b a b
= =

=∑ ∑ . In particular, if 

both a and b are row vectors, the sum in Matlab is given by ,ab'  and if they are both row 
vectors, the sum is .a'b  This notation is much easier to type. 
 
In our computation of the DFT, we have many sums. For example, we want to compute 
the coefficients of the sine functions,  

2

1

2
( )sin( ), 0, , / 2

N
pn

Np n
n

B y t p N
N

π

=

= =∑ …  

 
The sum can be computed as a matrix product. The function y only has values at times .nt  
This is the sampled data. We can represent it as a vector. The sine functions take values 
at arguments (angles) depending upon p and n. So, we can represent the sines as an 

( / 2 1)N N× +  or ( / 2 1)N N+ ×  matrix. The Fourier coefficient thus becomes a simple 

matrix multiplication, ignoring the prefactor 
2
N

. Thus, if we put the sampled data in a 

1 N×  vector Y and put the sines in an ( 1)
2
N

N × +  vector S, the Fourier coefficient will 

be the product, which has size 1 1
2
N × + 

 
. Thus, in the code we see that these 

coefficients are computed as B=2/N*y*S for the given y and B matrices.  The A 
coefficients are computed in the same manner. Comparing the two codes in that section, 
we see how much easier it is to implement. However, the number of multiplications and 
additions has not decreased. This is why the FFT is generally better. But, seeing the direct 
implementation helps one to understand what is being computed before seeking a more 
efficient implementation, such as the FFT. 
 
 
 


