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Summary of Perturbation Theory

In perturbation theory, we want to solve the eigenvalue problem

Ĥ|ψ〉 = E|ψ〉, (1)

where Ĥ = Ĥ0 + λĤ1 and we can solve the eigenvalue problem

Ĥ0|ψ〉 = E(0)|ψ〉. (2)

The extra term, λĤ1, is a small correction to Ĥ0.

Nondegenerate Perturbation Theory

In the case that there is only one eigenstate |ψ(0)
n 〉 in Equation (2)

corresponding to energy E(0)
n , we seek solutions in the form

|ψn〉 = |ψ(0)
n 〉+ λ|ψ(1)

n 〉+ λ2|ψ(2)
n 〉+ . . . , (3)

En = E(0)
n + λE(1)

n + λ2E(2)
n + . . . . (4)

We have found the first and second order energy corrections as

E(1)
n = 〈ψ(0)

n |Ĥ1|ψ
(0)
n 〉, (5)

E(2)
n = 〈ψ(0)

n |Ĥ1|ψ
(1)
n 〉, (6)

where

|ψ(1)
n 〉 = ∑

m 6=n

〈ψ(0)
m |Ĥ1|ψ

(0)
n 〉

E(0)
n − E(0)

m

|ψ(0)
n 〉. (7)

This gives,

E(2)
n = ∑

m 6=n

∣∣∣〈ψ(0)
m |Ĥ1|ψ

(0)
n 〉
∣∣∣2

E(0)
n − E(0)

m

.

Degenerate Perturbation Theory

In the case that there are several eigenstates |ψ(0)
n,i 〉, i = 1, . . . .N, in

Equation (2) corresponding to energy E(0)
n , we seek solutions in the

form

|ψn〉 =
N

∑
i=1

ci|ψ
(0)
i,n 〉+ λ|ψ(1)

n 〉+ . . . , (8)

En = E(0)
n + λE(1)

n + . . . . (9)
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The goal is to find the ci’s so that linear combinations the zeroth
order solution correspond to first order energy shifts which are the
eigenvalues of the eigenvalue problem

H1c = E(1)
n c, (10)

where
(H1)ji = 〈ψ

(0)
n,j |Ĥ1|ψ

(0)
n,i 〉.

Since there can be several solutions of this eigenvalue problem, there
will be several linear combinations the zeroth order solution.

Example 1. Stark Effect

Ĥ =
p̂2

2µ
− e2

ˆ|r|
+ er̂ · E

Picking E = Ek, then Ĥ1 = e|E|ẑ. The ground state,
|1, 0, 0〉, in nondegenerate. The first order correction is E(1)

n =

e|E|〈1, 0, 0|ẑ|1, 0, 0〉 = 0. It vanishes due to parity considera-
tions.One needs higher order corrections to get nonzero contri-
butions.

The first excites states, for n = 2, are degenerate. There are
n2 = 4 states: |2, 0, 0〉, |2, 1, 0〉, |2, 1, 1〉, and |2, 1,−1〉. The only
nonzero matrix entries are

(H1)ji = 〈ψ
(0)
n,j |Ĥ1|ψ

(0)
n,i 〉.

For example,

〈200|Ĥ1|210〉 = e|E|
∫ ∞

0
r2 dr

∫ π

0
sin θ dθ

∫ 2π

0
dφR∗20Y∗00r cos θR21Y10.

This gives
〈200|Ĥ1|210〉 = −3e|E|a0.

These computations give

H =


0 −β 0 0
−β 0 0 0
0 0 0 0
0 0 0 0

 . (11)

where β = 3e|E|a0.
We can use this matrix representation to solve the eigenvalue

problem
0 −β 0 0
−β 0 0 0
0 0 0 0
0 0 0 0




c1

c2

c3

c4

 = E(1)
2


c1

c2

c3

c4

 (12)
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We obtain the possible first order corrections to the energy
from the eigenvalue equation:∣∣∣∣∣∣∣∣∣∣
−E(1)

2 −β 0 0

−β −E(1)
2 0 0

0 0 −E(1)
2 0

0 0 0 −E(1)
2

∣∣∣∣∣∣∣∣∣∣
=
(
−E(1)

2

)2
[(

E(1)
2

)2
− β2

]
= 0.

Therefore,
−E(1)

2 = 0, 0, β,−β.

The corresponding normalized eigenvectors associated with
these eigenvalues are given respectively by

|2, 0, 1〉, |2, 0,−1〉, 1√
2
(|2, 1, 0〉 − |2, 0, 0〉) ,

1√
2
(|2, 1, 0〉+ |2, 0, 0〉) .

Only the last two states give a shift to first order in the energies.

Hydrogen Atom Perturbations

Recall that the zeroth order energies are given by

E(0)
n = −µc2Z2α2

2n2 .

There are relativistic corrections of order α4, where α =
1

137
. These

are the correction to the kinetic energy, spin-orbit coupling, and the
Darwin term. These perturbations to the Hamiltonian are given by

ĤK = − p̂4

8m3
e c2

, (13)

ĤSO =
Ze2

2m2
e c2|r̂|3 L̂ · Ŝ, (14)

ĤD = − 1
8m2

e c2 [p̂, [p̂, V(r̂)]]. (15)

A little effort is needed to apply perturbation theory to these cor-
rections to obtain the corrections to the energies. The relativistic
correction to the kinetic energy has rotational invariance, so the de-
generate eigenspaces result in diagonal matrix representations for H1.
One only needs to compute

E(1)
n,` = 〈n, `, m|ĤK|n, `, m〉 = −1

2
mec2Z4α4

− 3
4n4 +

1

n3
(
`+ 1

2

)
 .

(16)
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For the spin-orbit term, one needs basis states coupling position
and spin states, |`, m,±z〉. ĤSO commutes with Ĵz and Ĵ2. Eigenval-
ues of Ĵz equal to m + 1

2 correspond to the two states |`, m,+z〉 and
|`, m + 1,−z〉 for fixed ` and m 6= `.

Noting that
2L̂ · Ŝ = L̂+Ŝ− + L̂−Ŝ+ + 2L̂zŜz,

the matrix representation for 2L̂ · Ŝ is

h̄2

(
m

√
`(`+ 1)−m(m + 1)√

`(`+ 1)−m(m + 1) −(m + 1)

)
. (17)

Solving the eigenvalue problem,

2L̂ · Ŝ|λ〉 = λh̄2|λ〉,

one finds the eigenvalues λ = `,−(` + 1) and the corresponding
states

|j = `± 1
2

, mj〉 =

√
`±mj +

1
2

2`+ 1
|`, mj −

1
2

,+z〉

±

√
`∓mj +

1
2

2`+ 1
|`, mj +

1
2

,+z〉. (18)

Eventually, this leads to the result

E(1)
SO =

mec2Z4α4

4n3`(`+ 1
2 )(`+ 1)

{
`, j = `+ 1

2 ,
−(`+ 1), j = `− 1

2 .
(19)

There is still the Darwin term. The final result for the total energy
shifts

E(1)
n,j = −mec2(Zα)4

2n3

(
1

j + 1
2
− 3

4n

)
. (20)
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