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Perturbative and WKB Expansions

1 Introduction

Solutions to the quantum harmonic oscillator problem,

− ~2

2m
ψ′′(x) +

1

2
mω2x2ψ(x) = Eψ(x), (1)

are well known with associated energies

En =

(
n+

1

2

)
~ω.

It is common to rescale the problem to obtain

−1

2
ψ′′(x) +

1

2
x2ψ(x) = Eψ(x), En = n+

1

2
. (2)

The first three numerically computed energy levels, En, and solutions, ψn(x) are shown in Figure 1.

Figure 1: Solutions and energies.

Now we perturb the potential with a quartic term. Then, we have

−1

2
ψ′′(x) +

1

2
x2ψ(x) + gx4ψ(x) = Eψ(x), (3)

where g is a coupling constant. Examples displaying the potential, solutions, and energies are shown in
Figures 2-3.



Figure 2: Solutions and energies for the problem with quartic perturbation and g = 0.1.

Figure 3: Solutions and energies for the problem with quartic perturbation and g = −0.005.

For small coupling, one can assume that the energies are close to those of the harmonic oscillator. The
numerical results confirm this. How does one analytically obtain approximations to the energies? The usual
methods for doing so are either Rayleigh-Schrödinger perturbation theory or a WKB analysis.

Bender and Wu1 [1] had found for the ground state energy that corrections to the ground state energy
in powers of the coupling parameter are given as

E0 =
1

2
+

3

4
g − 21

8
g2 +

333

16
g3 − 30885

128
g4 +

916731

256
g5 +O(g6). (4)

1Actually, they solved the problem [
−
d2

dx2
+

1

4
x2 +

1

4
λx4

]
ψ(x) = Eψ(x).

Letting x =
√

2q, we obtain Equation (3) and get the same energies.
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Writing

E0 =
1

2
+

∞∑
n=1

Ang
n,

they found that for large n,2

An ∼ (−1)n+1

√
6

π3
3nΓ(n+

1

2
)

= −
√

6

π2

(
−3

2

)n
(2n− 1)!!. (5)

Thus, the series is divergent with factorial growth.

2 Riccati Equation

Following [3], we begin with the Schrödinger equation in the form

Ĥψ = Eψ, Ĥ = −g
2

2

d2

dq2
+ V (g, q), (6)

where g is a coupling constant. One can think of g = ~.

Letting S(q) = −gψ′/ψ, we obtain the Riccati equation

gS′ − S2 + 2(V − E) = 0. (7)

We next introduce two independent solutions satisfying the boundary conditions

lim
q→+∞

ψ2(q) = 0, lim
q→−∞

ψ1(q) = 0.

Leading order WKB for large q and V (q) > gE gives

ψ1(q) ∼ exp

(
−1

g

∫
dq
√

2(V (q)− E)

)
ψ2(q) ∼ exp

(
1

g

∫
dq
√

2(V (q)− E)

)
(8)

Defining

S±(q) =
1

2

(
ψ′1
ψ1

+
ψ′2
ψ2

)
,

we have

gS′− − S2
+ + 2V (q)− 2gE = 0,

gS′+ − 2S+S− = 0. (9)

2Recall that Γ(n+ 1
2

) =
(2n)!
4nn!

√
π =

(2n−1)!!
2n

√
π.
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The Bohr-Sommerfeld condition,

B(E, g) ≡ − 1

2πig

∮
C

dz S+(z, g, E) = N +
1

2
, (10)

is used to find the energy, E, as

E =

∞∑
k=0

gkEk.

The contour C is chosen to be a positively oriented simple closed contour enclosing all real poles of S+(z, g, E).

3 Perturbative Expansion

Let

S(q) =

∞∑
k=0

gksk(q)

and define U(q) =
√

2V (q). From the Riccati equation, one finds

s0(q) = U(q),

s1(q) =
1

2U(q)
(U ′(q)− 2E) ,

s2(q) =
U ′′

4U2
− 3U ′

2

8U3
+
EU ′

2U3
− E2

2U3
,

sk(q) =
1

2U(q)

(
s′k−1(q)−

k−1∑
`=1

sk−`(q)s`(q)

)
, k = 2, 3, . . . . (11)

Assuming reflection symmetry, B(−E,−g) = −B(E, g), we have

S+(z, g, E) =
1

2
(S(z, g, E) + S(z,−g,−E))

= U − gE
U

+ g2
(

1

4

U ′′

U2
− 3

8

U ′2

U3
− 1

2

E2

U3

)
+O(g3). (12)

4 WKB Expansion

In this case we expand S(q) in powers of g with gE fixed,

S(q) =

∞∑
k=0

gkSk(q).

Letting W (q) =
√

2(V (q)− gE), gives

S0(q) = W (q),
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S1(q) =
1

2

S′0(q)

S0(q)
,

S2(q) =
S′1(q)− S2

1(q)

2S0(q)

=
S

′′

0 (q)

4S2
0(q)

− 3

8

S′0
2
(q)

S3
0(q)

,

Sk(q) =
1

2S0(q)

(
S′k−1(q)−

k−1∑
`=1

Sk−`(q)S`(q)

)
, k = 2, 3, . . . . (13)

The difference in this case is that when computing B(E, g) one encounters branch points and takes the
branch cut along the positive real axis.

S0 =
(
U2 − gE

) 1
2

= U
(
1− gEU−2

) 1
2

= U

∞∑
n=0

Γ(n− 1
2 )

Γ(n+ 1)Γ(− 1
2 )

(
−gEU−2

)n
(14)

S2+ =
1

8

S′0
2
(q)

S3
0(q)

=
U ′

2
U2

8S5
0

=
1

8

∞∑
n=−1

Γ(n+ 1
5 )

Γ(n+ 1)Γ( 5
2 )

(2gE)
n
U ′2U−2n−3 (15)

5 Example

q

f(q)

Figure 4: Plots of f(q) = 1
2q

2 + q4 (red) and f(q) = 1
2q

2 − q4 (blue).
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B = E +
(
−3/2E2 − 3/8

)
G+

(
35E3

4
+

85E

16

)
G2 +

(
−1155E4

16
− 2625E2

32
− 1995

256

)
G3

+

(
400785E

1024
+

165165E3

128
+

45045E5

64

)
G4 + . . . . (16)

Appendix - WKB Approximation

The WKB Approximation, named after Wentzel–Kramers–Brillouin, is a method to approximate solutions
to linear differential equations with spatially varying coefficients. According to [2], this method was discussed
by several researchers such as George Green (1793-1841), Lord Rayleigh (1842-1909), Richard Gans (1880-
1954), Harold Jeffreys (1891-1989), only to have the names of Gregor Wentzel (1898-1978), Henrich A.
Kramers (1884-1952), and Leon Brillouin (1889-1969) stick as the “WKB” approximation (or, method).
This is probably because of the application to quantum mechanics. Sometimes Jeffreys is added giving the
WKBJ or JWKB approximation.

We begin with the time-independent Schödinger equation,

− ~2

2m
ψ′′(x) + V (x)ψ(x) = Eψ(x), (17)

or

ψ′′(x) +
2m

~2
[E − V (x)]ψ(x) = 0, (18)

and consider the scattering problem shown in Figure 5. A particle moving from left to right with energy E
encounters potential V (x) and is reflected at the turning point xr. We seek to find the solutions on either
side of the turning point and match them at the turning point. We will also provide the results for particles
incident on a potential from the right with a turning point at x = x`.

In general, this is not exactly solvable, so we seek approximate solutions valid when the wavelength is
much smaller than some characteristic length, λ � L. Recalling that λ = h/p, this is a condition on p(x),
p(x)� h

L , where

p(x) =
√

2m [E − V (x)].

Therefore, there is a restriction on the kinetic energy:

E − V (x) =
p2(x)

2m
� h2

2mL2
.

We make the WKB ansätz,

ψ(x) = A(x)e
i
~S(x)

= e
i
~S(x)+lnA

≡ e
i
~W (x). (19)

Here we have defined
W (x) = S(x)− i lnA~.
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x

V (x)

E

xr
x0 x

(a)

x

p(x)

xr

x0 x

S(x)

(b)

Figure 5: (a) Potential plot showing turning point at x = xr associated with scattering energy E. (b) Phase
space plot of curves p(x) = ±

√
2m [E − V (x)] and the shaded area, S(x).

Since ~ is small, it looks like we have the beginning of a power series expansion in powers of ~,

W (x) = W0(x) +W1(x)~ +W2(x)~2 + . . . .

Here we have
W0(x) = S(x), W1(x) = −i lnA.

The typical introduction to WKB stops at these two terms. The question as to how well two terms approx-
imates the exact solution was answered in 1954 by F. W. J. Olver [2].

Inserting the ansätz into the Schrödinger equation, one obtains a differential equation for W (x) :

1

2m
W ′

2 − i~
2m

W ′′ + V = E, (20)

or
W ′

2 − i~W ′′ + 2m[V − E] = 0. (21)

Note that this is a Riccati equation3 for y(x) = W ′(x).

Inserting the expansion for W (x) and collecting like powers of ~, we obtain

1

2m
W ′0

2
+ V (x) = E,

3A general nonlinear Riccati equation takes the form y′ = q0(x) + q1(x)y + q2(x)y2
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1

m
W ′0W

′
1 −

i

2m
W ′′0 = 0. (22)

Since W0(x) = S(x) and W1(x) = −i lnA, these equations give

1

2m
S′

2
+ V (x) = E, (23)

0 =
A′

A
S′ + 12S′′ =

d

dx

(
A2S′

)
. (24)

Equation (23) is in the form of the Hamilton-Jacobi equation, so S(x) is called the action. Equation (24) is
an amplitude transport equation.

Solving for S′, we have
S′(x) =

√
2m[E − V (x)] = p(x).

Integrating, we have

S(x) =

∫ x

x0

p(ξ) dξ = ±
∫ x

x0

√
2m [E − V (ξ)] dξ.

Therefore, we see that S(x) is the area in the phase plane as shown in Figure 5.

Integrating Equation (24), we find

A(x) =
const.√
p(x)

.

Combining these solutions, we have found the general solution

ψ(x) =
cr√
p(x)

e
i
~S(x) +

c`√
p(x)

e−
i
~S(x), E > V (x)

in the classically allowed region.

In the classically forbidden region, E < V (x). Therefore, the general solution takes on the form

ψ(x) =
cg√
|p(x)|

eK(x)/~ +
cd√
|p(x)|

e−K(x)/~, E < V (x),

where

K(x) =

∫ x

x0

|p(ξ)| dξ =

∫ x

x0

√
2m [V (ξ)− E] dξ.

A similar analysis can be provided for particles incident from the right as shown on the left side of Figure 5.

We first consider the case of particles incident from the left as shown on the right in Figure 6. There are
two regions of interest. These regions correspond to the regions on the left (x < xr) and right (x > xr) sides
of the turning point. However, near the turning point these solutions are invalid since λ = 2π~/p becomes
unbounded as x → xr. Therefore, we need to find the solution behavior near xr. In Figure 6 this region is
designated as Region II.

In Region II we expand the potential about x = xr, or use the linear approximation

V (x) ≈ V (xr) + V ′(xr)(x− xr).

8



x

V (x)

E

xr

I II III

x

V (x)

E

x`

IIIIII

Figure 6: Potential plot showing three regions used in the WKB analysis. On the left is for an incident
particle from the right and on the right is for an incident particle from the left.

Figure 7: Plots of the Airy functions of the first and second kind.

Inserting this in the Schrödinger equation and defining x− xr = az, ψ(x) = φ(z), we find

φ′′(z)− zψ(z) = 0, a =

(
~2

2mV ′(xr)

)1/3

.

This is the Airy equation with solutions given by the Airy function of the first kind, Ai(x), and the Airy
function of the second kind, Bi(x). Therefore, the general solution is in the form

φ(z) = caAi(z) + cbBi(z).

The behavior of these functions is shown in Figures 7-8 with the asymptotic behavior listed in Table 1.

The general forms for the wavefunctions in the three regions are

ψI(x) =
cre

iπ/4√
p(x)

e
i
~S(x,xr) +

c`e
−iπ/4√
p(x)

e−
i
~S(x,xr), (25)
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Figure 8: Plots of the Ai(x) and its envelope, y = 1√
π
√
−x

for x ≤ 0.

z � 0 z � 0
Ai(z) 1√

π(−z)1/4 cosα(z) 1
2
√
πz1/4

exp(−β(z))

Bi(z) 1√
π(−z)1/4 sinα(z) 1√

πz1/4
exp(β(z))

Table 1: The asymptotic behavior of Airy functions which can also be seen in Figure 7. Here we have defined
α(z) = − 2

3 (−z)2/3 + π
4 and β(z) = 2

3z
3/2.

ψII(x) = caAi(z) + cbBi(z), (26)

ψIII(x) =
cg√
|p(x)|

eK(x,xr)/~ +
cd√
|p(x)|

e−K(x,xr)/~, (27)

where

S(x, xr) =

∫ x

xr

√
2m [E − V (ξ)] dξ,

K(x, xr) =

∫ x

xr

√
2m [V (ξ)− E] dξ,

az = x− xr, a =

(
~2

2mV ′(xr)

)1/3

,

and phase shifts of ± iπ4 were introduced to make matching with the asymptotics of the Airy functions
simpler.

In the forbidden region we consider the asymptotics of the Airy function for z � 0. Then, matching
solutions in Regions II and III requires finding the asymptotic form for K(x, xr).

K(x, xr) =

∫ x

xr

√
2m [V (ξ)− E] dξ

≈
√

2mV ′(xr)

~2

∫ x

xr

√
ξ − xr dξ for x ≈ xr,
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=
2

3
a−3/2(x− xr)3/2

=
2

3
z3/2 = β(z). (28)

Furthermore, we note that near the turning point

|p(z)|2 = 2m(E − V (x))

≈ 2m(x− xr)V ′(xr) for x ≈ xr,
= 2mV ′(xr)az

=
~2

a2
z. (29)

Therefore, we have found that

ψIII(x) =
cg√
|p(x)|

eK(x,xr)/~ +
cd√
|p(x)|

e−K(x,xr)/~

∼ cg
z1/4

√
a

~
eβ(z) +

cd
z1/4

√
a

~
e−β(z). (30)

We compare this with the asymptotic solution for the Airy functions in Region II,

ψII(x) = caAi(z) + cbBi(z)

∼ ca
2
√
πz1/4

e−β(z) +
cb√
πz1/4

eβ(z). (31)

We see that

cd =
1

2

√
~
πa
ca, cg =

1

2

√
~
πa
cb.

A similar analysis can be done relating regions I and II. Then, we find that the coefficients are related
by

cr =
1

2

√
~
πa

(ca − icb), c` =
1

2

√
~
πa

(ca + icb).

For a particle incident from the left, we need cb = cg = 0. Then these expressions simplify to

cr =
1

2

√
~
πa
ca = c`

and the wavefunctions take the form

ψI(x) =
cr√
p(x)

cos

(
S(x, xr)

~
+
π

4

)
, (32)

ψII(x) = caAi(z), (33)

ψIII(x) =
cd√
|p(x)|

e−K(x,xr)/~. (34)

Setting cd = 1, we have ca = 2
√

πa
~ and, therefore, cr = c` = 1.
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In general, we have found the connection rules(
cr
c`

)
=

(
− i

2 1
i
2 1

)(
cg
cd

)
.

These are independent of a.

We next consider bound state solutions for the potential in Figure 9(a) with the associated phase plane
plot in Figure 9(b). In this case there are two turning points at x = x` and x = xr. Based on the previous
analysis, we write the wavefunctions for each region as

ψI(x) =
ag√
|p(x)|

eK(x,x`)/~ +
ad√
|p(x)|

e−K(x,x`)/~, (35)

ψII(x) =
bre
−iπ/4√
p(x)

e
i
~S(x,x`) +

b`e
iπ/4√
p(x)

e−
i
~S(x,x`), (36)

=
b′re

iπ/4√
p(x)

e
i
~S(x,xr) +

b′`e
−iπ/4√
p(x)

e−
i
~S(x,xr), (37)

ψIII(x) =
cg√
|p(x)|

eK(x,xr)/~ +
cd√
|p(x)|

e−K(x,xr)/~. (38)

Considering the behavior in the classically forbidden regions, we have that ad = cg = 0. We also note that
there are two equivalent expressions for Region II depending if we use the left or right turning point.

The coefficients are represented by the connection formulae found in the single turning point problem.
Thus, we have for the right turning point,(

b′r
b′`

)
=

(
− i

2 1
i
2 1

)(
cg
cd

)
. (39)

We have similar relations for the left turning point:(
br
b`

)
=

(
1 i

2
1 − i

2

)(
ag
ad

)
. (40)

If ad = 0, ag = 1, then from Equation (39) we have br = 1 = b`.

We need to relate b′r, b
′
` to br and b`. Focusing on the first terms in each expression for ψII(x), we have

S(x, x`) =

∫ x

x`

p(x) dx

=

∫ xr

x`

p(x) dx+

∫ x

xr

p(x) dx

= πI + S(x, xr), (41)

where I is the action integral,

I =
1

2π

∮
p(x) dx.

The integral in the definition of the action gives the total phase change,

∆φ =

∮
p(x) dx− 2

π

2
= 2nπ.
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x

V (x)

E

xrx`

(a)

I II III

x

p(x)

xrx`

(b)

Figure 9: (a) Potential plot showing turning points at x = x` and x = xr associated with bound state energy
E. (b) Phase space plot of curves p(x) = ±

√
2m(E − V (x)).
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There are two phase shifts at the turning points contributing shifts of π/2. This in tuen gives the Bohr-
Sommerfeld quantization rule ∮

p(x) dx =

(
n+

1

2

)
h.

Thus, the allowed orbits have the action integrals

In =
1

2π

∮
p(x) dx =

(
n+

1

2

)
~. (42)

Now we can related the expressions for ψII(x),

ψII(x) =
bre
−iπ/4√
p(x)

e
i
~S(x,x`) +

b`e
iπ/4√
p(x)

e−
i
~S(x,x`)

=
bre
−iπ/4√
p(x)

e
i
~S(x,xr)+

i
~πI +

b`e
iπ/4√
p(x)

e−
i
~S(x,xr)−

i
~πI

=
b′re

iπ/4√
p(x)

e
i
~S(x,xr) +

b′`e
−iπ/4√
p(x)

e−
i
~S(x,xr). (43)

Comparing the last two lines, we have

b′r = e
iπ
~ I−iπ/2br

b′` = e−
iπ
~ I+iπ/2b`. (44)

,

From Equation (40), we have (
cg
cd

)
=

(
1
2

1
2

−i i

)(
b′r
b′`

)
. (45)

Therefore, since b` = br = 1,

cg = ib′r − ib′` = −2 sin

(
πI

~
− π

2

)
= 2 cos

πI

~
= 0.

This implies that I =
(
n+ 1

2

)
~, which is the Bohr-Sommerfeld condition. Furthermore, we find that

cd =
1

2
(b′r + b′`) = cos

(
πI

~
− π

2

)
= cosnπ = (−1)n.

This analysis gives the wavefunctions in the three regions, away from the turning points, as

ψI(x) =
1√
|p(x)|

eK(x,x`)/~, (46)

ψII(x) =
2√
p(x)

cos

(
S(x, x`)

~
− π

4

)
, (47)

ψIII(x) =
(−1)n√
|p(x)|

e−K(x,xr)/~. (48)
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